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Master Thesis

Perturbative Stability of Topologically
Ordered Systems with Local Defects

Advisor: Professor Tobias J. Osborne, PhD

Co-Advisor: Assistant Professor Davor Horvatić, PhD
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Perturbativna stabilnost topološki uredenih
sustava s lokalnim defektima

Sažetak

Kvantni spinski sustavi donose uvijek nove izazove u modernoj fizici prote-
klih nekoliko desetljeća; teorijski opis topološkog kvantnog uredenja je otkrio
novo poglavlje u razumijevanju faznih prijelaza u kvantnim sustavima.
Novoopažena svojstva topološki uredenih sustava zaokupila su pozornost
i znanstvenika iz polja kvantne teorije informacija, čime je započelo
istraživanje njihovoga potencijala u kvantnom računarstvu. Od nedavno,
korisnost topološki uredenih sustava detaljno se istražuje u području to-
pološkog kvantnog računarstva.
Sustavi u kojima se pojavljuje topološko uredenje imaju vrijedne mogućnosti
za kvantno računarstvo – korǐstenjem globalnih opservabli koje ostaju ro-
bustne kada se na sustav djeluje lokalnom perturbacijom. Pod ovim uvje-
tima, informacije pohranjene u sustavu ostaju stabilne, što pruža jedinstven
način zaobilaženja problema koji zaokupljaju standardne sheme korǐstene u
kvantnom računarstvu.
U svrhu bolje primjenjivosti ovih sustava u kvantnom računarstvu otpornom
na pogreške, potrebno je razumjeti točno ponašanje pohranjenih informacija
pod utjecajem vanjske perturbacije. Ovaj rad predstavlja važne matematičke
metode koje se koriste pri istraživanju dinamike lokalnih kvantnih sustava
— kvazi-adijabatsko produljenje, Lieb-Robinsonove granice, i razvoj vlastite
energije — te prikazuje njihovu primjenu pri unaprjedivanju razumijevanja
utjecaja slabih lokalnih perturbacija na informacije pohranjene u topološki
uredenim sustavima.
Specifično, istražen je utjecaj perturbacije na topološki uredene sustave s
lokalnim defektima tipa rupe te su izvedene opće granice za stabilnost to-
pološkog uredenja u takvim sustavima.



Perturbative Stability of Topologically Ordered
Systems with Local Defects

Abstract

Quantum spin systems have been providing modern physics with ever new
challenges to tackle in the past several decades; from the theoretical pos-
tulation of topological quantum order, a new chapter was revealed in the
understanding of phase transitions in quantum systems.
The novel properties of topologically ordered systems had caught the inter-
est of quantum information scientists, and research into their potential in
the field of quantum computing soon began. Nowadays, this utility of topo-
logically ordered systems is thoroughly researched in the field of topological
quantum computing.
Systems that exhibit topological order present a valuable resource for quan-
tum computing – by use of the global observables that remain robust when
such a system is acted on by a local perturbation. Under these conditions, the
information stored in the system remains stable, providing a unique modus
of circumventing the problems that plague standard quantum computing
schemes.
To improve on the applicability of such systems in fault-tolerant quantum
computation, there exists a need to understand the exact behavior of the
encoded information under perturbation. To this end, this thesis presents
critical mathematical methods used to research the dynamics of local quan-
tum systems — the quasi-adiabatic continuation, the Lieb-Robinson bounds,
and the self-energy expansion — and utilizes them to further the understand-
ing of the effect of weak local perturbations on the information stored in a
topologically ordered system.
In particular, the influence of perturbation on topologically ordered systems
with local puncture defects is examined, and general bounds on the stability
of topological order in such systems are derived.
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1 Introduction

Quantum information and quantum computation are terms that denote the study of
the information processing tasks that can be accomplished using quantum mechan-
ical systems [1] – and they are quantum mechanical counterparts of the classical
fields of the same name. The story of the birth of these fields is long and it follows
the discovery of the underlying quantum structure of the world. The property of su-
perposition of quantum states enables a view of information that is vastly different to
the one of classical information theory. While the states of classical bits are defined
as Z2 = {0, 1}, quantum bits — or qubits — are represented by C2 = C[Z2], which
implies that classical bit states can be seen as mere basis vectors for qubits [2].

In 1982, Richard Feynman, a reputed physicist, had shown that a standard com-
puting machine that does not rely on quantum mechanics for its operation, would not
be able to efficiently simulate quantum phenomena [3]. In fact, it would be expected
to experience an exponential slowdown, while a universal quantum simulator that he
proposed in the same publication – would not. Following this leading thought, re-
search into quantum simulators and quantum computers truly began. In 1996, Seth
Lloyd proved Feynman’s conjecture to be correct [4].

Ever since its modest beginnings, classical computing has experienced an unbri-
dled expansion in the sense that its capabilities and availability have soared beyond
any initial prediction. However, practical limitations exist to the actual computing
power of classical computers, and they cannot be expected to reach the capabilities
of quantum computers. In 1965, Gordon Moore presented a hypothesis (later known
as Moore’s law) based on the observation of the development of integrated elecron-
ics. He claimed that the power of computer hardware (the number of components
on integrated circuits) would double for constant cost roughly every year in the fore-
seeable future – and has later been reported to increase that period to two years [5].
Time has shown that he was approximately right with this statement. However, as the
computing power rises, the size of manufactured hardware components diminishes –
as processors grow smaller, quantum effects gain a non-negligible role in their physi-
cal properties. Moore’s law is expected to hit a fundamental wall and fail in the near
future. One way of addressing the interfering quantum effects in classical computing
hardware is to accept the fall of its advancement and turn to quantum computing – a
flagship project for many scientific and technological research institutions that focus
on the frontier of science (for examples of experimental achievements in topological
quantum computing, see Subsection 2.5).

It is not only classical hardware that is expected to fold next to quantum comput-
ing, many core classical algorithms (such as the famed RSA cryptosystem – see [6])
are outshined by innovative quantum algorithms, most notably Peter Shor’s factoring
algorithm [7] and Lov Grover’s search algorithm [8]. Some of the invented quantum
algorithms outperform their classical equivalents, possibly making previously unfea-
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sible calculations simplified and approachable, given that there exists a quantum
computer that could run them (for example, a new field of post-quantum cryptogra-
phy [9] is currently in the making).

Analogously to the way a classical computer is built to contain electrical circuits
that contain logic gates used to perform computational tasks, a quantum computer is
built of quantum circuits that contain quantum gates. These schemes can be utilized
to build quantum algorithms.

An important facet of quantum computing is the possibility to store quantum
information in a system, and use it at a later time for computing protocols – this
involves creating reliable quantum memories (for example, see [10]). A troublesome
issue with any quantum systems is the prospect of decoherence, which would destroy
the information stored in the system and render any computational process useless.
Additionally, as quantum systems are much more sensitive to outside disturbances
than is the case with classical computing components, the stability of such systems
comes into question. A good overviev of the general requirements for a physical
implementation of quantum computation can be found in [11].

One of the most reliable ways of combating the problems inherent to quantum
computing systems is quantum error correction, in a quest for fault-tolerant quantum
computing (see Subsection 3.1). The methods developed under these denomina-
tors focus on the development of setups and procedures in quantum computing that
would allow for the correction of any errors that may arise in such systems, allowing
for a confident use of quantum computing protocols. The threshold theorem [12],
formulated by Dorit Aharonov and Michael Ben-Or in 1999, confirms that quantum
computation can be made robust against errors and inaccuracies when the error rate
is smaller than some threshold value, by use of quantum error correcting methods.
A comprehensive introduction to quantum error correction can be found in [13]
and [1], and a short overview is presented in [14].

An innovative approach to the problem of instability of quantum computing se-
tups is the use of systems that exhibit topological quantum order. The research on
such systems focuses on the global invariants that are robust against local perturba-
tion. This means that discovering and tracking errors in topological quantum comput-
ers becomes a much easier task than that which is faced by other venues of quantum
computing [15].

Topologically ordered systems are most famously observed in fractional quantum
Hall liquids [16] (see other experimental realizations in Subsection 2.5), and they are
not yet well understood at temperatures above absolute zero – a topological phase of
matter is a state of matter whose low-energy effective theory is a topological quantum
field theory [2].

An interesting characteristic of topologically ordered systems is that they support

2



the existence and creation of anyons – indistinguishable quasiparticles that may only
occur in two-dimensional systems, and that do not follow bosonic, or fermionic ex-
change statistics. They were first mathematically described by Jon Magne Leinaas
and Jan Myrheim in 1977 [17], and named by Frank Wilczek in 1982 [18]. Anyons
may be observed that obey exchange statistics of the form |Ψ1Ψ2〉 = eiθ |Ψ2Ψ1〉, where
Ψ1 and Ψ2 are the quantum states of the two anyons, and θ has any value. This equa-
tion is exactly valid only in one direction of exchange (i.e. either counterclockwise
or clockwise), because of the existence of nonabelian anyons, for which the direction
of exchange matters.

x

y
t

Figure 1.1: A representation of anyon braiding in a 2-dimensional x-y system. The
anyons are represented as points on a 2-dimensional sheet, and the vertical axis is
the time axis, t. They are braided in time-space by rotating one around the other, as
denoted by arrows and blue lines.

Logical gates in topological quantum computation are constructed by braiding
anyons in (2+1)-dimensional space-time (see Figure 1.1 for a visual representation).
Separating the strings of the braid is non-trivial, which makes the manipulation of
the observables in such systems appropriate for topological quantum computation.
Much more on the topic of anyons and the braiding of anyons can be found in [19].

In this thesis, the focus was given to the perturbative stability of topologically or-
dered systems. In 2010, Sergey Bravyi, Matthew Hastings, and Spyridon Michalakis
had proven that the zero-temperature topological phases of matter remain robust
against small and local time-independent perturbations [20]. This is a very important
result for topological quantum computation, as it indicates that topological invariants
of such systems can be considered as such, under the conditions of little noise. To
understand precisely how a topologically ordered system is affected by perturbation,
it is necessary to examine the exact consequences of the introduction of perturbation
to such a system. This thesis presents results on the perturbative stability of topo-
logically ordered systems, and additionally topologically ordered systems with local
puncture defects (for a description, see Subsection 5.2. This work concludes with the
derivation and interpretation of general bounds on the stability of topological order
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in systems with local puncture defects.

The contents of this thesis are as follows.
In Section 2 the basics of topologically ordered quantum spin systems are pre-

sented, covering an introduction to the mathematical description and basic proper-
ties of quantum spin systems (Subsection 2.1) and the concept of quantum phase
transitions (Subsection 2.2). The section provides several equivalent descriptions of
topological quantum order (Subsection 2.3, Subsection 2.4), and a short overview of
the experimental realizations of topologically ordered systems, from the viewpoint of
quantum computing (Subsection 2.5).

Section 3 is an introduction to fault-tolerant quantum computation, covering the
relevant topics in quantum error correction (Subsection 3.1), presenting the stabi-
lizer formalism (Subsection 3.2), defining the toric code (Subsection 3.3) and con-
sidering the perturbative stability of topologically ordered systems in general terms
(Subsection 3.4).

The mathematical tools used for the analysis of the setups discussed in this work
are described in Section 4. Subsection 4.1 provides a description and a characteriza-
tion of the properties of the quasi-adiabatic continuation, Subsection 4.2 serves as an
introduction to the Lieb-Robinson bound, and Subsection 4.3 presents an overview
of Kitaev’s self-energy expansion.

The main analysis and results of this work are contained in Section 5. The goal
of this section is the investigation of the stability of qubits encoded in the punctured
toric code. Subsection 5.1 examines the application of a small perturbation onto a
system described by the toric code, and provides a relation that bounds the trunca-
tion error for the evolved logical operator in such a system. Subsection 5.2 introduces
local defects — punctures — in the toric code, and provides an overview of the prop-
erties of a punctured system. The following subsections focus on the calculations of
the effect of a small perturbation applied to a punctured toric code setup – Subsec-
tion 5.3 approaches the punctured toric code by use of Kitaev’s self-energy expansion,
while Subsection 5.4 analyses such a system by use of quasi-adiabatic continuation
and the Lieb-Robinson bounds. A summary and interpretation of the results is found
in Subsection 5.5.

Section 6 is a compilation of the properties of topologically ordered quantum spin
systems and tools used in the analysis of the related problems in quantum informa-
tion theory that were presented in this thesis, as well as the accomplished results.
It is an overview of the topics that were discussed in this work, and it provides a
short summary and interpretation of the calculated bounds. This section finalizes the
thesis by presenting a summary of the introduced topic, and providing an outlook for
the direction of future work.

An expanded Croatian abstract, of the length of a minimum of 20% of the textual
content in the thesis, can be found in Section 7.
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2 Quantum Spin Systems and Topological Order

A quantum spin system [21] is a term denoting a toy model that is most commonly
used to examine a nonrelativistic quantum system with some number of degrees of
freedom that each have a finite-dimensional state space. Quantum spin systems are
one of the types of systems that are investigated under the denominator of the the-
ory of quantum many-body systems, and they may exhibit macroscopically unusual
properties that challenge the understanding of the underlying mechanisms that are
observed in such systems, providing a relatively fresh challenge for many areas of
modern physics.

This section serves as an introduction to the topic of topological order. The first
part of the section (Subsection 2.1) explains the concept of quantum many-body sys-
tems in the context of quantum spin systems, followed by an introduction to the
topic of quantum phase transitions (Subsection 2.2). In the second part of the sec-
tion, topological order is described by a definition relating to a topologically ordered
system’s Hamiltonian (Subsection 2.3), as well as two alternative and equivalent ap-
proaches relating to the system’s phases and its states (Subsection 2.4), and finally,
some examples on the experimental realization of topologically ordered systems are
given (Subsection 2.5) to round off the introduction to the underlying setup for the
remainder of the thesis.

2.1 Quantum Many-Body Systems

In general, the field of quantum many-body systems [22] is concerned with models
that can be used to investigate problems relating to the states and dynamics of sys-
tems that consist of a large number of interacting particles, in which the principles
of quantum mechanics are necessarily used to reach sufficiently accurate results. Its
classical equivalent is known as N -body systems, and the approach to solving these
is straightforward in the statistical limit. The particles in quantum many-body sys-
tems are usually very small so that quantum effects play a relevant (and commonly
complicated) role in the dealing with the system.

One of the types of systems that quantum many-body systems deal with are quan-
tum spin systems. These systems feature some number of degrees of freedom spread
out on a graph, with each having a finite-dimensional state space, commonly asso-
ciated with spin. Additionally, there exists a notion of distance between the spin
particles in such graphs, providing a concept of locality [23,24].

This subsection provides a short introduction to quantum spin systems, as they
are approached in the theory of quantum many-body systems.

Instead of dealing with the properties and states of the individual elements of
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the system, the research on quantum many-body systems deals with the states and
observables on a macroscopic level – commonly expanding, also, the systems to the
thermodynamic limit, where they consist of an infinite number of subsystems [25].
An important area of interest in quantum many-body systems are the phase tran-
sitions that may occur; an introduction to quantum phases is given in Subsection
2.2.

The Hilbert space of a quantum spin system Λ can be described using a tensor
product,

H =
⊗
u∈Λ

Hu, dimHu = O(1), (2.1)

where Hu refers to the Hilbert spaces of all the individual degrees of freedom in
the system, u. The time evolution of such a system is uniquely described by its
Hamiltonian, Ht, and the Schrödinger equation, and it is commonly — as is true for
this thesis — approached in the Heisenberg picture, such that

d

dt
Y (t) =

i

~
[H, Y (t)] +

(
∂Y (t)

∂t

)
H

, (2.2)

where Yt is an operator or observable in the system, H is the system’s Hamiltonian,
and t stands for time. That is, the state vectors of the examined system are handled
as time-independent, while all of the time-dependency is transferred to the operators
acting in the system:

Y (t) = eiHt/~Y e−iHt/~, (2.3)

for simplicity of calculation.
The most common mathematical setup when it comes to exploring the properties

of these systems is a distribution of spin degrees of freedom on an integer lattice, with
local Hamiltonians, which means that the full Hamiltonian of the system, H, can be
written as the sum of Hamiltonians describing interactions between geometrically
local elements in the system, such that

H =
∑
r<r0

∑
i∈Λ

HB(i,r), (2.4)

where B(i, r) denotes a ball of radius r that is smaller than some r0, around the point i
on the lattice describing the system, and HB(i,r) is an operator that has support only
on this region. Most commonly, the systems in which ‖HB(i,r)‖ decays rapidly with r
are considered. The quantum spin system models are a mathematical simplification
of complicated many-particle systems with high utility – they provide a strictly de-
fined enviroment for the calculation of the systems’ spectra, eigenstates, stationary
states, dynamics, and much more.

For a concise overview of the historical approach to quantum spin systems and the
important properties that such systems exhibit, see [21]. The quantum information
approach to quantum many-body systems is comprehensibly presented in a recently
composed manuscript [26].
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2.2 Quantum Phase Transitions

For a very long time, the generally accepted description of phase transitions [27]
in condensed matter physics was given by Lev Landau’s symmetry-breaking theory
(and later expanded on in collaboration with Vitaly Lazarevich Ginzburg, dubbing it
the Ginzburg-Landau theory), and it described with satisfactory accuracy the phase
transitions in thus far observed orders of matter. However, the observation of the frac-
tional quantum Hall effect [28,29] changed the absolute prevalence of this paradigm.
In systems that exhibit the fractional quantum Hall effect several quantum Hall states
emerge, which are associated to certain filling factors, ν, and characterized by differ-
ent physical properties, which can be regarded as different phases in a phase diagram
– but cannot be classified via the use of a local order parameter, as in the classical
Ginzburg-Landau phase transition theory. At temperatures sufficiently close to zero,
these properties can be described by the notion of topological quantum order (for an
overview, see [30] and [31]).

This subsection presents the basic ideas and concepts of quantum phases and
quantum phase transitions. Topological quantum order is described in more detail in
the following subsections – Subsection 2.3 and Subsection 2.4.

In the Ginzburg-Landau theory of phase transitions, the phase transitions between
different orders in matter are explained by a change of the physical symmetries in
the system. The occurrence of such symmetries in matter is described by a parameter
of order, which depends on temperature – as, for example, is commonly observed
in the transition between ferromagnetic and paramagnetic states in a material. The
basic notion of this theory is that a phase transition in a system occurs when it is in
the minimum of its free energy, which depends on the parameter of order.

