Title Eliptičke krivulje i kriptiranje
Author Zdravko Musulin
Mentor Zrinka Franušić (mentor)
Committee member Zrinka Franušić (predsjednik povjerenstva)
Committee member Dijana Ilišević (član povjerenstva)
Committee member Goran Igaly (član povjerenstva)
Committee member Franka Miriam Bruckler (član povjerenstva)
Granter University of Zagreb Faculty of Science (Department of Mathematics) Zagreb
Defense date and country 2016-07-08, Croatia
Scientific / art field, discipline and subdiscipline NATURAL SCIENCES Mathematics
Abstract Eliptičke krivulje već se dugi niz godina intenzivno proučavaju s teorijskog stajališta, u sklopu algebarske geometrije. Međutim, osobito su razvojem računala doživjele svoj procvat te danas zauzimaju posebno istaknuto mjesto u teoriji brojeva i srodnom području, kriptografiji. Naime, tada su se razvile tehnike koje koriste eliptičke krivulje u faktorizaciji i dokazivanju prostosti, a uočila se i težina problema diskretnog logaritma u grupi točaka eliptičkih krivulja, pa su pronašle svoju primjenu u kriptosustavima zasnovanima na tom problemu. Kriptografija fascinira zbog bliskih veza koje stvara između teorije i praksa. Zbog toga su današnje praktične primjene kriptografije sveprisutne i krucijalne komponente društva usmjerenog informacijama. Teorijski rad oplemenjuje i poboljšava praksu, a praktični izazovi inspiriraju studiju teorije. Kada se neki sustav „razbije", naše znanje o njemu se proširuje, pa sljedeći, unaprijeđeni sustav, popravlja prethodne pogreške. O važnosti eliptičkih krivulja govori i činjenica da ih je A. Wiles 1995. godine koristio u dokazu legendarnog Velikog Fermatovog teorema. U radu je dan općeniti pregled eliptičkih krivulje te njihova svojstva nad poljem racionalnih brojeva, a zatim i nad konačnim poljima. Također je opisana kriptografija javnog ključa, s naglaskom na problem diskretnog logaritma, običnog i onog za eliptičke krivulje. Ono što kriptosustave eliptičkih krivulja čini zanimljivima je to, da se danas, problem diskretnog logaritma za eliptičke krivulje čini „težim" u usporedbi s drugim sličnim problemima koji se koriste u kriptografiji. To znači da trebamo ključeve s manje bitova kako bi se postigla ista razinu sigurnosti kao kod drugih kriptosustava. Objašnjen je i Diffie-Hellmanov protokol za razmjenu ključeva te precizno opisani neki kriptosustavi javnog ključa, osobito oni koji koriste eliptičke krivulje.
Abstract (english) Elliptic curves have been intensively studied in theory of algebraic geometry for many years. However, by development of computers they had a big breakthrough and have been playing an increasingly important role both in number theory and in related fields such as cryptography. At that time, elliptic curve techniques for factorization and primality testing were developed and also hardness of the elliptic curve discrete logarithm problem was discovered, which led to its application in algorithms based on that problem. Cryptography is fascinating because of the close ties it forges between theory and practice. Because of that, today's practical applications of cryptography are pervasive and crucial components of our information-based society. The theoretical work refines and improves the practice, while the practice challenges and inspires the theoretical study. When some system is “broken", our knowledge expands and next, upgraded system repairs the previous defect. The importance of elliptic curves is best shown in 1995, when they figured prominently in the proof of Fermat's Last Theorem by A. Wiles. This thesis provides a general overview of elliptic curves and their properties over the field of rational numbers and also over finite fields. Public key cryptography is also described, focusing on both the discrete logarithm problem and the elliptic curve discrete logarithm problem. What makes ECC interesting is that, as of today, the discrete logarithm problem for elliptic curves seems to be “harder" if compared to other similar problems used in cryptography. This implies that we need keys with fewer bits in order to achieve the same level of security as with other cryptosystems. Furthermore, we explain Diffie-Hellman key exchange protocol and finally study some public key cryptosystems, especially ones using elliptic curves.
Keywords
eliptičke krivulje
faktorizacija
dokazivanje prostosti
kriptosustav eliptičkih krivulja
kriptografija javnog ključa
Diffie-Hellmanov protokol za razmjenu ključeva
Keywords (english)
elliptic curves
factorization
primality testing
elliptic curve cryptosystem
public key cryptography
Diffie-Hellman key exchange protocol
Language croatian
URN:NBN urn:nbn:hr:217:491790
Study programme Title: Mathematics Education; specializations in: Mathematics Education Course: Mathematics Education Study programme type: university Study level: graduate Academic / professional title: magistar/magistra edukacije matematike (magistar/magistra edukacije matematike)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2019-01-28 09:17:28