Phase transitions in the systems that exhibit the fractional quantum Hall effect
cannot be accurately described by use of the Ginzburg-Landau symmetry-breaking
theory, as the same classically recognized symmetry may be observed for two differ-
ing phases. The observations of such phases marked the discovery of a new type of
order in matter – topological order (or topological quantum order), named after topo-
logical quantum field theory, which was primarily used to describe chiral spin states,
also found to exhibit this novel type of order [31]. Nowadays, topological order is
described and characterized by several approaches (see Subsection 2.3 and Subsec-
tion 2.4), but the systems that exhibit topological order are not yet well understood
at temperatures above absolute zero. For quantum computing and quantum informa-
tion theory, one of the most interesting properties of these systems is their robustness
against perturbations [20], as they are described by non-local observables – topolog-
ical invariants.

Quantum phases are phases of matter at zero temperature [32] – they correspond
to the degenerate ground states of the Hamiltonians of topologically ordered systems.
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Let a quantum spin system on a lattice be described by a Hamiltonian H(g) with an
energy gap above the ground state space of the system, where g is a dimensionless
coupling parameter, such that g couples only to a conserved quantity – for example,
have H(g) = H0 + gH1, where [H0, H1] = 0, so that H0 and H1 can be diagonalized
simultaneously. The eigenfunctions of the Hamiltonian do not depend on the param-
eter g, even though the corresponding eigenvalues do. This means that there can
exist a value g = gc for which the ground state energy is non-analytic, such that an
excited state becomes the ground state (see Figure 2.1). The point of non-analyticity

Figure 2.1: A representation of the eigenvalues of the ground state and first excited
state of a Hamiltonian H(g) = H0 + gH1 which depends on a dimensionless coupling
constant g, and where H0 and H1 commute and are independent of g. Figure (a)
shows a level-crossing, Figure (b) shows an avoided level-crossing. (Image taken
from [32].)

in a finite sized lattice presents a level-crossing, where such a point in an infinite
lattice may represent either a level-crossing or an avoided level-crossing (see Figure
2.1) in the infinite lattice limit. Any non-analytic point in the ground state energy
of an infinite lattice system is identified as a quantum phase transition [32]. In other
words, for a quantum phase transition to occur, the spectral gap above the ground
state of a quantum spin system must close. Such phase transitions may happen nat-
urally at the temperature of absolute zero, where quantum effects that warrant such
transitions become predominant. When a system goes through a quantum phase
transition, the nature of the correlations in its ground state usually changes.

The quantum phases in which a quantum spin system can be found represent spe-
cific long-range quantum entanglement patterns – or, topological order. The following
subsections provide concise descriptions of topological order.

2.3 Topological Quantum Order

Topologically ordered phases in quantum spin systems are a phenomenon most com-
monly described by comparison with the classical Ginzburg-Landau theory of ordered
phases in materials. Whereas the parameters of order that govern the symmetry
states of materials that can be accurately described by the Ginzburg-Landau theory
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have been studied in detail and are fairly well understood (such as its polarization,
magnetization, crystal lattice deformation, or the wave function of electron pairs in
superconductors [33]), the theoretical approach to topologically ordered phases is
still not sufficiently conclusive. The concept of topological order is tied to the ex-
istence of global variables which are robust to local perturbations of the system’s
Hamiltonian. This ordering is not yet well understood at temperatures above abso-
lute zero, and it is currently approached from a number of different angles. In this
subsection, the description of topological order found in the recent works of Sergey
Bravyi, Matthew Hastings, and Spyridon Michalakis [20,34] will be presented in con-
junction with the general notions and implications of topological order.

We observe a system of quantum particles distributed on the sites of an N -dimen-
sional lattice Λ of linear dimension L, with periodic boundary conditions, for which
its Hilbert space is represented as stated in (2.1). If S(r) is defined as the set of
all blocks A ⊆ Λ with linear size r, where r > 0 (see Figure 2.2), it is valid that
S(L) = Λ, and S(r) = ∅ for r > L. Considering a coarse-grained lattice, such that the

L

L

Figure 2.2: An example of particles (shown as dots) distributed on the sites of a 2-
dimensional lattice of linear dimension L, with periodic boundary conditions, on a
torus. The green square on the enlarged image represents an example of a block A
with linear size 2, as described in the paragraph preceeding equation (2.5).

unperturbed Hamiltonian of the system, H0, involves only interactions between par-
ticles inside of blocks A ∈ S(2) (an example is shown in Figure 2.2), the Hamiltonian
of the system can be written as:

H0 =
∑

A∈S(2)

QA, (2.5)

where QA is an interaction with support on A, and with the following properties:

Q2
A = QA, QAQB = QBQA, for all A,B ∈ S(2). (2.6)

The commuting property of the Hamiltonian, as stated in (2.6), imposes a strong
restriction on it, and even though this holds as a requirement for the following def-
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inition, it is possible to describe topological order in more general terms, as in Sub-
section 2.4. Defining the Hamiltonian H0 to have zero ground state energy, and a
finite spectral gap between the ground state energy and the energy of the first ex-
cited state, the projectors onto the ground subspace and the excited subspace of H0

can be defined as P and Q, respectively, as:

P =
∏

A∈S(2)

(I −QA), Q = I − P, (2.7)

where I is the identity operator. Similarly, the local versions of these operators, for
any block B ∈ S(r ≥ 2) are:

PB =
∏

A∈S(2)
A⊆B

(I −QA), QB = I − PB. (2.8)

To define the existence of topological order, the following two properties de-
scribed in detail in [20] (commonly known as TQO-1 and TQO-2) need to hold true,
assuming that there exists an integer L? ≥ αL for some constant α > 0 and suffi-
ciently large L:

1. TQO-1: For any block A ∈ S(r) with r ≤ L?,

POAP = cP, c ∈ C, (2.9)

for any operator OA acting on A.

2. TQO-2: For blocks A ∈ S(r) with r ≤ L? and B ∈ S(r + 2), where B is the
block that contains A and all nearest neighbors of the sites in A, define reduced
density matrices ρA = TrAc(P ) and ρ(B)

A = TrAc(PB), where Ac = Λ \ A. Then

ker ρA = ker ρ
(B)
A . (2.10)

The integer L? is chosen to depend on the size of the lattice, L, in a linear fashion
so that it defines a length scale for local operations in the system. Its dependence on
L ensures that the stated properties of a system with topological order do not refer
only to strictly local subsystems, but describe global properties of the system instead.

The first condition (TQO-1) is commonly thought of as the chief definition of
topological order, and it states that it is impossible for a local operator to induce
a transition between orthogonal ground states of the system, or to distinguish be-
tween two such states. Consequently, it is coloquially known as the condition of
local indistinguishability of ground states of a topologically ordered system. From
the statement of the condition, it straightforwardly follows that for a system with an
orthonormal basis of ground states {|ψi〉}, the local operator OA acts in the following
manner:

〈ψi|OA |ψj〉 =

const. if i = j,

0 if i 6= j.
(2.11)
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Therefore, it can be said that any information encoded in the ground state space of a
topologically ordered system is not affected by local perturbations.

The second condition defining the existence of topological order (TQO-2) states
that the projectors PB and P must act equivalently on the subset A ⊂ B, certifying
that the local ground subspace of the system PB will be consistent with its global
ground subspace P , on subsets which are sufficiently far from the boundary of B.
This consistency may be violated in the cases where the observed region possesses a
non-trivial topology, e.g. a hole – then, the local ground subspace may include areas
with a non-trivial topological charge inside the hole, whereas this will not be the case
for the global ground subspace.

2.4 Other Definitions of Topological Quantum Order

In Subsection 2.3, one approach to describing a system exhibiting topological order
was presented. Generally speaking, topological order describes equivalence classes
in a system with long-range entanglement. However, the efforts to define topological
order are by no means complete; many different methods are used to tackle this prob-
lem. In this section, additional prominent approaches will be concisely described, as
also compiled in [30].

Topological quantum order can be described through the phases of Hamiltonians
of topologically ordered systems.

For a local quantum system whose Hamiltonian has a spectral gap above the
ground state space, and a smooth dependence on a parameter g, H(g), let |Φ(gi)〉
be a ground state of H(gi). For the ground state average of any local operator O,
〈O〉(g) (local in the same sense as the local operator OA in TQO-1 (2.9)), to be a
smooth function, the Hamiltonian of the system must remain gapped for all g. If
the gap closes for some gc, there exists a local operator such that its ground state
average reaches a singularity at gc. Defining |Φ(0)〉 as the ground state of H(0) and
|Φ(1)〉 as the ground state of H(1), it is possible to describe a quantum phase as an
equivalence class. If there exists a smooth path connecting the Hamiltonians H(0)

and H(1), H(0 ≤ g ≤ 1), such that no phase transition exists in the system along the
path, then the two ground states |Ψ(0)〉 and |Ψ(1)〉 belong to the same phase. If all
excitations above |Ψ(0)〉 have a gap, then for small enough g, the systems described
by H(g) is also gapped, and |Ψ(g)〉 is in the same phase as |Ψ(0)〉. Therefore, for
gapped systems, a quantum phase transition can happen if and only if the energy
gap closes through an adiabatic evolution. The reverse is also true: if two ground
states of a system that has a spectral gap above the ground state energy, |Ψ(0)〉 and
|Ψ(1)〉, are in the same phase, there always exists a family of Hamiltonians H(g),
such that the energy gap is finite for all g ∈ [0, 1], and |Ψ(0)〉 and |Ψ(1)〉 are ground
states of H(0) and H(1), respectively.
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A system with non-trivial topological order is one that can be described with a
Hamiltonian that doesn’t lie in the same phase as the Hamiltonian with a product
state as its ground state.

An alternate, equivalent way to describe topological order found in quantum
states can be reached by employing a relation between quantum phases and quantum
circuits with finite depth.

A piece-wise local unitary operator with range l is defined as Upwl =
∏

i Ui, where
Ui is a set of unitary operators that act on disjunct regions with size smaller than
some finite number l. In this case, a quantum circuit with depth M is the product of
M piece-wise local unitary operators, such that UM

circ =
∏

i U
(i)
pwl. A visual representa-

tion of a quantum circuit can be found in Figure 2.3. Two ground states are said to
belong to the same phase if and only if one can be transformed into the other by use
of a quantum circuit with finite depth. A phase is topologically trivial if it contains a
product state.

Figure 2.3: A visual representation of a quantum circuit. The rectangles represent
unitary operators on regions of finite size l, and the lines represent their multiplica-
tion. The shading explains the causality in the system.

In [30] it is shown that the two definitions of topological quantum phases ex-
plained in this subsection are related in the following manner. For two gapped Hamil-
tonians that are in the same phase, H(0) and H(1), it follows from quasi-adiabatic
continuation (see Subsection 4.1) that their ground states, respectively |Ψ(0)〉 and
|Ψ(1)〉, belong to the same phase if and only if they are related by a local unitary
evolution. A local unitary evolution is an unitary operation generated by the finite
time evolution of a local Hamiltonian. Stated clearly,

|Ψ(1)〉 ∼ |Ψ(0)〉 iff |Ψ(1)〉 = T
[
e−i

∫ 1
0 dgH̃(g)

]
|Ψ(0)〉 , (2.12)

where T is the path-ordering operator, and H̃(g) =
∑

iOi(g) is a sum of local Hermi-
tian operators. As any local unitary evolution can be approximately simulated with a
constant depth quantum circuit, it follows that:

|Ψ(1)〉 ∼ |Ψ(0)〉 iff |Ψ(1)〉 = UM
circ |Ψ(0)〉 , (2.13)

where M is a constant that is independent of the size of the system.
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For a quantitative measure of the global entanglement in the ground state of a
topologically ordered system, topological entanglement entropy is commonly used
[35]. For a system exhibiting topological order, topological entanglement entropy
is a constant that provides a measure of the long-range entanglement and the von
Neumann entropy of the system, which quantifies the entanglement of a bipartite
pure state. For more on this topic, see [35] and [36].

2.5 Experimental Realizations of Topologically Ordered Systems

The prospects of possible experimental realizations of topologically ordered systems
have slowly become a promising lead toward the construction of fault-tolerant quan-
tum computers. In this subsection, examples of the current reaches and prospects
of the experimental achievements in the field of topologically ordered systems will
be presented, with an accent on their potential application in topological quantum
computing.

Firstly, the relevant systems that naturally exhibit topological quantum order will
be presented, followed by an overview of the experimental approaches to the con-
truction of topologically ordered systems.

Historically, the most relevant type of systems that naturally exhibit topological
order is that in which the fractional quantum Hall effect can be observed (for example,
see [37], or the original publications [28,29]). In the fractional quantum Hall effect
experiments, a two-dimensional electron gas may be created on the interface of two
different semiconductors. Under strong magnetic fields, the Hall conductance of
the two-dimensional system shows quantized plateaus that can be found at specific
fractional values of e2/h, where e is the elementary electron charge, and h is the
Planck constant. The discovery and partial interpretation of these plateaus earned
Robert Laughlin, Horst Störmer, and Daniel Tsui the Nobel Prize in Physics in 1998
(see [16]), and the full explanation of the mechanism by which the fractional quatum
Hall effect comes to be contiues to be an unsolved problem.

Other notable examples include Majorana wires [38], (px + ipy)-type supercon-
ductors [39,40] and superfluids [41]. An overview can be found in [42] and [43].

On the other hand, there exists a wave of different approaches to specifically en-
gineer microscopic interactions in systems that would then exhibit controlled topo-
logical order that would enable quantum computation, such as with optical lattices
(a comprehensive introduction to these can be found in [44]). Several academic
and technological research groups have been tackling this challenge; the following
paragraphs give a short introduction to some of these groups and their successes.

The first example is the group of John Martinis (currently affiliated with the Uni-
versity of California, Santa Barbara, and Google Inc.), where so-called Xmon qubits
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are created as part of a surface code (for an introduction to surface codes, see Sub-
section 3.3 and Subsection 5.2). Their recent relevant publications include [45]
and [46].

The group of Jerry Chow of the IBM Corporation has built a surface code that
consists of one sole plaquette, by use of Josephson junctions [47].

At the University of Innsbruck, the group of Rainer Blatt has constructed qubits via
ion traps and performed quantum error correction (for an introduction to quantum
error correction, see Subsection 3.1) on the smallest possible example of the two-
dimensional color code [48] (the color code is a stabilizer code — see Subsection 3.2
— not unlike the toric code — Subsection 3.3 — the introduction to which can be
found in [49]).

Many groups centered around the Delft University of Technology (also funded
by the Intel Corporation) are working on the experimental realization of surface
codes; the group of Leonardo DiCarlo has recently reported on the use of stabilizer
measurements on superconducting qubits [50].
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3 Fault-Tolerant Quantum Computation

Inasmuch as quantum mechanics has become an invaluable resource in the problem-
solving of modern physics, the theory of quantum information processing does have
its practical limitations, with ones of the most notable problems being those of quan-
tum decoherence and the instability of the used systems to perturbation. Because
of its quantum nature, the information that is encoded in quantum spin systems or
transferred through quantum circuits suffers from a relevant loss of reliability when
compared to its classical equivalent. For this reason, it is of immense use to develop
methods of fault-tolerant quantum computation. These methods provide a measure
to the extent of information lost, as well as techniques to increase its accurate preser-
vation when transferred or changed.

In this section, the basic principles of quantum error correction are presented
(Subsection 3.1), with the accent on the manner in which they apply to the stabilizer
formalism (Subsection 3.2). Finally, the toric code is introduced (Subsection 3.3),
and its stability under perturbation is discussed (Subsection 3.4).

3.1 Quantum Error Correction

Error correction is a concept in information processing that describes the methods
used to reliably protect some information being transferred or stored in the presence
of noise. Unlike classical information, quantum information suffers a great threat
of becoming corrupted because of the inherent properties owing to the principles of
quantum mechanics. For example, there exists the risk stemming from decoherence,
but also, potential leakage errors — as quantum information tends to be encoded
in systems that can attain more than the two levels of the binary system used for
classical information — run the risk of becoming relevant. This subsection covers
the basics of the theory of quantum error correction, its relevance and utility. Unless
otherwise stated, the chief literature source used in this section will be the compre-
hensive textbook on quantum computation and quantum information by Michael A.
Nielsen and Isaac L. Chuang [1].

In the theory of error correction, the main challenge consists of two steps – en-
coding some state containing the desired information, followed by decoding it suc-
cessfully. In classical computation this does not present a great practical problem,
as the failure rate of modern binary systems is negligibly small (less than one error
in 107 operations [1]). Because the probability of noise affecting classically stored
or transferred information is so small, the methods of preserving it are standardly
quite simple. A modest example is the repetition code. In this coding scheme, the
information is encoded by increasing the number of bits in the string by repeating
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the original bit (at least two times), as can be seem in Table 3.1. These bit strings

Original bit Encoded bit

0 000
1 111

Table 3.1: The standard three bit repetition code.

are commonly called the logical 0 and logical 1. If a bit in the encoded message gets
changed (for example, from 000 to 100), the message will get decoded following the
principle of majority voting – choosing the decoded bit to be the one whose copies
appear most often in the encoded message, given that the probability of a bit flip is
not too high, which is to be expected of any reliable information processing scheme
(for the case of 100 that would be 0, as it appears twice, compared to the one ap-
pearance of the bit with the error, 1). Naturally, if the majority of the bits in the
encoded string experience a bit flip due to the presence of noise, the decoded bit will
be wrong, but for classical computation this is not a likely outcome, and it is eas-
ily tended to by increasing the number of copies of the original bit in the encoding
scheme. As for quantum information, the complexity and relevance of error correct-
ing codes increases because of the principles of quantum mechanics that govern the
processing mechanisms of quantum information.

Compared to the straightforward classical error correction, which relies on mea-
surement to decode information, quantum error correction suffers the issue of de-
stroying the quantum state upon observation, which makes the direct recovery of
the original state from the encoded state impossible. In addition, simple repetition
codes cannot be implemented in quantum computation because of the no-cloning
theorem [51], which testifies to the impossibility of duplicating a quantum bit. Fi-
nally, the errors encountered in quantum computation are continuous, which makes
an error correcting procedure much more difficult than the one used on classical in-
formation. A simple example of a quantum error correction code is the three qubit
bit flip code, which will be presented in short in the following paragraph.

The bit flip code may be used in a situation where there is a desire to protect the
information carried by qubits that are being sent through a bit flip channel, which
performs a bit flip on them with a probability p – i.e. |ψ〉 → σx |ψ〉, where σx = ( 0 1

1 0 )

is the Pauli X operator, while leaving them unchanged with the probability of 1−p. If
the basis states of a qubit are defined as in Table 3.2, where |0L〉 and |1L〉 denote the
logical |0〉 and |1〉 states (as opposed to the physical ones!), the state of a single qubit
|ψ〉 = a |0〉+b |1〉 can be encoded as a |000〉+b |111〉. Following this, the encoded state
is passed through the bit flip channel, after which the error correcting decoding pro-
cedure can be implemented. This is done in two steps: first an error-detection (also
called syndrome diagnosis) is performed, and after that the state can go through re-

16



Original state Encoded state

|0〉 |0L〉 ≡ |000〉
|1〉 |1L〉 ≡ |111〉

Table 3.2: The three qubit flip code.

covery. Similarly to the classical majority voting implemented on the repetition code,
what is considered here is a state in which an error — the bit flip — has occurred on
at most one of the qubits. A measurement is performed via four projection operators,
the result of which gives a specific error syndrome, as seen in Table 3.3. For example,

Projection operator Error syndrome

P0 ≡ |000〉 〈000|+ |111〉 〈111| no error
P1 ≡ |100〉 〈100|+ |011〉 〈011| bit flip on the first qubit
P2 ≡ |010〉 〈010|+ |101〉 〈101| bit flip on the second qubit
P3 ≡ |001〉 〈001|+ |110〉 〈110| bit flip on the third qubit

Table 3.3: The three qubit flip code error-detection projectors, with corresponding
error syndromes.

if the error occurred on the third qubit, the corrupted state is a |001〉 + b |110〉, and
〈ψ|P3 |ψ〉 = 1, with the corrupted state not being changed. The projective measure-
ment gives merely the syndrome — the information on which qubit experienced a bit
flip — but does not divulge anything about the original state. The principle of the
recovery process involves simply flipping the qubit that is recognized as having the
error, which gives the original state again: a |000〉+ b |111〉.

Many kinds of errors can occur to qubits, so this procedure is far from uniform,
but it is a clear example of a quantum error correcting code, and others process the
state information in a similar manner.

In general, any quantum error correction procedure on a quantum state can be
summarized as follows:

1. Encoding the quantum state into a quantum error correcting code, defined as a
subspace C of some larger Hilbert space, by a unitary operation, and commonly
referred to as the code space, or code subspace.

2. The system is exposed to noise.

3. A syndrome measurement is performed.

4. A recovery procedure is performed depending on the error syndrome, returning
the system to the original state of the code.
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To ensure a reliable measurement of the error syndrome, the chosen subspaces of
the total Hilbert space need to be orthogonal, and they must be defined as the un-
deformed versions of the original code space. This is crucial so that the errors that
occur on the system map the encoded states to orthogonal states, thus making the
recovery procedure more successful.

As the possible errors that may occur in quantum systems are many and varied,
and the same holds true to the employed error correcting codes, the full quantum
error correction procedures as such are commonly investigated in general terms.
For a system influenced by some noise that is described by a quantum operation E ,
and whose recovery error correction operation can be written as a trace-preserving
quantum operation R, the error correction is considered successful if for any state ρ
with support in the code subspace C, the following is true:

(R ◦ E) ρ ≈ ρ. (3.1)

The presented expression would be a trivial equality if the noise operator E were a
unitary operator – this may not always be the case.

Additionally, the conditions that show whether a quantum error correcting code
protects against some noise E can be summarized in the following theorem.

Theorem 3.1. Let C be a quantum code, P the projector onto C, and E a quantum
operation with operation elements — errors — {Ei}. An error correction operation R
that corrects E on C exists if and only if the following equality is true for some Hermitian
matrix γ of complex numbers:

PE†iEjP = γijP. (3.2)

Then, the set {Ei} is called a correctable set of errors.

A proof of this theorem and further details on specific quantum error correcting
codes can be found in [1].

A notable example of quantum error correcting codes is the widely used CSS-type
(Calderbank-Shor-Steane) quantum code family (see [52] and [53]).

3.2 Stabilizer Formalism

The stabilizer formalism is a widely used and very powerful setting utilized to inves-
tigate various quantum error correcting codes in quantum mechanics. As the name
implies, it relies on the property of the stability of certain quantum states when some
operations are performed on them. In simple terms, for a state |ψ〉, if by acting on
it with an operator P it is left unchanged, P |ψ〉 = |ψ〉, it can be said that the state
|ψ〉 is stabilized by the operator P . The approach of working with operators that act
in a quantum state space instead of the states themselves often comes out as more
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convenient, presenting problems that are otherwise difficult to grasp in a clear and
concise manner. This subsection covers the basic definitions and descriptions of the
facets of the stabilizer code theory, as well as the conditions set on the construction
of stabilizer codes, laying out the base to enable the introduction of the toric code in
Subsection 3.3. Unless otherwise noted, the main reference for this subsection is [1].

Stabilizer codes are quantum error correcting codes which utilize the stabilizer
formalism in order to reach conclusions about the effect of noise in quantum infor-
mation processing.

The key idea of stabilizer codes lies in the utilization of the Pauli groups G under
matrix multiplication, defined as

G ≡ {±I,±iI,±σx,±iσx,±σy,±iσy,±σz,±iσz} (3.3)

for a single qubit, where σx, σy, σz are the Pauli operators. The Pauli group for n
qubits consists simply of all n-fold tensor products of the elements of the Pauli groups
G of the considered qubits.

Definition 3.1. Let S be a subgroup of the Pauli group for n qubits, Gn. For a vector
subspace VS of all n-qubit states for which it is valid that (∀ψ ∈ Vs)∧(∀Sξ ∈ S) : Sξ |ψ〉 =

|ψ〉, the subgroup S is called the stabilizer of the space VS.

The motivation of this definition is easy to see – every element of the group VS is
stable when acted on by the elements of S. Therefore, it can be said that VS is the
vector space stabilized by the group S.

The choice of subgroup of the Pauli group is not arbitrary, as not all subgroups
can stabilize a non-trivial vector space – e.g. (−I) |Ψ〉 = |Ψ〉 gives only |Ψ〉 = 0. Two
trivial conditions arise: first, the subgroup cannot contain −I, and second, the ele-
ments of the stabilizer group must commute. It follows that, for a stabilizer group S
that is a subgroup of the Pauli group for an n-qubit system, Gn, all of the generators
of the subgroup, g1, . . . , gn, will commute. The generators are chosen so that they
exhibit mutual independence – removing one generator would make the generated
group smaller.

The final important property of stabilizer codes touches upon the dimensionality
of the stabilized vector spaces, and is covered by the following proposition, stated in
part in [1], and expanded here.

Proposition 3.1. Let S = 〈g1, . . . , gn−k〉 be a stabilizer group generated by n − k

independent and commuting gi ∈ Gn, such that −I /∈ S. Then the vector space it
stabilizes, denoted as VS, is 2k-dimensional.

Proof. Let x = (x1, . . . , xn−k) be a (n− k)-dimensional vector, with xi ∈ Z2. Define

P x
S ≡

∏n−k
j=1 (I + (−1)xjgj)

2n−k
. (3.4)
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If a state is decomposed into a sum of vectors on the +1 and −1 eigenstate of a
generator gi, such that |Ψ〉 = |Ψ+〉 + |Ψ−〉 and gi |Ψ±〉 = ± |Ψ±〉, it follows directly
that (I+gi)/2 is a projector onto the +1 eigenspace of the generator gi. Then, P (0, ..., 0)

S

is the projector onto VS.
Proposition 10.4 in [1] shows that for any gj ∈ Gn there exists g ∈ Gn such that

ggjg
† = −gj, and ggig† = gi for all i 6= j. It can be shown that for each x there exists

gx ∈ Gn such that
gxP

(0, ..., 0)
S g†x = P x

S . (3.5)

If gx is defined as
gx =

∏
j: xj=1

g̃j, g̃j ∈ Gn, (3.6)

then

gxP
(0, ..., 0)
S g†x =

∏n−k
i=1 gx (I + gi) g

†
x

2n−k

=

∏n−k
i=1

(
I + gxgig

†
x

)
2n−k

(3.7)

In the case in which xi = 0, it is easy to see that gxgig†x = gi. If xi = 1, it follows:

gxgig
†
x =

(∏
j1<i

g̃j1

)
g̃i

(∏
j2>i

g̃j2

)
gi

(∏
j3>i

g̃†j3

)
g̃i

(∏
j4<i

g̃†j4

)
=
(∏
j1<i

g̃j1

)
g̃igig̃

†
i

(∏
j4<i

g̃†j4

)
= −

(∏
j1<i

g̃j1

)
gi

(∏
j4<i

g̃†j4

)
= −gj, (3.8)

where g†xgx = I has been taken into consideration.
As (3.5) is valid, dim(P x

S ) = dim(VS). Additionally, for distinct x, P x
S are mutually

orthogonal. Then,∑
x

P x
S =

∑
x1

∑
x2

· · ·
∑
xn−k

P x
S

=
∑
x2

· · ·
∑
xn−k

(
I + g1

2
+

I− g1

2

) n−k∏
l=2

I + (−1)xlgl
2

=
∑
x2

· · ·
∑
xn−k

n−k∏
l=2

I + (−1)xlgl
2

= I, (3.9)

where I is a projector onto a 2n-dimensional space.
As the projectors P x

S are orthogonal and of the same dimension as VS, it follows
that the dimension of VS is 2k.
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The dimension of the stabilized vector space VS is equal to 2 to the power of the
difference between the number of qubits in the system and the number of indepen-
dent generators of the stabilizer subgroup, and 2k orthonormal vectors in VS may act
as logical computational basis states.

The remainder of this subsection will cover the practical dealings with stabilizer
codes themselves, and provide an example for their use.

Definition 3.2. An [n,k] stabilizer code is the vector space VS that is stabilized by a
subgroup S of Gn such that −I /∈ S, and S has n − k independent and commuting
generators, S = 〈g1, . . . , gn−k〉. This code is denoted by C(S).

If there exists an error E ∈ Gn acting on a stabilizer code C(S) and if E anticom-
mutes with an element of the stabilizer, the code is transformed into an orthogonal
subspace, and the error may be able to be detected and corrected.

Definition 3.3. If an error E ∈ Gn \ S acting on a stabilizer code C(S) commutes with
all of the elements of S, the set of E ∈ Gn such that Eg = gE for all g ∈ S is called the
centralizer of S in Gn, and is denoted by Z(S).

The following theorem provides a statement on the error-correction conditions
for stabilizer codes, and a proof for it can be found in [1].

Theorem 3.2. Let S be the stabilizer for a stabilizer code C(S). Suppose {Ej} is a set of
operators in Gn such that E†jEk /∈ Z(S)− S for all j and k. Then {Ej} is a correctable
set of errors for the code C(S).

This introduction to correctability of errors in stabilizer codes is analogous to the
conclusion in Theorem 3.1, and it leads to a definition of distance for a quantum
code. The weight of an error E ∈ Gn is the number of terms in the tensor product
which are not equal to the indentity operator – then, the distance of a stabilizer code
C(S) is defined as the minimum weight of an element of Z(S)− S.

Definition 3.4. If C(S) is an [n, k] stabilizer code with distance d, then it is denoted as
an [n, k, d] code.

As an example of a stabilizer code, the five qubit code is a valuable example – a
five qubit code is the smallest possible size for a setup in which any error on a single
qubit that is encoded in the system can be detected and corrected. The generators of
the five qubit code are given in Table 3.4.

3.3 Toric Code

The toric code is an example of a stabilizer code and a toy model for an interact-
ing quantum spin system, which is widely popular for the simplicity of derivation

21



Generator Operator

g1 XZZXI

g2 IXZZX

g3 XIXZZ

g4 ZXIXZ

Z̄ ZZZZZ

X̄ XXXXX

Table 3.4: The four generators and logical Z and X operators for the five qubit
code. The logical operators act as the operator equivalent of logical basis states, as
described for classical codes in Subsection 3.1.

of the values of various relevant observables, stemming from the commutativity of
its stabilizer operators, and its intuitive representation of a system of qubits. It was
developed by Alexei Kitaev in the late 1990’s (a summary can be found in [54]), and
it quickly became an indispensable tool in the investigation and utilization of topo-
logically ordered quantum spin systems.

Figure 3.1: The elements of the toric code; it consist of a square lattice with periodic
boundary conditions. A plaquette is colored red, a vertex is colored blue, and one of
the edges is colored green.

A k × k toric code TOR(k) is an [k2, 2, k] stabilizer code defined on a two-di-
mensional square lattice on a torus, Λ. Each intersection of the lines on the lattice is
called a vertex (or a star), and each face is called a plaquette, whereas the connecting
lines between the vertices are called the edges – see Figure 3.1. Each edge of the
lattice contains one half-spin degree of freedom. The stabilizer operators of the toric
code are associated with its vertices v and plaquettes p, and they are of the following
form:

Av =
∏

j∈vertex(v)

σxj , Bp =
∏

j∈boundary(p)

σzj , (3.10)
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where vertex(v) and boundary(p) each represent the edges that are connected to the
vertex v and plaquette p, respectively. The operators σxj and σzj are Pauli operators
acting on an edge j, such that σx = ( 0 1

1 0 ) , σz = ( 1 0
0 −1 ). See Figure 3.2 for a visual

representation on the lattice.

A

Bσz

σz
σz

σz

σx

σx
σx

σx

Figure 3.2: A visual representation of the stabilizer operators A and B in the toric
code (see equation (3.10)); σx and σz are Pauli operators acting on the spin-½ de-
grees of freedom located on the edges. The colored edges denote the edges that are
related to the corresponding stabilizer.

In a k× k lattice, there exist n = 2k2 edges. Defining N to be the Hilbert space of
all qubits, its protected code subspace L ⊆ N is then:

L = {|ξ〉 ∈ N : Av |ξ〉 = |ξ〉 , Bp |ξ〉 = |ξ〉 , ∀ v, p} . (3.11)

The stabilizer operatorsAv andBp commute with each other, because each vertex and
boundary have either 0 or 2 common edges (follows directly from the Pauli operator
anticommutation relations); these operators are Hermitian, and have eigenvalues +1

and −1.
Additionally, the toric code can be used to represent an interacting quantum spin

system, which makes it an indispensable tool for quantum information theory in gen-
eral. This system exhibits topological order, as defined in Subsection 2.3 (particularly,
note (2.5) and (2.6) – the stabilizers of the toric code act locally on the spins on the
edges of the lattice, and the spins are involved with a finite number of stabilizers).

To find the dimensionality of the subspace L, it is possible to merely observe the
conditions on the stabilizer operators,∏

v∈Λ

Av = 1,
∏
p∈Λ

Bp = 1, (3.12)

which constrain the number of existing independent stabilizer operators from n =

2k2 to m = 2k2 − 2. From [55] or the proven Proposition 3.1 it follows that the
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dimensionality of L is 2n−m = 4. This means that two qubits of quantum information
can be stored in a standard toric code. In a more intuitive approach, defining the
algebra of all linear operators on the subspace L as L(L), and the algebra of all
operators generated by the stabilizer operators as F ⊆ L(N ), it can be stated that,
for the algebra G of all the operators that commute with the stabilizer operators, it is
valid that L(L) ∼= G/I, where I ⊂ G is the ideal generated by Av− 1 and Bp− 1. The
algebra G is generated by the operators that can be represented as:

Z =
∏
j∈c

σzj , X =
∏
j∈c′

σxj , (3.13)

where the operator Z is a product of Pauli σz operators acting on qubits on a ”loop”
of the lattice, c, and the operator X is a product of Pauli σx operators acting on qubits
on a path on the dual lattice, c′, i.e. a ”cut”. If a loop or a cut is contractible (i.e. if
it can be smoothly deformed into a point), its operator can be trivially written as a
product of stabilizer operators. However, if it is non-contractible, i.e. a loop or cut
that wraps around the torus, it can be considered as non-trivial.

In the standard toric code (defined on a surface with genus 1 and with no defects),
there exist four non-trivial loops, X1, X2, Z1, and Z2 (see Figure 3.3). These act as
logical operators (a definition equivalent to that of logical basis states – see Subsec-
tion 3.1) and encode a total of two qubits of information in the system. Each qubit
is encoded by two non-commuting operators – X1 and Z2, and X2 and Z1. These
operators anticommute and form a Pauli algebra on the code space of the system.

The Hamiltonian of the toric code can be written as:

H0 = −
∑
v∈Λ

Av −
∑
p∈Λ

Bp, (3.14)

where the stabilizers are summed over all vertices and plaquettes of the system. The
ground state of the Hamiltonian acts as the protected subspace of the system, L, and
the Hamiltonian is easy to diagonalize, since all of the stabilizers commute with each
other. The ground state space of the Hamiltonian corresponds to the +1 eigenspace
of all of the stabilizers in the system. The excited states of the system are separated
from the ground state by an energy gap ∆E, where ∆E ≥ 2, because of the differ-
ence between the eigenvalues of the stabilizers (+1 and −1), although in practice,
this quantity becomes doubled because there cannot exist only one quasiparticle ex-
citation in an otherwise standard toric code.

The errors in the toric code are induced by acting on the spin-½ degrees of free-
dom that are on the edges of the lattice with Pauli operators – in further text, this
will be referred to simply as acting on an edge with Pauli operators. Acting on an
edge with a Pauli σx operator will create excitations on the neighboring plaquettes,
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Figure 3.3: A view of the logical operators in the toric code, as seen on a torus. The
full red lines represent the edges that support the Pauli σz operators that are part of
the Z logical operators, the edges that are crossed by the dashed blue lines on the
dual lattice represent those that support the Pauli σx operators that are part of the X
logical operators (see equations (3.13)).

whereas acting on an edge with a Pauli σz operator will do the same for the connect-
ing vertices. These excitations change the eigenvalues of corresponding stabilizers,
from +1 to −1, and they exhibit behavior equivalent to that of toric code anyons (see
the Introduction for an overview). As acting on an edge adjacent to an excitation
with an operator of the same type as the one that created the excitation returns the
excited plaquette or vertex to its starting state (because their product commutes with
the stabilizer), these anyons can effectively travel through the toric code, connected
by a string of Pauli operators (see an example in Figure 3.4).

Anyons on vertices are better known as those of the electric, or e type, while those
on plaquettes are referred to as the magnetic, flux, or m type. Trivial loops of strings
of operators that connect two excitations that may have moved on the lattice cause
the two excitations to annihilate into vacuum, but non-trivial ones — such as those
whose path includes a crossing of a σx and a σz operator, which is known as braiding
— may cause the excitations to exhibit anyonic statistics, acquiring a phase to their
fusion result.

A good overview of the mathematical structure of anyonic systems and the any-
onic fusion rules can be found in the Quantum Computation notes by John Preskill
[19].
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σx

σz

(a) The Pauli σx operator creates excita-
tions (shown here as stars) on the adjacent
plaquettes, and the σz on the adjacent ver-
tices.

σz
σx

σx
σx

(b) The excitations can travel from one
plaquette or vertex to the neighboring one
by use of the appropriate Pauli operator. A
string of three σx operators is shown.

Figure 3.4: The creation and moving of anyons in the toric code.

3.4 Perturbative Stability of Topologically Ordered Systems

An important facet of the properties of the toric code is the study of its stability under
perturbation. Relevant conclusions and interpretations with regard to the use of the
perturbative stability of the toric code in quantum computation will be presented in
this subsection.

The most important result on the perturbative stability of topologically ordered
systems was presented in [20] (and with a similar proof in a shorter article [34]),
and it proves the the zero-temperature stability of topological phases of matter un-
der weak and local time-independent perturbations. The proven theorem shows the
following:

Theorem 3.3. Suppose that the unperturbed HamiltonianH0 obeys the properties defin-
ing a topologically ordered system (TQO-1,2 – (2.9), (2.10)). Let there be a perturba-
tion V acting on the system, such that it can be written as a sum of geometrically local
interactions with with a bounded norm:

V =
∑
r≥1

∑
A∈S(r)

Vr,A, (3.15)

where S(r) is a set of cubes of linear size r, and Vr,A is an operator acting only on the
sites of A. It is assumed that the magnitude of the interactions decays exponentially in
r:

maxA∈S(r)‖Vr,A‖ ≤ Je−µr, (3.16)

where J, µ > 0 are constants independent of the linear size of the system.
Then there exist constants J0, c1, c2 > 0 depending only on µ and the spatial dimen-

sion D such that for all J ≤ J0 the spectrum of H = H0 + V is contained (up to an
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overall energy shift) in the union of intervals
⋃
k≤0 Ik, where k runs over the spectrum

of H0 and
Ik = {λ ∈ R : k(1− c1J)− δ ≤ λ ≤ k(1 + c1J) + λ}, (3.17)

and
δ = poly(L) exp

(
−c2L

3/8
)
, (3.18)

where L is the linear size of the system.

This theorem testifies to the stability of the Hamiltonians of topologically ordered
quantum spin systems that can be written as a sum of geometrically local commuting
projectors (see (2.5), (2.6)), when acted on by a weak and local perturbation. In [20]
it was proven that when such a Hamiltonian is acted on by any local perturbation, the
eigenvalues of its excited states change at most by a constant factor (1± c1J) with an
exponentially small correction (δ), whereas the eigenvalue of its ground state (k = 0)
becomes a band of exponentially small width (2δ). For a visual representation, see
Figure 3.5. Additionally, for a weak enough perturbation, such that J < 1

c1(4k+2)
,

Figure 3.5: The energy bands Ik describing the spectrum of a perturbed Hamiltonian
H = H0 + V for three distinct eigenstates, with respect to an increasing perturbation
V . Figure taken from [20].

all Ik bands are separated from each other by a gap of at least 1/2. This stability
result allows for the construction of a quasi-adiabatic continuation (see Subsection
4.1) for any relevant operator associated with the original system, which can be used
to demonstrate that all topological invariants of the original system stay constant in
such a situation.

An important thing to note is that, as the ordering number of the eigenvalues of
the Hamiltonian rises, the corresponding perturbed band will widen more, linearly
in k. Therefore, a situation in which the energy bands overlap and the gaps between
the excited states of the system close becomes easier to achieve as more states are
taken into consideration. For such a system, Theorem 3.3 will hold if J is chosen
appropriately, such that the gap remains open for all system sizes.

An equivalent result that deals in the entanglement entropy of the quantum states
of topologically ordered systems can be found in [56], and an alternative approach
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to the exponential stability of the ground state degeneracy of a topologically ordered
system via its logical operators is shown in Section 5 (most generally in Subsection
5.1).
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4 Dynamics of Local Quantum Systems

The investigation of the effects of small perturbations on the Hamiltonians of topolog-
ically ordered quantum spin systems relies heavily on the locality properties of these
systems, opting to employ bounds on the emerging discrepancies from the original
ground state space of the system. Not many of these methods exist; they are con-
stantly being improved upon and used in the examination of the problems found in
the fields of fault-tolerant quantum computation, quantum information, and others.

In this section, the most important methods used in error-bounding on local
stabilizer codes are presented: quasi-adiabatic continuation (Subsection 4.1), Lieb-
Robinson bounds (Subsection 4.2), and Kitaev’s self-energy expansion (Subsection
4.3).

Kitaev’s self-energy expansion is a perturbation theory approach to a system with
with a degenerate ground state and a finite spectral gap above the ground state
space. It is a relatively rough method of calculating the eigenvalues of the perturbed
Hamiltonian of such a system, and it can be used to gauge the effect of a specific
perturbation on a system described by a stabilizer code, such as the toric code, be-
cause the calculation involves the multiplication of the exact operators acting in the
system, enabling the utilization of their commutativity properties.

On the other hand, quasi-adiabatic continuation is a powerful method used to
examine a gapped quantum spin system that is acted on with a small perturbation, by
parametrizing the perturbation and then slowly and smoothly evolving the original
system’s local operators to their final form. Unlike Kitaev’s self-energy expansion, the
calculations involved in this approach can be performed on a generic perturbation.

The use of Lieb-Robinson bounds is a powerful tool that ties in to quasi-adiabatic
continuation. For quantum systems, there exists a theoretical finite upper limit to
the velocity with which information can propagate through the system — the Lieb-
Robinson velocity — giving a theoretical limit to the locality properties in such sys-
tems. This limit is known as the Lieb-Robinson bound, and it is commonly applied in
various problems involving the notion of locality in quantum systems.

Following the introduction of these tools in this section, they will be applied to
the perturbed toric code in Section 5.

4.1 Quasi-Adiabatic Continuation

One of the most important tools used to understand the effects of perturbation on
quantum many-body systems is the principle of quasi-adiabatic continuation, first
developed by Matthew Hastings in his work published in the early 2000’s [57,58].

By applying this method it is possible to clearly investigate the effects of a small
perturbation on a quantum spin system’s Hamiltonian. Since the first publication
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of Hastings’ proposal, quasi-adiabatic continuation has been further developed by
many authors and it has subsequently been applied to a variety of problems in quan-
tum information (for example, see [23, 56, 59–62]). The chief principle of quasi-
adiabatic continuation is the possibility to — by slowly increasing the magnitude of
the perturbation to its final value — smoothly transform local operators in the start-
ing condition to local operators in the final state of the system. This continuation
can be applied to the Hamiltonian paths of gapped quantum many-body systems. In
this subsection, the method of quasi-adiabatic continuation will be presented as de-
scribed in [61], [56] and [20].

If a quantum system with a known Hamiltonian is acted on by a small perturba-
tion, the adiabatic evolution of this system can be constructed by adding a parameter-
dependency on the Hamiltonian of this system and varying it slowly in the scale of
the gap. We observe the local Hamiltonians of the system (HZ(s)) change, varied
adiabatically from s = 0 to s = 1, where s = 0 presents the starting setup, and s = 1

the final state of the system. Under the assumption that the complete Hamiltonian of
the system can be written as Hs =

∑
Z HZ(s), where the local Hamiltonians are dif-

ferentiable in s, and the spectral gap of the system has a lower bound that is uniform
in s, it is possible to define the Hermitian quasi-adiabatic continuation generator Ds,
such that:

∂s |ψ0(s)〉 = iDs |ψ0(s)〉 , (4.1)

where |ψ0(s)〉 is the ground state of the system dependent on the parameter s. To
describe the quasi-adiabatic continuation operator, Ds, first it is necessary to define
a filter function dependent on the spectral gap of the system γ > 0, as F (t) ∈ L1(R),
with the following properties:

• it is odd, so that Ds is anti Hermitian,

• its Fourier transform is equal to F̄ (ω) = −1/ω for |ω| ≥ 1/2 (normalized value
related to the spectral gap),

• it decays faster than any negative power of time for large |t|.

Examples of these functions can be found in [56] and [61], and they are generally
quite difficult to work with analytically.

The generator of the quasi-adiabatic continuation is then of the form:

Ds ≡ i

∫
dtF (t) exp(iHst) (∂sHs) exp(−iHst). (4.2)

The unitary evolution operator used to perform the quasi-adiabatic continuation
is defined through ∂sUs = iDsUs, U0 = 1, and becomes:

Us ≡ S ′ exp

(
i

∫ s

0

ds′D′s
)
, (4.3)
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where S ′ is used to denote a path-ordered exponential.
For a system with a gapped spectrum, a projector P onto an eigenspace of H(s)

will evolve as:
P (s) = UsP (0)Us

† (4.4)

under the perturbation (a proof can be found in [20]). Similarly, dressed operators
can be defined as the perturbed forms of operators acting on the system, and they
are expressed as

Oi(s) = UsOiUs
†, (4.5)

where Oi is an operator acting on the system, and Us is as previously defined in (4.3).
These dressed operators transform from local operators to quasi-local operators, keep
the notion of their locality, as well as the commutation and anti-commutation rela-
tions of the original operators.

Additionally, the generator of the quasi-adiabatic continuation can be expressed
as:

Ds =
∑
u∈Λ

∑
r≥r0

Ds(u; r), (4.6)

where Ds(u; r) represents the generator with support on a ball of radius r, centered
on u, with the property of decaying sub-exponentially with r [56]. Following from
the validity of this relation, it can be shown that Us satisfies the Lieb-Robinson bounds
modified for sub-exponential decay [61].

In general, the construction of this method implies that if for a system there exist
two local gapped Hamiltonians that can be connected by a parametrized path — i.e.
that are in the same topological phase (see the first part of the Subsection 2.4) —
their ground states can be evolved into each other by use of the unitary operator Us.

4.2 Lieb-Robinson Bounds

In the study of quantum systems, there exists a theoretical finite upper limit to the ve-
locity with which information can propagate, which was discovered and reported on
by Elliot H. Lieb and Derek W. Robinson in their 1972 seminal paper [63]. Through
the application of the presented theorem, the limits on the locality properties of in-
vestigated physical systems can be described – these limits are generally known as
Lieb-Robinson bounds. After the publication of this result, Lieb-Robinson bounds
have been found to have application in the treatment of many problems involving
locality conditions in quantum systems, and as such, they have been built upon and
improved by various authors in relevant articles, such as [23, 56, 57, 61, 64–66]. In
this subsection, the essence and overview of the Lieb-Robinson bounds appropriate
to the purpose of this thesis will be presented, as shown in [23] and [67].
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The core of the employment of Lieb-Robinson bounds is the existence of the no-
tion of locality in quantum many-body systems. For example, putting such an N -
particle system on a lattice Λ with N sites, it is straightforward to introduce a graph
distance between the points on the lattice. The distance between two sets, A and B,
will be defined as

dist(A,B) = mini∈A,j∈Bdist(i, j), (4.7)

where dist(i, j) is simply defined as the distance between sites i and j, which may be
differently established for differing systems – for a one-dimensional system with open
boundary conditions, it is naturally equal to |i − j|, whereas for a one-dimensional
system with periodic boundary conditions, it is more natural to define it as minn|i −
j + nN |, where n is an integer. The diameter of a set A is defined as:

diam(A) = maxi,j∈Adist(i, j). (4.8)

The Hamiltonians that are considered in this approach are of the type

H =
∑
Z

HZ , supp(HZ) = Z, (4.9)

such that ‖HZ‖ decays rapidly with diam(Z).
Then, the following can be stated, as proven in [23].

Theorem 4.1. Suppose that the following holds for all sites i:∑
X3i

‖HX‖|X| exp[µ diam(X)] ≤ s <∞, µ, s > 0. (4.10)

LetAX andBY be operators supported on setsX and Y , respectively. Let t stand for time,
and define AX(t) to be the time evolution of the operator AX , given the Hamiltonian of
the system. Then, if dist(X,Y) > 0,

‖[AX(t), BY ]‖ ≤ 2‖AX‖‖BY ‖
∑
i∈X

exp[−µ · dist(i, Y )]
[
e2s|t| − 1

]
≤ 2‖AX‖‖BY ‖|X| exp[−µ · dist(X, Y )]

[
e2s|t| − 1

]
. (4.11)

What is stated in this theorem are the bounds that describe the time evolution of
operators under a local Hamiltonian. Let AX be some operator, and Bl(X) the set of
sites i, such that dist(i,X) ≤ l. Then, AX(t) is the time evolution of the operator AX .
The operator AlX(t) is defined as

AlX(t) =

∫
dUUAX(t)U †, (4.12)

where the integral is over all unitary operators supported on the set of sites Λ\Bl(X),
with the Haar measure – then, AlX is supported on the ball Bl(X). It can be written
that

UAX(t)U † = AX(t) + U [AX(t), U †], (4.13)
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so it follows:
‖AlX(t)− AX(t)‖ ≤

∫
dU‖[AX(t), U ]‖, (4.14)

to which the Lieb-Robinson bounds in (4.11) can be applied. By bounding the right-
hand side of the equation (4.14), it is trivial to see that the time evolved operator
AlX(t) is exponentially close to AX(t) if the distance l is sufficiently large when com-
pared to 2st/µ, or

‖AlX(t)− AX(t)‖ ≤ const. · e−l/ξ, ξ > 0. (4.15)

That is, the truncation error for the time evolution of an operator limited to the re-
gion Λ \Bl can be considered negligible for large l.

The core theorem (Theorem 4.1) can be resolved more intuitively by stating that

‖[AX(t), BY ]‖ ≤ c · exp(−a(dist(X, Y )− vLR|t|)), c, a > 0, (4.16)

where vLR is known as the Lieb-Robinson velocity. Put in this form, the Lieb-Robinson
velocity demonstrates the finite velocity of the propagation of information in non-
relativistic quantum many-body systems, up to an error that is exponentially small
in the distance from the original set of support of the relevant operator. In most
practical applications of the Lieb-Robinson bounds, this error term — the propagation
of information outside of the Lieb-Robinson light cone — is negligible.

4.3 Kitaev’s Self-Energy Expansion

In the research on the effects of small perturbations on the Hamiltonians of quantum
spin systems, an intuitive approach can be found in degenerate perturbation theory.
In this subsection, the self-energy expansion — also known as Kitaev’s self-energy ex-
pansion — given in a 2004 paper by Kempe, Kitaev, and Regev [68] will be presented.

For a topologically ordered system with a degenerate ground state and a spectral
gap above it, the effect of a small perturbation to its Hamiltonian can be derived
from the approximation the state of the system, by use of a type of generalization of
Green’s function – the resolvent of H. This operator-valued function is of the form:

G(z) = (zI−H)−1, (4.17)

where H is the perturbed Hamiltonian. This is a meromorphic function – it is holo-
morphic on all except for a discrete subset of z ∈ C. These singularities are poles of
the function, and they can be preserved under projections. The following definition
is taken from [68].

Definition 4.1. Let H = L+⊕L−, where L+ is the space spanned by eigenvectors of H0

with eigenvalues λ ≥ λ? and L− is spanned by eigenvectors of H of eigenvalue λ < λ?.
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Let Π± be the corresponding projection onto L±. For an operator X on H define the
operator X++ = X|L+ = Π+XΠ+ on L+ and similarly X−− = X|L−. We also define
X+− = Π+XΠ− as an operator from L− to L+, and similarly X−+.

The expression
Σ−(z) = zI− −G−1

−−(z) (4.18)

is defined as the self-energy of the system. In some sense, the self-energy acts as
an analogue of the equation (4.17), behaving as the Hamiltonian for the projected
resolvent G−−(z) – therefore, it is possible to find an effective Hamiltonian Heff ,
which approximates Σ−(z) in a certain range of z. Then, the following theorem
holds true.

Theorem 4.2. Assume H0 has a spectral gap γ around a cutoff eigevalue λs, i.e. all of
its eigenvalues are in (−∞, λ−] ∪ [λ+,+∞), where λ+ = λs + γ/2 and λ− = λs − γ/2.
Assume that ‖V ‖ < γ/2, and let ε > 0. Assume an operator Heff exists such that
Spec(Heff) ⊆ [c, d] for some c < d < λs − ε, and the inequality

‖Σ−(z)−Heff‖ ≤ ε (4.19)

holds for all z ∈ [c− ε, d+ ε]. Then, each eigenvalue of the perturbed Hamiltonian H is
ε close to the corresponding eigenvalue of the unperturbed Hamiltonian H0.

A short proof of this theorem can be found in [68]. Additionally, the self-energy
can be expressed via a natural series expansion, giving:

Σ−(z) = H− + V−− + V−+G+V+− + V−+G+V++G+V+−

+ V−+G+V++G+V++G+V++G+V+− + . . . . (4.20)

Thus, by equating L− with the ground state space, and L+ with the space of all
excited states of the system’s Hamiltonian, Π− is the projector operator for the ground
state space, and we can name it P0 (P0 ≡ Π−). For the toric code, it is defined as:

P0 =
∏
v∈Λ

(
1− Av

2

)∏
p∈Λ

(
1−Bp

2

)
, (4.21)

over all vertices v and plaquettes p in the toric code lattice Λ, where Av and Bp are the
vertex and plaquette stabilizer operators. From the projection operator’s hermiticity,
and directly because these operators commute with each other, and as σ†i = σi is valid
for all Pauli operators σi (see Subsection 3.3 and equations (3.10)), it follows that

P †0 = P0. (4.22)

This operator is the product of all the individual projectors to the +1 eigenspaces of
the vertices and plaquettes of the system.
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The eigenvalues of the effective Hamiltonian can be found approximated by the
poles of the projector’s resolvent, that is G(z) = P0(z − H)−1P0. By renaming the
parameter z to E, for energy, the bracketed expression can be more clearly expressed
as (E−E0−Σ(E))−1, where Σ(E) is the self-energy of the system – the eigenvalues of
the effective Hamiltonian are then the values for which the operator in the brackets
is degenerate. For E ≈ E0, the effective Hamiltonian can be approximated as Heff =

E0 + Σ(E0), where the self-energy can be expressed as:

Σ(E) = P0Σ∞n=1 (V G′0(E))
n−1

V P0, (4.23)

with G′0(E) = ((E −H0)−1)
′ denoting the unperturbed Green’s function for the ex-

cited state space of H0 – this function vanishes when acting on ground states. There-
fore, by settingE = E0, the self-energy forHeff can be calculated to an arbitrary order.

If this method is applied to the toric code with a sufficiently localized perturba-
tion, it can be shown that, in the sense of the persistence of the gap and the degen-
eracy of the ground space as in the topological stability theorem (3.3), the original
behavior of the system survives up to an order of the perturbation expansion that is
as large as the linear size of the system.

Some examples for the use of this method can be found in [69].

35



5 Perturbations of Punctured Topological Systems

This section presents the results achieved when considering the stability properties
of topological systems under local perturbation.

In particular, the work shown in this section considers the stability of topolog-
ical systems with local puncture defects, under local perturbation. The perturbed
systems are approached via the toric code, and the states of logical operators in the
considered models are inspected in order to explicitly deduce on the stability of the
information encoded in such systems when acted on by a local perturbation.

In this section a study of the stability of logical operators in topological systems
is presented. First, the influence of a local perturbation on a logical operator is in-
spected by use of the quasi-adiabatic continuation and the Lieb-Robinson bounds
(Subsection 5.1), after which the stability of logical operators in a punctured toric
code is examined. Subsection 5.2 explains the formalism and properties of the punc-
tured toric code, and it is followed by the investigation of a punctured toric code by
the Kitaev’s self-energy expansion perturbative method (Subsection 5.3). Finally, the
influence of a local perturbation on such a system is derived exactly (Subsection 5.4).

The section ends with a discussion of the results and their implications (Subsec-
tion 5.5).

5.1 Logical Operator under Local Perturbation

This subsection presents a relation relevant to the norm of the difference of a logical
operator in a topologically ordered system with a local perturbation and the same
operator in the system without the perturbation. This relation is completely general
for all topologically ordered systems that can be described by a model with string-like
logical operators, and is not specific to the toric code. The result is achieved by use
of the quasi-adiabatic continuation (Subsection 4.1) and the Lieb-Robinson bound
(Subsection 4.2), and is used in the following subsections to reach conclusions on
the stability of the encoded qubits in a punctured toric code (see Subsection 5.4).

A topologically ordered system described by the Hamiltonian H0 is subjected to a
small perturbation, so that the new Hamiltonian of the system is of the form

H(s) = H0 + sV, (5.1)

and the effect of the perturbation on the logical operator is examined using quasi-
adiabatic continuation. Following that, the truncation error of the perturbed logical
operator is calculated.

By letting the system evolve via quasi-adiabatic continuation, a logical operator
L with support on the set A will take the form as in (4.5): Ls = UsLUs

†, where Us is
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the quasi-adiabatic continuation evolution operator. LC is defined to be the integral
of the evolved logical operator over all unitary operators with the Haar measure on
the set AC \ R′, which is equivalent to the evolved logical operator traced out over
the region R′, or:

LC =

∫
AC\R′

dUULsU
† = Tr

AC\R′
(Ls), (5.2)

where AC \ R′ denotes the set complementary to the set A, but without the strip of
thickness R on both sides around the logical operator L, as can be seen in Figure 5.1.
The norm of the difference between LC and Ls can be calculated:

L

R

LC

R

Figure 5.1: A representation of a logical operator L, with the denoted operator LC
being the original logical operator evolved via quasi-adiabatic continuation and trun-
cated to a region of thickness R on both sides of the operator L (see equation (5.2)).

‖LC − Ls‖ ≤ ‖
∫
AC\R′

dUU
[
Ls, U

†]‖
≤
∫
AC\R′

dU‖
[
Ls, U

†]‖
≤ sup

U

(
‖
[
Ls, U

†]‖) , (5.3)

where the operator U is defined on the set AC \ R′, as in equation (5.2). For this
calculation, the relation ULsU

† = Ls + U
[
Ls, U

†] and the value of the norm of the
integral over an operator with the Haar measure have been taken into account. As
quasi-adiabatic continuation obeys the Lieb-Robinson bounds (see Subsection 4.1),
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it follows (from [67]):

‖LC − Ls‖ ≤ sup
U

(
2‖Ls‖‖U †‖ · const. · e−µ(d(A,AC\R′)−vLR|s|)

)
≤ sup

U

(
‖L‖ · const. · e−µ(d(A,AC\R′)−vLR|s|)

)
, (5.4)

where vLR is the Lieb-Robinson velocity, µ > 0, |s| is the parameter of the perturba-
tion, playing the role of an interaction time, and d(A,AC \R′) is the distance between
the sets on which Ls and U have support. In the final line, unitarity and the proper-
ties of the Haar measure have been taken into consideration.

Therefore, the difference between the two operators decays exponentially, and
becomes arbitrarily small as the size of the setR aroundA is increased. In conclusion,
the difference between the evolved logical operator and its partial trace over the
region AC \ R′ falls exponentially to zero with enough distance between the sets A
and AC \ R′. This means that a logical operator will continue to behave as a logical
operator even in a system with a small perturbation, if examined from a large enough
distance.

5.2 Properties of the Punctured Toric Code

In a realistic setting, various types of defects may arise in a topologically ordered
system, depending greatly on the experimental realization of such a system (for an
overview, see [70]). To thoroughly reconstruct the effect that these defects may have
on a quantum system and the information stored in it in a non-perfect environment,
it is imperative to investigate the consequences of applying a perturbation to the sys-
tem. In this thesis, a view of the puncture type defects is given in a simple setup, and
the effects of local perturbations on logical operators are calculated and interpreted
– this subsection features a mathematical description of punctures in the toric code,
followed by an analysis of the emergent properties of such a system.

A single-stabilizer puncture in the toric code is, mathematically, simply the ab-
sence of a stabilizer operator – there can exist plaquette or vertex punctures, de-
pending on the relevant stabilizer operators, as can be seen in Figure 5.2. The effect
of the existence of this type of local defect in the toric code is not analogous to the
effect that comes about when the unperturbed toric code supports a small local per-
turbation, because punctures change the Hamiltonian of the system starkly, and the
change cannot be varied to lead to a sensible analysis. It is important to note that
removing only one plaquette or vertex stabilizer operator from the toric code will not
affect the code space of the system, as the relations for the product of either type
of stabilizer operators give one dependent stabilizer operator per type (see (3.12)).
In other words, as every stabilizer operator of a certain type can be written as the
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Figure 5.2: A representation of single-stabilizer punctures in the toric code. The
shaded squares represent the punctures, while the blue dots denote the existence of
vertex, and the red ones the existence of plaquette stabilizer operators. The topmost
puncture is a plaquette puncture, removing the corresponding plaquette stabilizer,
and the lower puncture is a vertex puncture, removing a vertex stabilizer.

product of all other stabilizer operators of the same type, the number of generators in
the toric code is equal to the number of plaquettes or vertices reduced by 1 for each
type, or 2k2 − 2 for a k × k lattice Λ. Therefore, only a toric code with two or more
punctures of the same type can be expected to exhibit large-scale behavior differing
from the unpunctured toric code.

For example, by removing two plaquette stabilizers from the toric code, Bp1 and
Bp2, the Hamiltonian of the system can be written as

H ′ = −
∑
p∈Λ

p 6=p1,p2

Bp −
∑
v∈Λ

Av. (5.5)

By removing two stabilizer operators of the same type, the number of generators
decreases, and the dimension of the code space of the system increases two-fold
(22+1 = 8), with two additional logical operators emerging in the system. The new
logical operators in this case can be simply chosen as the string of Pauli σx opera-
tors connecting the bordering edges of the two missing plaquettes, and one of the
missing plaquette stabilizer operators (see Figure 5.3). These new logical operators
naturally anticommute with each other and commute with the system’s Hamiltonian.
For a greater number of punctures in the toric code, the number of the logical qubits
encoded in the system, δ, can be summarized as:

δ = 2 + max(n′p − 1, 0) + max(n′v − 1, 0), (5.6)

where n′p and n′v are the number of plaquette and the number of vertex punctures,
respectively, with the ground state degeneracy of the code being 2δ, but the precise
definitions of the logical operators in systems with many punctures may become cum-
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σz
σz
σz
σz

Figure 5.3: Two logical operators that may arise in the toric code with two plaquette
punctures. The blue line represents a string of Pauli σx operators as the X logical
operator, and the red line represents a string of Pauli σz operators, as the Z logical
operator.

bersome to display.

The use of punctures as a tool for quantum computation tends to focus on the
punctured finite sized Bravyi-Kitaev surface code [49], as shown in Figure 5.4. In this

Figure 5.4: An example of a Bravyi-Kitaev surface code. The vertex stabilizer oper-
ators are shown with blue dots, while the plaquette stabilizer operators are shown
with red dots. The boundary of the system is denoted by a green outline. The bound-
ary on the top and bottom of the image is a rough one, and the ones on the sides are
smooth ones.

surface code it is important to consider the nature of the boundary of the system.
The boundary of the code can be either smooth or rough, i.e. it can consist of ver-
tices or of plaquettes. The logical operators that arise in this system depend on these
boundary conditions; the logical operators that span between the smooth boundaries
are of the X type, while those that span between rough ones are the Z-type logical
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operators. In some sense, the smooth boundaries are similar to plaquette puncture
defects, while the rough ones are similar to vertex punctures. For such a system, its
properties may change substantially with the dimensions of the system, compared to
the ones found in the toric code with periodic boundary conditions, because some
sequences of edge operators interact with the boundaries in non-trivial ways.

In addition to single-stabilizer punctures, larger punctures can be defined in the
toric code, as well, and they play in with the finite sized toric code setups (for an
overview of surface codes, see [71], and for an introduction to topological quantum
memory via surface codes, see [10]). The details on these are not covered in this
work, but recent results on the effectiveness of various setups of punctures in the
toric code can be found in [72].

5.3 Kitaev’s Self-Energy Expansion Applied to the Punctured Toric
Code

In this subsection, a setup similar to the one in Subsection 5.1 is considered – dif-
fering in the fact that the toric code contains punctures. In this case, a setup with
two single-stabilizer punctures equally distanced from a logical operator is consid-
ered (as shown in Figure 5.5), and the result can easily be generalized to some more
complicated cases.

To examine such a punctured system, a perturbative method – Kitaev’s self-energy
expansion is used, as described in Subsection 4.3. To conclude on the effect of a small
local perturbation in such a system on the logical operator, the commutator of the
logical operator and the system’s Hamiltonian is calculated and discussed for the per-
turbed case. Additionally, the stability of the punctured toric code will be examined
by the influence of a small local perturbation on the logical operators associated with
the existence of the punctures in the code.

To determine the effect of a small local perturbation on the punctured toric code,
this subsection will first feature a calculation showing the effect of a small local per-
turbation on an unpunctured toric code, generalizing the result to the punctured
toric code subsequently. As an alternative approach, the direct calculation of Kitaev’s
self-energy expansion and the effect of its summands on the logical operators in the
toric code with two punctures will be presented.

Let the investigated system be described by a two-dimensional toric code on a
k × k lattice, with the corresponding Hamiltonian H0, and let it be perturbed by a
local perturbation of a norm small when compared to that of H0, such that:

V = α
∑
i

(σxi + σzi ) , α ∈ R, (5.7)
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LZ

σx σx σxσxσxσxσxσxσx

Figure 5.5: A representation of a Z-type logical operator on the toric code (bolded
string of edges) with a one-stabilizer plaquette puncture on both sides (gray shading).
The X-type logical operator that connects the two punctures and arises as a result
of their existence is shown as a blue string crossing the edges on which its Pauli σx

operators act.

with the sum going over all of the edges of the lattice. This indicates that, disregard-
ing the norming factor α, every edge of the lattice is acted on with both a Pauli σx

and a Pauli σz operator.
An important thing to note is the conjunction of the Pauli operators with the

projection operators in the toric code. Because the toric code is a stabilizer code (see
Subsection 3.2), the following property holds true for all stabilizer operators Av and
Bp:

AvP0 = P0, BpP0 = P0, (5.8)

where P0 is the projection operator onto the ground state of the unperturbed system.
Every contractible loop of Pauli σx or σz operators can be written as a product of
stabilizer operators (see Subsection 3.3), so it follows that the expression

LclosedP0 = P0 (5.9)

holds for any contractible loop of Pauli operators Lclosed – σz on the lattice, and σx

on the dual lattice, as shown in Figure 3.3. For every open string of Pauli operators,
there exist two quasi-particle excitations, on either end of the string; therefore, any
setup that contains an open string does not place the system into the ground state.
The following is valid for all open strings of Pauli operators Lopen:

P0LopenP0 = 0. (5.10)

Then, it follows from (4.23) that the perturbed Hamiltonian can be calculated as
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a series via Kitaev’s self-energy expansion:

H ≡ H0 +
∞∑
n=1

H
(n)
eff = H0 + P0

∞∑
n=1

(V G′0(E))
n−1

V P0, (5.11)

where G′0(E) = ((E −H0)−1)
′ is the unperturbed Green’s function for the excited

states of H0 – the prime indicates that it acts as expected on the excited state of the
unperturbed Hamiltonian, but vanishes on the ground states. In the first order, the
perturbation expansion for the system’s Hamiltonian is:

H
(1)
eff = αP0V P0 = α

∑
i

P0 (σxi + σzi )P0 = 0, (5.12)

which can be proven by considering the anticommutation relations of Pauli operators
with the stabilizers, or trivially, following (5.10). In the second order,

H
(2)
eff = α2

∑
i

∑
j

P0

(
σxj + σzj

)
G′0(E) (σxi + σzi )P0. (5.13)

As the resolvent in the above expression acts on states that contain exactly two quasi-
particle excitations, each of energy two (see equation (3.14) and the following para-
graph), the definition of the resolvent in (4.17) gives G′0(E) = −1/4. Thus,

H
(2)
eff =

−α2

4

(∑
i 6=j

P0

(
σxj + σzj

)
(σxi + σzi )P0 +

∑
l

P0 (σxl + σzl )
2 P0

)

=0 +
−α2

4

∑
l

2IP0P0

=− α2k2P0. (5.14)

The first part of the sum is equal to zero because the Pauli operators in the expression
form open strings, and in the final line of the calculation, the number of edges in the
lattice was inserted (2k2).

The third order of the self-energy expansion is equal to zero, because there does
not exist a way to arrange three Pauli operators in order to create a closed loop
(H(3)

eff = 0), and already with the fourth order, the expressions in the calculation
become very lengthy, and the derivation of all the combinatorial factors tends to be
very cumbersome from the fourth order onwards. For this reason and because of the
assumed small norm of the potential, only the powers of α are advisable to keep track
of. In general, up to the length of a logical operator, k, the elements of the expansion
are:

H
(n)
eff =

αnζP0 if n (mod 2) = 0 and n < k,

0 if n (mod 2) = 1 and n < k.
(5.15)

The ζ in the first line of the expression (5.15) represents a value that is constant
with regard to the variation of the parameter α, but it, naturally (as can be seen
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in equation (5.14)), changes as the size of the system (and with it, k) is changed.
At n = k, there exist topologically non-trivial loops of Pauli operators – namely, the
logical operators of the code. For a toric code on a k × k lattice, there exist four
logical operators of length (minimal number of operators in the non-trivial string) k.
Thus,

H
(k)
eff =

αk (ζP0 + ηP0 (LX1 + LX2 + LZ1 + LZ2)P0) if k (mod 2) = 0,

αkηP0 (LX1 + LX2 + LZ1 + LZ2)P0 if k (mod 2) = 1,
(5.16)

where ζ and η are constants with respect to α. Therefore, the following can be stated
for any logical operator L:

‖[Heff , L]‖ = O(αk), (5.17)

which means that the information encoded in the toric code is exponentially stable
against local perturbations in the system size k.

This relation is not completely precise, as the factors ζ and η do depend on the
size of the system, k; however, the result reached via this calculation does present
the behavior of the system in general terms. Use of a more rigorous perturbation
formalism would allow for a more precise result.

An analogous conclusion intuitively holds for the punctured toric code. As two
new logical operators are added to the system with two single-stabilizer punctures
of the same type (adding just one doesn’t change the number of logical operators,
because of the product conditions on the stabilizer operators – see (3.12)), for a k×k
lattice, this new logical operator would also be the shortest.

As an example, let there be two plaquette punctures in the toric code, at a distance
R, and examine the effect of a small local perturbation (5.7) on the logical operator
LZ that passes naturally between the punctures. In this setup, the a new X-type
logical operator connects one puncture to the other by a string of Pauli σx operators
(see Figure 5.5). The choice of the puncture type in this case is arbitrary, as plaquette
punctures are dual to the vertex punctures, and their behavior is essentially the same.
Then, trivially, for small |α| and R < k, by using Kitaev’s self-energy expansion, the
norm of the commutator of the effective Hamiltonian and LZ will be exponentially
stable in the distance between the two punctures, or:

‖[Heff , LZ ]‖ = O(αR). (5.18)

This result suggests the perturbative stability of the qubit degrees of freedom in
the toric code upon the addition of two single-stabilizer punctures of the same type
into the code. However, a direct analysis of the influence of a small local perturbation
on the degrees of freedom that are introduced into the system by the implementation
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of these punctures is still necessary to make a complete statement about the stability
of the code space of the punctured toric code.

Let the used setup be the same as earlier described, with a pertubation potential
V (5.7), and with two plaquette punctures at a distance R from each other, and let
R > 4. Then, the first four orders of Kitaev’s self-energy expansion are calculated
through (5.11). In the first order, there is no difference between the punctured and
the unpunctured toric code, so H

(1)
eff = 0. However, in the second order, four cases

need to be considered for strings of Pauli σx operators – a case in which both Pauli
operators of the same type in the sum act on the same edge of a puncture boundary,
denoted as β(p), a case in which only one of those Pauli operators acts on an edge
from β(p), and two cases in which neither of the Pauli operators acts on an edge in
β(p): both of the Pauli operators of the same type in the sum can either act on the
same edge, or they can create an open string (see Figure 5.6). Of these four cases,
two of them which create open (or half-open) strings in the final state — with their
product creating an excited state — create nil sums because the final state is acted
on by P0 in the sum. It follows:

1

2

3

4

Figure 5.6: A representation of the four different types of Pauli σx operator strings
formed by two Pauli operators in a toric code with plaquette punctures; the grey
shading represents the punctures.

H
(2)
eff = α2 ·

∑
i∈β(p)

P0 (σxi + σzi )

(
−1

2
σxi +

−1

4
σzi

)
P0

+ α2 ·
∑
j /∈β(p)

P0

(
σxj + σzj

) −1

4

(
σxj + σzj

)
P0

= −α2 ·

3

4

∑
i∈β(p)

P0 +
1

2

∑
j /∈β(p)

P0


= −α2 ·

(
6 + (k2 − 4)

)
P0 = −α2(k2 + 2)P0, (5.19)
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which is analogous to the result obtained for the unpunctured toric code, up to a
constant (5.14). The third, and all further odd orders of the expansion up to length
R are equal to zero, as no closed string of an odd number of Pauli operators can be
created in this situation. In the fourth order, an interesting factor arises, bound to the
stabilizer operators of the missing plaquettes, which is not proportional to P0, and is
of the form:

H
(4)
eff = α4

ζP0 +
∑

i1,i2,i3,i4∈β(p)
plaquette loop

const. · P0Bp∈{p1,p2}P0

 , (5.20)

where i1, . . . i4 are the edges on which the Pauli operators are acting, p1 and p2 are
the missing plaquettes, and the sum goes over closed loops of operators acting on the
edges that define a plaquette.

Thus, the information encoded in the qubit related to the logical operators that
depend on the existence of the punctures in the system is only stable up to the fourth
order in Kitaev’s self-energy expansion. It is not exponentially suppressed by the
distance between the two punctures, and therefore not sufficiently perturbatively
stable. In other words, if X is the logical operator connecting the two punctures
(shown with a blue line in Figure 5.5),

‖[H,X]‖ = O(α4). (5.21)

The ground space degeneracy of the corresponding encoded qubit splits by an amount
of O(α4). In the R-th order of the expansion, the string of Pauli σx operators con-
necting the two punctures (the logical operator X) comes into play:

H
(R)
eff = αR · (ζ + const. · P0XP0) , (5.22)

ζ =

const.′′ · P0 + const.′ · (P0(Bp1 +Bp2)P0) if R (mod 2) = 0,

0 if R (mod 2) = 1.
(5.23)

As LZ anticommutes with X, it follows:

‖[H,LZ ]‖ = O(αR). (5.24)

From this, it can be deduced that the addition of the two punctures to the toric
code influences the perturbative stability of the information encoded in the degrees
of freedom of the system related to its topology – instead of being exponentially
small in the system size (5.17), the corrections to the encoded information are only
exponentially small in the distance between the two punctures.

46



5.4 Punctured Toric Code under Local Perturbation

It is possible to examine the effect of punctures in addition to a small perturbation
on the stability of a string-like logical operator in a more general fashion.

To do this, the norm of the difference between the perturbed logical operator in
the original system, Ls, and the one in a system with two punctures, L′s, should be
found. The punctures are located on opposite sides of the logical operator, and they
are separated from each other by a distance 2d, each at a distance of d from the
logical operator (see Figure 5.7). The two systems — one without the punctures (as
in Subsection 5.1), and one with them — are subject to a small perturbation, and the
logical operators are evolved via the quasi-adiabatic continuation (Subsection 4.1),
and the Lieb-Robinson bound is employed (Subsection 4.2). The result reached in
Subsection 5.1 is utilized in this calculation.

The effect of the existence of punctures at a fixed distance from the logical oper-
ator is examined by comparing the influence of the local Hamiltonians of different
zones of the lattice on the quasi-adiabatically evolved logical operator when there
exists a small (and local) perturbation acting on the state of the system, using a rel-
evant lemma from [56].

Spyridon Michalakis has shown (in his paper from 2012, [56]) that the error be-
tween the quasi-adiabatic continuation operator, Us, and an approximation that splits
the action of the quasi-adiabatic continuation operator into the product of operators
acting on two disjunct subsets and their boundary decays sub-exponentially in the
thickness of the chosen boundary, R:

‖Us(A)⊗ Us(AC)Us(∂A(R))− Us‖ ≤ εs(R). (5.25)

In the shown equation (5.25), the error, εs(R), is of the form:

εs(R) = c1

(
ec2(J2/γ)|s| − 1

)
|∂A|fγ(c3R), (5.26)

where c1, c2, c3, J2 > 0, |∂A| is the cardinality of the boundary between the two sub-
sets, γ is the system’s spectral gap, s is the evolution parameter for quasi-adiabatic
continuation, and fγ is a function that decays sub-exponentially in R.

If we define the quasi-adiabatic continuation operator as ξs(R) for clarity, from
equation (5.25) it follows that it is equal to:

ξs(R) = Us(A)⊗ Us(AC)Us(∂A(R)) + ε̂s(R), (5.27)

where ε̂s(R) is an operator for which ‖ε̂s(R)‖ = εs(R). The quasi-adiabatic evolution
of a logical operator L can be expressed as:

Ls = ξs(R)Lξ†s(R). (5.28)

Furthermore, the set A from (5.25) is chosen to contain the set on which L acts.
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Figure 5.7: A representation of the setup used in Subsection 5.4. L is a string-like
logical operator, and the squares denote punctures that are distanced by d from the
logical operator. The logical operator acts on the set A, the punctures are defined to
be in the set AC , and their boundary set, ∂A, envelops the punctures, and doesn’t
contain either of the two main sets.

Then the set AC contains both the punctures, and the boundary spans on both sides
of the logical operator, not containing the operator, nor the punctures, but enveloping
the punctures (see Figure 5.7). The quasi-adiabatic continuation operators acting
on different regions of the lattice are generated by the local Hamiltonians in those
regions (4.6), which allows for the evolution operator acting on the logical operator
in the system with two punctures, ξ′s, to differ from the one for the unpunctured
system only in the region contained in the set AC . By defining ξs = ξ + ε̂s and
ξ′s = ξ′+ ε̂′s, omitting the thickness of the boundary in the arguments of the operators,
it follows:

‖L′s − Ls‖ = ‖(ξ′ + ε̂′s)L(ξ′ + ε̂′s)
† − (ξ + ε̂s)L(ξ + ε̂s)

†‖
= ‖ξ′Lξ′† + ξ′Lε̂′†s + ε̂′sLξ

′† + ε̂′sLε̂
′†
s −

(
ξLξ† + ξLε̂†s + ε̂sLξ

† + ε̂sLε̂
†
s

)
‖.

(5.29)

The terms in the expression (5.29) that contain only the logical operator and
εs terms will give a norm of O(ε2s), as the εs operators commute with the logical
operator. For the expression ξ′Lξ′† − ξLξ†, given the definition in equation (5.27),
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the following is valid:

ξ′Lξ′† − ξLξ† =

=
(
U ′s(A)⊗ U ′s(AC)U ′s(∂A(R))

)
L
(
U ′†s (∂A(R))U ′†s (A)⊗ U ′†s (AC)

)
−(

Us(A)⊗ Us(AC)Us(∂A(R))
)
L
(
U †s (∂A(R))U †s (A)⊗ U †s (AC)

)
=
(
U ′s(A)⊗ U ′s(AC)

)
LU ′†s (∂A(R))U ′s(∂A(R))

(
U ′†s (A)⊗ U ′†s (AC)

)
−(

Us(A)⊗ Us(AC)
)
LU †s (∂A(R))Us(∂A(R))

(
U †s (A)⊗ U †s (AC)

)
(5.30)

=
(
U ′s(A)⊗ U ′s(AC)

)
L
(
U ′†s (A)⊗ U ′†s (AC)

)
−(

Us(A)⊗ Us(AC)
)
L
(
U †s (A)⊗ U †s (AC)

)
(5.31)

=
(
U ′s(A)⊗ U ′s(AC)

) (
I⊗ U ′†s (AC)

)
L
(
U ′†s (A)⊗ I

)
−(

Us(A)⊗ Us(AC)
) (

I⊗ U †s (AC)
)
L
(
U †s (A)⊗ I

)
(5.32)

= (U ′s(A)⊗ I)L
(
U ′†s (A)⊗ I

)
− (Us(A)⊗ I)L

(
U †s (A)⊗ I

)
(5.33)

=0. (5.34)

In line (5.30) the commutativity of the logical operator with the evolution operators
acting on the boundary, Us(∂A(R)), has been taken into consideration. The logi-
cal operator is defined locally and at a finite distance from the boundary subset of
the lattice. The logical operator acts on a different subset and because of that it
commutes with the evolution operators that act on the boundary. The same commu-
tativity argument that is given for the logical operator and the evolution operator on
the boundary is valid for the evolution operator that acts on the subset AC (see line
(5.32)). And lastly, because punctures only are present in the region AC , it follows
that

U ′s(A) = Us(A), (5.35)

because no difference in the two systems exists in the A subset. Then, the conclusion
in line (5.34) follows trivially.

For the ξLε̂†s term in the equation (5.29), by use of the Cauchy-Schwarz and the
triangle inequality, it follows:

‖ξLε̂†s‖ ≤ ‖ξ‖ · ‖L‖ · ‖ε̂†s‖
= ‖ε̂†s‖
≤ O(εs), (5.36)

because of the unitarity properties of the operators. A similar argument can be used
for the terms of the form ε̂sLε̂

†
s.

Then, the bound for the equation (5.29) is:

‖L′s − Ls‖ ≤ O(εs). (5.37)
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An important thing to note is the cardinality of the set ∂A, as it influences the
value of εs (see equation (5.26)) – if the region AC is defined as in Figure 5.7, with
the separation of the two punctures being equal to 2d, and the width of the boundary
∂A being equal to R, the following inequality is valid:

|∂A| < const.′ · d2 < const. ·R2. (5.38)

It follows that the expression ‖L′s − Ls‖ will decay sub-exponentially in the width
of the boundary, R, as εs will certainly be a function decaying sub-exponentially in
R, i.e. the logical operator for the system without punctures approximates the one
for the system with punctures sub-exponentially well. This means that the logical
operator for the punctured system is sub-exponentially close to the logical operator
for the unpunctured system in the distance of separation of the two punctures.

5.5 Discussion of the Results

The results that have been presented in this section have dealt with the perturbative
stability of topologically ordered systems – in particular, those with local puncture
defects. This subsection presents a summary of the shown results, provides an inter-
pretation and explains their significance.

In Subsection 3.4 the theorem on the perturbative stability of topological order
by Sergey Bravyi, Matthew Hastings, and Spyridon Michalakis [20] was presented
in short. It proves the exponential stability of topological invariants in topologically
ordered systems when they are subjected to a weak local perturbation. It is then
trivial to postulate that the information stored in a system that can be accurately
described by use of the toric code (the toric code exhibits topological order, see Sub-
section 3.3) will stay sufficiently protected when the system is exposed to some weak
perturbation that can be decomposed into a sum of geometrically local terms. In the
preceeding subsections, this claim was examined more explicitly, through the sta-
bility of the degeneracy of the ground state space — code space — of a toric code
system.

First, the stability of a logical operator in such a system was considered in Sub-
section 5.1, and the result reached stated that the norm of the difference between
the perturbed logical operator limited to some band around the set on which the
original logical operator had support, and the original logical operator will decay ex-
ponentially in the size of this band (for details see (5.4)). This result is completely in
agreement with the perturbative stability theorem, as it simply states that the infor-
mation stored in the system will be exponentially stable to a weak local perturbation,
in the linear size of the system.

This result comes from an explicit calculation that employs the quasi-adiabatic
continuation and the Lieb-Robinson bounds, providing detailed confirmation of the
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perturbative stability theorem for the specific case of the logical operators of the sys-
tem.

The results presented in this section go further than the examination of the pertur-
bative stability of the logical operators in topologically ordered systems – Subsection
5.2 presents an introduction to the properties of a type of system with local defects,
the punctured toric code, defining punctures in the toric code, discussing their effect
on the topological invariants of the toric code, and providing an overview of the use
of such mathematical forms in the development of procedures in quantum comput-
ing. After this overview, Subsections 5.3 and 5.4 showcase the obtained results.

Subsection 5.3 presents the results of the application of a degenerate perturbation
theory, Kitaev’s self-energy expansion, on the unpunctured toric code, as well as the
toric code with two punctures. For any logical operator, an expression for the norm
of its commutator with the effective Hamiltonian is achieved (see (5.17)). As is
expected, it follows that the information stored in the toric code is exponentially
stable against local perturbations in the system size – the minimal length of the string
of the edges that define the logical operator. Even though this is a relatively crude,
perturbative method, the achieved result is somewhat in line with the perturbative
stability theorem.

Following this calculation, the toric code with two punctures of the same type,
that have been set at a fixed distance, is examined by the same method. This method
requires calculations of ever-growing combinatorial complexity to be performed, so
the results have been derived up to constant factors, for the most relevant orders of
the expansion. For two punctures in this setup, the perturbative stability of the logi-
cal operators that emerge in the system because of their existence is not satisfactory –
as a new logical operator of length four exists, that is equivalent to one of the missing
stabilizer operators. The stability of the information encoded in the logical operators
associated with the two punctures is not stable in the system size. Additionally, the
information encoded in the logical operators and the code space associated with the
unperturbed toric code is in this case not exponentially perturbatively stable in the
system size, but in the difference between the two punctures! This is a fascinating
result that serves as a motivator for the exploration of the field of surface codes in
quantum information (an interesting recent result can be found in [72]).

In Subsection 5.4 an innovative approach enabled for a general solution of the
problem of the preturbative stability of the logical operators in the toric code with
two punctures of the same type. Using a lemma from [56], this problem is tackled by
use of the quasi-adiabatic continuation and the Lieb-Robinson bounds. In conclusion,
for punctures that are set far enough apart from each other and the logical operator,
the norm of the tail of the evolved logical operator in the system with the punctures
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outside of some band defined around the set on which the original logical operator
has support, will decay sub-exponentially in the linear size of the band when com-
pared to the logical operator evolved in the same system – but without the punctures
(see (5.37)).

This result implies that the topological invariants of a system may remain stable
up to a negligible factor with the addition of a finite number of local puncture defects,
given that the linear size of the system becomes large enough.

It is interesting to note that the same would not hold true for the (infinite) toric
code with an infinite number of punctures – in this case, it depends on how the
distance between punctures scales with the system size. For example, for the case of
a constant density of punctures, the average distance between punctures is expected
to remain constant and independent of the size of the system. Then, the system
would not be perturbatively stable, as going to a larger size of the system would not
improve on the error terms in the dressed logical operators.

52



6 Summary and Outlook

In this thesis, topological order in quantum spin systems with local puncture defects,
under a small local perturbation was investigated. This section serves as a short sum-
mary of the topic presented in this thesis, and provides a conclusion and outlook for
the achieved results.

The task that was solved in this thesis was the derivation and interpretation of
general bounds on the perturbative stability of topologically ordered systems with lo-
cal puncture defects. Topological order is a yet not well understood phase of matter,
and it provides a fresh challenge for many fields of physics. Its perturbative stabil-
ity and the emergence of anyonic excitations make it a highly anticipated solution
to the problem of instability of quantum computers, via the denominator of topo-
logical quantum computation. However, to fully understand how topological order
is affected by outside perturbation — for further manipulation — it is necessary to
investigate the precise changes in a topologically ordered system when it is subjected
to perturbation. In addition to that, to use topologically ordered systems in quantum
computing, the possibility of defects cannot be neglected. For this purpose, the cul-
mination of the results presented in this thesis shows an analysis of topological order
in the toric code with local puncture defects.

The achieved results begin from a precise analysis of the perturbative stability of
the degeneracy of the ground state in the toric code, led by the main result of the
perturbative stability theorem, but expand on this notion, focusing on attempting to
conclude whether an analogous property applies to the toric code with local puncture
defects, as well.

What was shown points to an affirmative answer. Further analysis of specific
setups relevant to the procedures used in quantum information and quantum er-
ror correction is needed for the application of the reached conclusions to concrete
problems. In conjuction to that, the achieved results invite to an analysis of similar
problems in topological quantum computation.

For example, a natural expansion of the presented setup would include puncture
defects that span more than one stabilizer operator, as well as punctures with mixed
boundary conditions (for example, see [72]). The changes that the addition of such
punctures imposes on a toric code system are non-trivial, and a further look into this
problem would illuminate the question of the stability of topological order in systems
with puncture defects – however, it is beyond the scope of this thesis.

Some of the work presented here may also be used as an aid in the examination
of the perturbative stability of surface codes with complicated boundary conditions –
see [49] and [72].

Another interesting generalization of the results presented here involves the study
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of the perturbative stability of the punctured toric code in higher dimensions, includ-
ing fractal codes (for example, see [10] and [73]).

Some other models that describe topological order may also be considered – and
the results compared to those that are achievable for the two-dimensional punctured
toric code. These include the color codes [74], the cubic code [75], as well as homo-
logical codes [76].

It might also be interesting to investigate the stability of quasi-topological phases,
as described in [77]. This analysis would present an additional challenge, as quasi-
adiabatic continuation cannot be applied in gapless systems.

In conclusion, this thesis served as a medium to present the bounds on the stability
of topological order in the toric code with local puncture defects – it approached the
problem via the self-energy expansion, as well as by employing the quasi-adiabatic
continuation and the Lieb-Robinson bounds. Bounds on the stability of such topolog-
ically ordered systems were presented and analyzed. They agree with the previously
derived result for the non-punctured toric code [20], and extend it, suggesting that a
system that can be described by the toric code with local punctures will remain stable
under weak and local perturbations, given that the distance between the punctures
remains large enough.
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7 Prošireni sažetak

Prošireni sažetak na hrvatskom jeziku sastoji se od povezanog pregleda svih po-
glavlja predstavljenih u ovom radu i kratkog opisa sadržaja predstavljenog u njima.
Vǐse detalja može se pronaći u izvornom radu na engleskom jeziku.

7.1 Uvod

Kvantna teorija informacija i kvantno računarstvo pojmovi su koji se odnose na
kvantne ekvivalente klasičnoj teoriji informacija i klasičnog računarstva. Za razliku
od informacije u klasičnom smislu, kvantna informacija podrazumijeva iskorǐstavanje
kvantnih učinaka pri skladǐstenju ili mijenjaju informacije. Umjesto klasičnih bitova
koji koriste diskretne vrijednosti, Z2 = {0, 1}, kvantne jedinice informacije — qubiti
— sačinjene su od C2 = C[Z2], pri čemu se koristi koncept kvantne superpozicije.

Od prijedloga kvantnih simulatora Richarda Feynmana [3], do približavanja kla-
sičnoj granici Mooreovog zakona [5], te iznenadujućih mogućnosti kvantnih algori-
tama [7,8], kvantno računarstvo iznimno je perspektivno područje istraživanja u mo-
dernoj fizici. Sveobuhvatni uvod u kvantnu teoriju informacija i kvantno računarstvo
moguće je pronaći u [1].

Medutim, važni problemi kvantnog računarstva su dekoherencija i nestabilnost
na smetnje kvantnih sustava – uobičajeno rješenje jest istraživanje mogućnosti ispra-
vljanja grěsaka koje se pojavljuju pri čuvanju kvantnih memorija i promjeni kvantne
informacije u kvantnim algoritmima, u sklopu teorije kvantnog računarstva otpornog
na pogrěske. Teorem o pragu [12] potvrduje da se kvantno računarstvo može učiniti
pouzdanim u prisustvu smetnji i grešaka koristeći metode kvantnog računarstva ot-
pornog na pogreške, uz uvjet da se pogreške u korǐstenom sustavu javljaju rjede od
neke granične vrijednosti.

S druge strane, ovim problemima se može pristupiti koristeći svojstva sustava u
kojima se javlja topološko uredenje, u funkciji topološkog kvantnog računarstva [2].
Topološko uredenje je faza na temperaturi apsolutne nule, koju odlikuju fazni pri-
jelazi koji se ne mogu opisati klasičnom Ginzburg-Landau teorijom faznih prijelaza,
degenerirano osnovno stanje, procjep u spektru iznad najniže svojstvene vrijednosti,
te globalne, topološke invarijante, koje omogućuju korǐstenje pojednostavljenih me-
toda otkrivanja i praćenja grešaka koje se javljaju u kvantnom računarstvu. Topološko
uredenje pouzdano je otkriveno u razlomljenom kvantnom Hallovom efektu [16], a
potpuni teorijski opis sustava u kojima se javlja još uvijek nije postignut.

Pobudenja u topološki uredenim sustavima lokalizirana su i nastaju kao anyoni
(engl. anyons) – čestice koje se ne mogu razlikovati, ali koje ne prate fermionsku ili
bozonsku statistiku izmjene [17, 18], već njihove valne funkcije mogu poprimiti bilo
koji faktor (engl. any) pri zamjeni mjesta (ukratko, |Ψ1Ψ2〉 = eiθ |Ψ2Ψ1〉, gdje su |Ψ1〉
i |Ψ2〉 kvantna stanja dva anyona, a θ bilo koja vrijednost). Kvantna logǐcka vrata u
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ovim sustavima tvore se pletenjem anyona u (2+1)-dimenzionalnom prostor-vremenu
(vidi sliku 1.1). Ovako stvorene anyonske niti ne mogu se trivijalno razdvojiti [19],
te tvore dobru osnovu za teoriju topološkog kvantnog računarstva.

Cilj ovog rada jest istraživanje perturbativne stabilnosti topološki uredenih su-
stava. Dokazano je da topološko uredenje ostaje stabilno pri malim i lokalnim pertur-
bacijama na temperaturi apsolutne nule [20], no za donošenje zaključaka o prakti-
čnoj uporabi postupaka iz topološkog kvantnog računarstva, nužno je eksplicitno
razumjeti utjecaj perturbacije na informaciju spremljenu u topološki uredenom su-
stavu. U tu svrhu, iskorǐstene su važne matematičke metode — kvazi-adijabatsko
produljenje, Lieb-Robinsonove granice, razvoj vlastite energije — i izvedene su gra-
nice stabilnosti topološkog uredenja. Uz to, promotreni su i topološki uredeni sustavi
s lokalnim defektima tipa rupe te ovaj diplomski rad završava zaključkom o općim
granicama stabilnosti topološki uredenih sustava s lokalnim defektima ovog tipa, na-
govještavajući buduću primjenu ovih i sličnih rezultata u daljnjem razvoju metoda
kvantnog računarstva otpornog na pogreške, kao i praktičnu primjenu izvedenih vri-
jednosti u eksperimentalnim postavima.

Pregled sadržaja proširenog sažetka je sljedeći: u Potpoglavlju 7.2 uvedeni su
pojmovi vezani uz topološko uredenje, te je ono matematički definirano, u Potpogla-
vlju 7.3 nalazi se kratak pregled kvantnog računarstva otpornog na pogreške, te su
uvedeni stabilizacijski kodovi i posebno torusni kod. U Potpoglavlju 7.4 izložene su
korǐstene matematičke metode, a Potpoglavlje 7.5 predstavlja pregled proučavanih
sustava i ostvarenih rezultata. Potpoglavlje 7.6 služi kao pregled i zaključak tema
predstavljenih u ovom radu, a u Potpoglavlju 7.7 nalazi se popis korǐstenih slika i
tablica, s hrvatskim prijevodima opisa.

7.2 Kvantni spinski sustavi i topološko uredenje

Kvantni vǐsečestǐcni sustavi [22] pojednostavljeni su modeli koji se koriste za pro-
učavanje nerelativističkih kvantnih sustava koji se sastoje od odredenog broja stup-
njeva slobode, od kojih pak svaki ima konačno-dimenzionalan prostor stanja. U ova-
kvim sustavima mogu se pojavljivati makroskopski neobična svojstva, koja nastaju
zbog njihove kvantne prirode. Jedna od vrsta sustava koji pripadaju kategoriji kvant-
nih vǐsečestičnih sustava su i kvantni spinski sustavi, u kojima se stupnjevima slobode
u sustavu dodjeljuje svojstvo spina. U ovakvim sustavima, čestice su rasporedene na
grafu na kojemu je definiran pojam udaljenosti, a time i lokalnosti [23,24].

Hilbertov prostor kvantnog spinskog sustava Λ može se opisati tenzorskim pro-
duktom Hilbertovih prostora koji pripadaju pojedinačnim stupnjevima slobode u su-
stavu, Hu, kao u jednadžbi (2.1). Vremenska evolucija sustava jedinstveno je odre-
dena njegovim Hamiltonijanom i Schrödingerovom jednadžbom te joj je u ovom
radu pristupljeno u Heisenbergovoj slici, tako da stanja sustava ostaju nepromije-
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njena u vremenu, a sva vremenska ovisnost nalazi se u operatorima koji djeluju u
sustavu. Takoder, Hamiltonijan koji opisuje kvantni spinski sustav moguće je zapisati
kao sumu lokalnih Hamiltonijana, koji opisuju interakcije geometrijski lokalnih ele-
menata sustava, kao u jednadžbi (2.4), gdje je B(i, r) kugla radijusa r koji je manji
od odredenog r0, a HB(i,r) označava operator koji je nošen samo u području te kugle.
U najčešćem slučaju proučavaju se sustavi u kojima ‖HB(i,r)‖ ima brzi pad u ovisnosti
o r.

Vǐse o kvantnim spinskim sustavima i njihovom pristupu iz perspektive kvantne
teorije informacija moguće je pronaći u [21,25,26].

Fazni prijelazi su vrlo dugo bili uspješno opisivani Ginzburg-Landauovom teorijom
faznih prijelaza slamanjem simetrije, no prije nekoliko desetljeća otkriveni su sustavi
čiji se fazni prijelazi ne mogu opisati ovom teorijom — najznačajnije, tekućine koje is-
kazuju razlomljeni kvantni Hallov efekt — te je razvijena teorija topološkog kvantnog
uredenja (ili topološkog uredenja), koja opisuje ove fazne prijelaze na temperaturama
blizu apsolutne nule [30, 31]. Najzanimljivije je svojstvo topološki uredenih sustava
za područje kvantnog računarstva njihova otpornost na smetnje, budući da ih se opi-
suje globalnim opservablama – topološkim invarijantama.

Jednostavan opis kvantnih faznih prijelaza koji postoje u topološki uredenim su-
stavima dan je u [32]. Promatra se kvantni spinski sustav sa česticama rasporedenima
na rešetki, koji je opisan Hamiltonijanom H(g) = H0 + gH1 s energetskim procjepom
iznad prostora osnovnog stanja sustava, gdje je g bezdimenzijski parametar poveziva-
nja, a [H0, H1] = 0 i H0 i H1 ne ovise o g. Tada se komponente Hamiltonijana mogu
dijagonalizirati istovremeno i može postojati vrijednost g = gc za koju je osnovno
stanje sustava neanalitičko, tako da pobudeno stanje postaje osnovno stanje, kao
što je prikazano na slici 2.1. Kvantni fazni prijelaz odgovara neanalitičkoj točki ener-
gije osnovnog stanja beskonačno-dimenzionalnog kvantnog spinskog sustava – dakle,
procjep iznad prostora osnovnog stanja mora se zatvoriti. Prijelazom iz jedne faze u
drugu mijenja se dugodosežna kvantna sprega u sustavu, a različiti uzorci ispreplete-
nosti odgovaraju topološkim uredenjima sustava.

Topološki uredene faze na temperaturi apsolutne nule matematički se opisuje na
mnogo medusobno ekvivalentnih načina, no još uvijek ne postoji odgovarajući opis
na temperaturama iznad apsolutne nule. U [20, 34] topološko uredenje definirano
je pomoću dva uvjeta — TQO-1 i TQO-2 — koji će biti uvedeni u nastavku ovog
ulomka. Promatran je N -dimenzionalni kvantni spinski sustav Λ linearne dimenzije
L, s periodičnim rubnim uvjetima, s Hilbertovim prostorom kao u (2.1). Skup svih
blokova A ⊆ Λ linearne veličine r > 0 definiran je kao S(r) (vidi sliku 2.2). Za sustav
u kojem se u obzir uzimaju samo interakcije u skupovima A ∈ S(2), Hamiltonijan
sustava, H0, može biti zapisan kao u jednadžbi (2.5), gdje je QA medudjelovanje s
podrškom na A i svojstvima kao u jednadžbi (2.6). Ako je projektor na potprostor
osnovnog stanja označen s P , a projektor na potprostor pobudenih stanja označen s
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Q u jednadžbama (2.7), gdje je I operator identiteta, a lokalne verzije operatora za
blok B ∈ S(r ≥ 2), kao u jednadžbama (2.8), moguće je iskazati uvjete topološkog
uredenja;

1. TQO-1: Za blok A ∈ S(r) s r ≤ L?,

POAP = cP, c ∈ C, (7.1)

za bilo koji operator OA koji djeluje na A.

2. TQO-2: Za blokove A ∈ S(r) s r ≤ L? i B ∈ S(r + 2), gdje je B blok koji sadrži
A i sve najbliže susjede stupnjeva slobode u A, neka su reducirane matrice
gustoće definirane kao ρA = TrAc(P ) i ρ(B)

A = TrAc(PB), gdje je Ac = Λ \ A.
Tada vrijedi

ker ρA = ker ρ
(B)
A . (7.2)

Prvi uvjet često se smatra najvažnijim uvjetom koji definira topološko uredenje i na-
ziva se uvjetom lokalne neraspoznatljivosti osnovnih stanja sustava. Drugi uvjet jamči
da projektori P i PB djeluju na jednak način na podskupu A ⊂ B, te da je lokalni pro-
stor osnovnog stanja dosljedan globalnom na podskupovima koji su dovoljno daleko
od B.

Topološko uredenje moguće je matematički opisati s naglaskom na faze Hamilto-
nijana te pomoću relacije izmedu kvantnih faza i kvantnih sklopova konačne dubine
(za vizualni prikaz vidi sliku 2.3). Pregled ovih opisa nalazi se u [30].

Eksperimentalna ostvarenja topološki uredenih sustava razvijaju se ponajprije za
uspješnu realizaciju topoloških kvantnih računala te uključuju dva pristupa – sustavi
koji prirodno iskazuju topološko uredenje i sustavi koji se planirano sastavljaju kako
bi se u njima stvorilo topološko uredenje. Povijesno, najvažnija vrsta sustava u kojima
prirodno postoje topološke faze je ona u kojoj se javlja razlomljeni kvantni topološki
efekt [16, 37], a takoder i (px + ipy) supravodiči [39, 40] i supratekućine [41], te
Majoranine žice [38]. Pregled ovih sustava može se naći u [42,43].

Općenito, eksperimentalne istraživačke grupe najčešće usmjeravaju pozornost pre-
ma mikroskopskoj izgradnji sustava koji iskazuju topološko uredenje, koristeći optičke
rešetke, ionske klopke, Josephsonove spojeve, supravodljive qubite i slično. Detaljniji
opis nalazi se u Potpoglavlju 2.5.

7.3 Kvantno računarstvo otporno na pogreške

Kao što je opisano u Potpoglavlju 7.1, kvantno računarstvo more problemi de-
koherencije i nestabilnosti na smetnje, što uvodi greške u korǐsteni sustav. Zbog
toga je razvijena teorija kvantnog računarstva otpornog na pogrěske, u sklopu kojeg
se proučavaju metode kvantnog ispravljanja grěsaka. Klasična teorija računarstva ot-
pornog na pogreške nema istu važnost kao ona kvantnog računarstva otpornog na
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pogreške budući da je klasična informacija iznimno robustna, a jednostavan primjer
metode korǐstene u klasičnom računarstvu otpornom na pogreške jest kod s pona-
vljanjem. Ovom metodom vrijednosti nule i jedinice kodiraju se u logǐcka stanja u
kojima se njihove vrijednosti ponavljaju nekoliko puta (vidi tablicu 3.1) – u slučaju
pogreške i izmjene vrijednosti jednog od broja u kodiranom obliku, originalni bit po-
vraća se težinskim glasanjem, tako da se odabire onaj bit koji se vǐse puta pojavljuje
u kodiranom obliku. Zbog teorema o nemogućnosti kloniranja [51], isti postupak nije
moguće primijeniti na kvantnu informaciju te korǐsteni postupci postaju mnogo kom-
pliciraniji. Primjerice, za ispravljanje grešaka koje obrću qubite (iz vrijednosti |0〉 u
vrijednost |1〉 i obratno), može se koristiti kod za obrtanje qubita. Ako se logička
stanja kodiraju kao u tablici 3.2, greške je moguće otkriti primjenom projektora, kao
u tablici 3.3. Ovaj postupak kao povratnu informaciju daje sindrom grěske, odnosno
ukazuje na to kakav tip pogreške se dogodio – u ovom slučaju na kojem qubitu.

Općenito, postupak kvantnog ispravljanja grešaka svodi se na sljedeće korake:

1. Kodiranje kvantnog stanja u kvantni kod za ispravljanje grešaka, definiran kao
potprostor C nekog većeg Hilbertovog prostora, koristeći unitarnu operaciju.
Ovaj potprostor naziva se kodnim prostorom ili kodnim potprostorom.

2. Izlaganje sustava uzroku grešaka.

3. Mjerenje sindroma greške.

4. Izvodenje postupka povrata originalne informacije, ovisno o sindromu.

Za najbolje rezultate pri mjerenju sindroma, odabrani potprostori originalnog kodnog
prostora moraju biti medusobno ortogonalni.

Postupak ispravljanja grešaka,R, smatra se uspješnim ako, za sustav na kojeg dje-
luje izvor grešaka E , vrijedi relacija (3.1) – radi se o jednakosti u slučaju u kojem je
operator E unitaran. Detaljnije informacije o kvantnom ispravljanju grešaka moguće
je pronaći u [1], a opis često korǐstenih kodova koji pripadaju CSS-tipu (Calderbank-
Shor-Steane) nalazi se u [52] i [53].

Stabilizacijski kodovi predstavljaju važan oblik kodova za kvantno ispravljanje
grešaka, i jednostavno se definiraju na sljedeći način, s time da Paulijeva tenzor-
ska grupa predstavlja tenzorski produkt Paulijevih grupa G kao u jednadžbi (3.3), s
grupnom operacijom množenja (σ operatori su odgovarajući Paulijevi operatori).

Definicija 7.1. Neka je S podgrupa Paulijeve tenzorske grupe za n qubita, Gn. Za
vektorski potprostor VS svih n-qubitnih stanja za koja vrijedi (∀ψ ∈ VS) ∧ (∀Sξ ∈ S) :

Sξ |ψ〉 = |ψ〉, podgrupa S se naziva stabilizacijskom grupom prostora VS; prostor VS
naziva se stabilizacijskim prostorom.
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Generatori podgrupe S komutiraju, a za sustav od n qubita i stabilizacijsku grupu
s n−k nezavisnih generatora, odgovarajući stabilizacijski prostor VS je 2k-dimenziona-
lan (dokaz ovog svojstva nalazi se u Potpoglavlju 3.2). Posljedično, u stabilizacijskom
prostoru 2k ortogonalnih vektora može služiti kao baza za kodiranje logičkih stanja.

Primjer generatora za stabilizacijski kod za pet qubita nalazi se u tablici 3.4.

Najčešće korǐsten stabilizacijski kod je torusni kod [54], koji služi i kao pojedno-
stavljeni model kvantnih spinskih sustava. Definiran je na dvodimenzionalnoj pra-
vokutnoj rešetci na torusu, gdje su spinski stupnjevi slobode na rubovima rešetke, a
elementi rešetke su prikazani na slici 3.1. Stabilizacijski operatori torusnog koda Λ

povezani su s vrhovima i pločicama rešetke, i definirani u jednadžbi (3.10), te pri-
kazani na slici 3.2. Oni medusobno komutiraju, a njihove svojstvene vrijednosti su
+1 i −1, a ako je Hilbertov prostor svih qubita u sustavu označen s N , kodni prostor
jednak je relaciji u jednadžbi (3.11). Zbog rubnih uvjeta na stabilizacijske operatore
(jednadžbe (3.12)), dimenzija kodnog prostora je jednaka 22 = 4. Logǐcki operatori
odgovaraju značenju logičkih stanja te im je uloga čuvanje informacije u kodu, a u
torusnom kodu su predstavljeni netrivijalnim zatvorenim petljama Paulijevih opera-
tora, kao što je prikazano na slici 3.3, a definirani su jednadžbama (3.13). Očito,
u torusnom kodu postoje četiri logička operatora — dva σx tipa i dva σz tipa —
što znači da se u sustav mogu kodirati dva qubita, koristeći po dva nekomutirajuća
logička operatora. Ovi logički operatori tvore Paulijevu algebru na kodnom prostoru
sustava.

Hamiltonijan torusnog koda predstavlja +1 svojstveni prostor stabilizatora, i za-
pisan je u jednadžbi (3.14). Osnovna stanja sustava lokalno se ne mogu razlikovati,
a pobudena stanja od prostora osnovnih stanja odvojena su za konačnu vrijednost
energijskog procjepa, te torusni kod odgovara definiciji topološkog uredenja.

Greške u torusnom kodu nastaju djelovanjem Paulijevih operatora na spinske
stupnjeve slobode na rubovima rešetke, što stvara pobudenja anyonskog tipa na su-
sjednim elementima rešetke – za σx operator to su pločice, a za σz operator vrhovi.
Ova pobudenja mogu se pomicati po odgovarajućim elementima rešetke korǐstenjem
Paulijevih operatora, kao što je prikazano na slici 3.4. Njihovim netrivijalnim plete-
njem tvore se kvantna vrata u sustavu (za detaljan opis, vidi [19]).

Topološki uredeni sustavi stabilni su pri utjecaju lokalnih perturbacija, što je do-
kazano u [20] i [34] sljedećim teoremom.

Teorem 7.1. Neka postoji Hamiltonijan bez smetnje, H0, koji odgovara svojstvima koja
definiraju topološki uredeni sustav (TQO-1,2 – (7.1), (7.2)), a na sustav neka dje-
luje perturbacija V , koja se može zapisati kao suma geometrijski lokalnih interakcija s
ogranǐcenom normom:

V =
∑
r≥1

∑
A∈S(r)

Vr,A, (7.3)
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gdje je S(r) skup kocaka linearne velǐcine r, a Vr,A je operator koji djeluje samo na
stupnjeve slobode u A. Neka velǐcina interakcije ima eksponencijalni pad u r:

maxA∈S(r)‖Vr,A‖ ≤ Je−µr, (7.4)

gdje su J, µ > 0 konstante neovisne o linearnoj velǐcini sustava.
Tada postoje konstante J0, c1, c2 > 0 koje ovise samo o µ i prostornoj dimenziji D,

tako da je za sve J ≤ J0 spektar H = H0 + V sadržan (do općenitog linearnog pomaka
u iznosu energije) u uniji intervala

⋃
k≤0 Ik, gdje k ima vrijednosti u spektru H0 tako da

Ik = {λ ∈ R : k(1− c1J)− δ ≤ λ ≤ k(1 + c1J) + λ}, (7.5)

i
δ = poly(L) exp

(
−c2L

3/8
)
, (7.6)

gdje je L linearna velǐcina sustava.

Prikaz ovog rezultata je na slici 3.5. Za dovoljno malu perturbaciju, tako da je
J < 1

c1(4k+2)
, sve spektralne vrpce razdvojene su za bar 1/2.

7.4 Dinamika lokalnih kvantnih sustava

Dinamika lokalnih kvantnih sustava istražuje se pomoću nekoliko moćnih mate-
matičkih metoda koje su razvijane od strane velikog broja autora i dosad primijenjene
na mnogim problemima. U ovom radu korǐstene su tri metode, koje će u ovom pot-
poglavlju biti okvirno predstavljene; radi se o kvazi-adijabatskom produljenju, Lieb-
Robinsonovoj granici i Kitaevljevom razvoju vlastite energije.

Kvazi-adijabatsko produljenje (engl. quasi-adiabatic continuation) metoda je koju
je po prvi put predstavio Hastings tijekom prošlog desetljeća [57,58], a mnogi autori
potom razvili ju i prilagodili specifičnim problemima (primjerice, [23, 56, 59–62]).
Koristi se za proučavanje dinamike kvantnih spinskih sustava sa spektralnim procje-
pom iznad energije osnovnog stanja, kada se na taj sustav djeluje smetnjom.

Ovom metodom Hamiltonijanu sustava dodaje se ovisnost o parametru, te se
pomiče sporo na skali spektralnog procjepa. Promatraju se promjene lokalnih Ha-
miltonijana, HZ(s), od s = 0 do s = 1, ili od početnog stanja do punog djelovanja
perturbacije. Uz pretpostavku da za Hamiltonijan sustava vrijedi Hs =

∑
Z HZ(s),

tako da su lokalni Hamiltonijalni diferencijabilni u s, i da se spektralni procjep ne
zatvara (γ > 0), definira se generator kvazi-adijabatskog produljenja, Ds, kao u jed-
nadžbi (4.1), gdje je |ψ0(s)〉 osnovno stanje sustava. Definira se filtar-funkcija koja
ovisi o spektralnom procjepu, F (t) ∈ L1(R) [56,61], sa sljedećim svojstvima:

• neparna je, tako da je Ds antihermitska,

• njena Fourierova transformacija je F̄ (ω) = −1/ω za |ω| ≥ 1/2 (normirana vri-
jednost vezana uz spektralni procjep),
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• ima brži pad od bilo koje negativne potencije vremena za velike |t|.

Tada je generator definiran jednadžbom (4.2), a unitarni operator produljenja je
definiran izrazom ∂sUs = iDsUs, U0 = 1 i ima oblik kao u jednadžbi (4.3), gdje S ′

označava da se radi o eksponentu uredenom po putu (engl. path-ordered).
Tada za projektor P u sustavu vrijedi (4.4), a obučeni operatori (engl. dressed

operators) u sustavu definirani su kao u jednadžbi (4.5).
Takoder, generator Ds može se izraziti kao u jednadžbi (4.6), gdje je Ds(u; r) ge-

nerator nošen kuglom radijusa r, sa sredǐstem u u, koji ima eksponencijalni pad s
r [56]. Može se pokazati da Us zadovoljava Lieb-Robinsonove granice za subekspo-
nencijalni pad.

Ukratko, ako za sustav postoje dva Hamiltonijana u istoj topološkoj fazi, njihova
osnovna stanja se mogu pretvoriti jedno u drugo koristeći operator Us.

Lieb-Robinsonova granica [63] predstavlja teorijsku gornju granicu na brzinu
širenja informacije kroz kvantne vǐsečestične sustave. Ta granica koristi se za uvode-
nje geometrijskih granica utjecaja smetnje u sustavima i za opis svojstva lokalnosti, a
u ovom diplomskom radu predstavljena je modifikacija koja je korǐstena u Poglavlju
5, iz definicija u [23] i [67].

Za N -čestični sustav na rešetci Λ, uvodi se udaljenost na grafu izmedu dva skupa,
A i B, kao u jednadžbi (4.7), gdje je dist(i, j) udaljenost izmedu točaka i i j. Promjer
skupa A definiran je u jednadžbi (4.8). Hamiltonijan sustava se može zapisati kao u
jednadžbi (4.9), tako da iznos ‖HZ‖ ima brzi pad s diam(Z). Vrijedi sljedeći teorem.

Teorem 7.2. Neka za sve čestice na točkama i vrijedi:∑
X3i

‖HX‖|X| exp[µ diam(X)] ≤ s <∞, µ, s > 0. (7.7)

Neka su AX i BY operatori s podřskom na skupovima X i Y , a AX(t) neka je vremenska
evolucija operatora AX . Tada, ako je dist(X,Y) > 0,

‖[AX(t), BY ]‖ ≤ 2‖AX‖‖BY ‖
∑
i∈X

exp[−µ · dist(i, Y )]
[
e2s|t| − 1

]
≤ 2‖AX‖‖BY ‖|X| exp[−µ · dist(X, Y )]

[
e2s|t| − 1

]
. (7.8)

Intuitivnije, ovaj se teorem može izreći kao u jednadžbi (4.16), gdje je vLR Lieb-
Robinsonova brzina – konačna brzina širenja informacije kroz sustav, greške koja je
eksponencijalno mala u udaljenosti od originalnog skupa podrške operatora.

Razvoj vlastite energije (ili Kitaevljev razvoj vlastite energije) degeneracijska je
teorija perturbacije koja se može primijeniti na sustavima sa spektralnim procjepom
iznad prostora osnovnog stanja, a koristi se za ocjenu učinka specifične perturbacije
na sustav opisan stabilizacijskim kodom [68].
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Pri izvodu ove metode koristi se generalizacija Greenove funkcije – rezolventa
Hamiltonijana, kao u jednadžbi (4.17). Svojstvena energija sustava može se zapisati
kao u jednadžbi (4.23), gdje je P0 projektor na prostor osnovnog stanja sustava, V
perturbacija koja djeluje na sustav, a G′0(E) = ((E −H0)−1)

′ neperturbirana Gree-
nova funkcija za pobudeno stanje originalnog Hamiltonijana, H0, uz energiju sustava
zapisanu kao E.

Primjenom ove metode u sustavu na koji djeluje dovoljno lokalna perturbacija,
može se pokazati da originalno ponašanje sustava ostaje jednako, u smislu degenera-
cije prostora osnovnog stanja i postojanja spektralnog procjepa iznad istog, do reda
razvoja vlastite energije koji odgovara linearnoj veličini sustava. Vǐse detalja nalazi
se u [69] i [68].

7.5 Rezultati

U ovom potpoglavlju predstavljeni su rezultati analize granica utjecaja perturba-
cije u topološki uredenom sustavu s lokalnim rupama.

Kad se na topološki uredeni sustav opisan Hamiltonijanom H0 djeluje perturbaci-
jom sV , perturbirani Hamiltonijan dan jednadžbom (5.1), a utjecaj smetnje na logički
operator L nošen skupom A u torusnom kodu za ovaj sustav može se proučavati ko-
risteći kvazi-adijabatsko produljenje i Lieb-Robinsonove granice.

Logički operator razvijen kvazi-adijabatskim produljenjem zapisan je u jednadžbi
(5.2), gdje je Us operator evolucije, a AC \ R′ skup komplementaran skupu A, ali
bez trake debljine R s obje strane logičkog operatora, što je i prikazano na slici 5.1.
Korǐstenjem kvazi-adijabatskog produljenja dobiven je obučeni logički operator, Ls,
te je izveden izraz u jednadžbi (5.4), gdje je vLR Lieb-Robinsonova brzina, µ > 0, a
d(A,AC \R′) udaljenost je izmedu dva skupa.

Dakle, razlika izmedu ograničenog i neograničenog razvijenog logičkog operatora
opada eksponencijalno s R, što govori o lokalnosti utjecaja perturbacije u sustavu.

Jednostabilizatorski defekti tipa rupe u torusnom su kodu definirani kao nedo-
stajući stabilizacijski operatori – vizualni prikaz se nalazi na slici 5.2. Uklanjanje sta-
bilizacijskih operatora utječe na svojstva koda; broj logičkih qubita u sustavu može
se zapisati izrazom (5.6), gdje je n′p broj rupa na pločicama, a n′v broj rupa na vrho-
vima. Primjer logičkih operatora koji nastaju dodavanjem jednostabilizatorskih rupa
prikazan je na slici 5.3. Sličan oblik modifikacije torusnog koda površinski su ko-
dovi [10,49,71], kao što je prikazano na slici 5.4, a u njima postoje logički operatori
koji ovise o vrsti granica.

U Potpoglavlju 5.3 problemu postojanja jednostabilizatorskih rupa u torusnom
kodu pristupljeno je Kitaevljevim razvojem vlastite energije (slika 5.5), te su izve-
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dene veličine komutatora za logički operator torusnog koda i efektivni Hamiltoni-
jan u sustavu sa smetnjom (jednadžba (5.7)). Bitan rezultat iskazan je u jednadžbi
(5.24), gdje je LZ promatrani logički operator, H Hamiltonijan sustava sa smetnjom,
a R udaljenost izmedu rupa. Dakle, kodirana informacija nije eksponencijalno sta-
bilna u linearnoj veličini sustava, već tek u udaljenosti izmedu rupa. Medutim, ovom
problemu se može mnogo detaljnije pristupiti koristeći kvazi-adijabatsko produljenje
i Lieb-Robinsonove granice.

Koristeći lemu iz [56], koja uvodi relaciju kao u jednadžbi (5.25), gdje je Us

operator razvoja kvazi-adijabatskog produljenja, Us(A) isti operator ograničen na
skup A, a εs(R) parametar koji ima subeksponencijalni pad u debljini granice izmedu
skupova A i AC — ∂A(R) — kao u jednadžbi (5.26).

Sustav je podijeljen kao na slici 5.7, te je izvedena relacija koja govori o odnosu
presvučenog logičkog operatora u sustavu bez rupa, Ls, i obučenog logičkog opera-
tora u sustavu kao na slici 5.7, L′s, koja je prikazana u izrazu (5.37).

Dobiveni rezultat znači da je obučeni logički operator u sustavu bez rupa subek-
sponencijalno u R dobra aproksimacija presvučenog logičkog operatora u sustavu s
rupama.

7.6 Zaključak

U ovom diplomskom radu izvedene su i objašnjene granice za perturbativnu sta-
bilnost topološki uredenih sustava s lokalnim rupama. Ideja teorema o perturbativ-
noj stabilnosti degeneracije osnovnog stanja u topološki uredenom sustavu [20, 34]
proširena je izravnom analizom utjecaja perturbacije na torusni kod s lokalnim de-
fektima. Zaključuje se da, za dovoljno udaljene rupe, ova izjava vrijedi, što topološke
invarijante u sustavu ostavlja stabilnima, čuvajući kodiranu informaciju. Daljnja ana-
liza specifičnih postava koji su važni za procese u kvantnoj informaciji i kvantnom
računarstvu nužna je kako bi mogli biti donijeti zaključci o konkretnim problemima
koji se javljaju u topološkom kvantnom računarstvu otpornom na pogreške.

Takoder, prirodna proširenja dobivenih rezultata javljaju se kao analiza ponašanja
drugih stabilizacijskih kodova u sličnim postavima [10, 73–76], u svrhu provjere
medusobne konzistentnosti ovih modela. Važno je proučiti djelovanje perturbacije
na površinske kodove, za što bi se ovi rezultati mogli pokazati korisnima, a zani-
mljivo je i pitanje utjecaja perturbacije na površinske kodove s neuobičajenim rub-
nim uvjetima, kao i na kodove s većim rupama, te rupama s miješanim rubnim uvje-
tima [49, 72]. Poseban izazov javlja se u sustavima koji iskazuju kvazi-topološko
uredenje [77], zbog toga što se u njima ne može primijeniti kvazi-adijabatsko produ-
ljenje.
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U zaključku, ovaj diplomski rad predstavio je granice stabilnosti topološkog ure-
denja u torusnom kodu s lokalnim defektima tipa rupe, koristeći kvazi-adijabatsko
produljenje, Lieb-Robinsonove granice i Kitaevljev razvoj vlastite energije – u ovom
radu su te granice predstavljene i analizirane. Rezultati se slažu s prethodno doka-
zanim rezultatom za torusni kod bez defekata [20], te ga proširuju, uz indikaciju da
sustav koji je opisan torusnim kodom s lokalnim rupama ostaje stabilan pod slabim
lokalnim smetnjama, uz uvjet da je udaljenost izmedu rupa dovoljno velika.

7.7 Hrvatski nazivi slika i tablica

Popis slika

1.1 Prikaz pletenja anyona u dvodimenzionalnom x-y sustavu. Anyoni su
prikazani kao točke u dvodimenzionalnoj ravnini, a uspravna os je
vremenska os, t. Anyoni se pletu u prostor-vremenu tako da jedan
opkruži drugoga, što je prikazano strjelicama i plavim linijama. . . . . 3

2.1 Prikaz svojstvenih vrijednosti osnovnog stanja i prvog pobudenog sta-
nja Hamiltonijana H(g) = H0 + gH1, koji ovisi o bezdimenzijskoj kon-
stanti povezivanja g, i gdje H0 i H1 komutiraju i neovisni su o g. Slika
(a) prikazuje prijelaz u spektralnim razinama, a slika (b) prikazuje iz-
bjegnuti prijelaz. (Prikaz preuzet iz [32].) . . . . . . . . . . . . . . . . 8

2.2 Primjer čestica (prikazane kao točke) na sjecǐstima dvodimenzionalne
rešetke s linearnom dimenzijom L i periodičnim rubnim uvjetima, na
torusu. Zeleni kvadrat na uvećanom prikazu predstavlja primjer bloka
A linearne veličine 2, kao što je opisano u ulomku koji prethodi jed-
nadžbi (2.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Prikaz kvantnog sklopa. Pravokutnici predstavljaju unitarne operatore
na dijelovima konačne veličine l, a linije koje ih povezuju predstavljaju
njihovo množenje. Sjenčanje pojašnjava uzročnost u sustavu. . . . . . 12

3.1 Elementi torusnog koda; sastoji se od kvadratne rešetke s periodičnim
rubnim uvjetima. Pločica je obojana crveno, vrh je obojan plavo, a
jedan od rubova obojan je zeleno. . . . . . . . . . . . . . . . . . . . . . 22

3.2 Vizualni prikaz stabilizacijskih operatora A i B u torusnom kodu (vidi
jednadžbu (3.10)); σx i σz su Paulijevi operatori koji djeluju na stup-
njeve slobode spina ½, koji se nalaze na rubovima. Obojeni rubovi
označuju rubove koji pripadaju odgovarajućem stabilizatoru. . . . . . . 23

3.3 Prikaz logičkih operatora u torusnom kodu, na torusu. Pune crvene
linije predstavljaju rubove kojima pripadaju Paulijevi σz operatori koji
su dio Z logičkih operatora, a rubovi koje presjecaju isprekidane plave
linije predstavljaju one kojima pripadaju Paulijevi σx operatori koji su
dio X logičkih operatora (vidi jednadžbe (3.13)). . . . . . . . . . . . . 25
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3.4 Stvaranje i pomicanje anyona u torusnom kodu. . . . . . . . . . . . . . 26
3.4a Paulijev σx operator stvara pobudenja (prikazana zvijezdama)

na susjednim pločicama, a σz na susjednim vrhovima. . . . . . 26
3.4b Pobudenja se mogu pomicati od jedne pločice ili vrha do su-

sjednog elementa istog tipa pomoću odgovarajućeg Paulijevog
operatora. Prikazan je niz od tri σx operatora. . . . . . . . . . . 26

3.5 Spektralne vrpce Ik koje opisuju spektar Hamiltonijana sa smetnjom
H = H0 +V za tri različita vlastita stanja, u ovisnosti o veličini smetnje
J . Prikaz preuzet iz [20]. . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 Prikaz logičkog operatora L, gdje sjenčanje predstavlja područje dje-
lovanja operatora LC , koji je kvazi-adijabatska evolucija operatora L,
ograničena na područje debljine R s obje strane originalnog operatora
(vidi jednadžbu (5.2)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Prikaz jednostabilizatorskih rupa u torusnom kodu. Osjenčani kva-
drati predstavljaju rupe, dok plave točke označavaju postojanje stabili-
zacijskog operatora na vrhu, a crvene točke postojanje stabilizacijskog
operatora na pločici. Gornja rupa je rupa tipa pločice, gdje je uklonjen
odgovarajući stabilizator na pločici, a donja rupa je tipa vrha, gdje je
uklonjen stabilizator vrha. . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.3 Dva logička operatora koji mogu biti definirani u torusnom kodu koji
ima dvije rupe tipa pločice. Plava linija predstavlja niz Paulijevih σx

operatora koji tvore X logički operator, a crvena linija predstavlja niz
Paulijevih σz operatora koji tvore Z logički operator. . . . . . . . . . . 40

5.4 Primjer Bravyi-Kitaevljevog površinskog koda. Stabilizacijski opera-
tori vrhova su prikazani plavim točkama, a stabilizacijski operatori
pločica crvenim točkama. Granica sustava prikazana je zelenim ob-
rubom. Granice na gornjem i donjem dijelu slike su grube, a one na
lijevoj i desnoj strani su glatke. . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Prikaz Z logičkog operatora u torusnom kodu (podebljani niz rubova)
s jednostabilizatorskim rupama tipa pločice s obje strane (sivo sjenča-
nje). Na slici je prikazan logički operator tipa X koji nastaje kao po-
sljedica njihova postojanja u sustavu i koji ih povezuje. Rubovi na
koje djeluju Paulijevi operatori koji pripadaju tom logičkom operatoru
presječeni su isprekidanom plavom linijom. . . . . . . . . . . . . . . . 42

5.6 Prikaz četiri različita tipa nizova od dva Paulijeva σx operatora u toru-
snom kodu s jednostabilizatorskim rupama tipa pločica; sivo sjenčanje
predstavlja rupe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.7 Prikaz postava korǐstenog u Potpoglavlju 5.4. L je logički operator, a
kvadrati predstavljaju rupe koje su udaljene od logičkog operatora za
d. Logički operator djeluje na skupu A, rupe se nalaze u skupu AC , a
granični skup ∂A omata rupe i ne sadržava glavne skupove. . . . . . . 48
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