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1. INTRODUCTION 

Although it is one the most common chronic conditions globally and the most common 

chronic disease in the pediatric population (up to 30% of children in the UK), the causes and 

pathophysiologic mecahnisms in asthma still remain poorly understood. Asthma is a major 

burden on healthcare systems worldwide and society in general, with significant financial 

costs both in terms of direct medical costs (such as those of medication, diagnostics and 

hospital admissions), as well as indirect costs (such as time lost from work or school and 

premature mortality). These costs are even more significant when accounted for under- or 

over- diagnosing and under- or over- medication of the disease in a large number of patients, 

with this effect being most prominent in people with uncontrolled or (more) severe asthma 

(GINA 2018, WHO, Masoli et al. 2004). 

Asthma is a syndrome of very complex and largely unknown etiology characterized by 

reversible airway obstruction, airway hyperresponsiveness to specific and non-specific 

stimuli, and a chronic inflammatory process of the airways in which mast cells, eosinophils, 

T lymphocytes, epithelial cells, and airway smooth muscle cells play a prominent role (Elias 

et al. 2003). 

Although asthma cannot be cured, with appropriate management adequate control and good 

quality of life can be achieved (GINA 2018, WHO 2013). Earlier common asthma 

classification by symptoms and lung function  measurements enables only treatment options 

and selection at the initial disease presentation, but not adequate disease control monitoring. 

Even the latest GINA guidelines and recommendations, involving symptom control (daily 

and nocturnal symptoms, rescue treatment requirements, especially need for 

bronchodilatators, effect on daily activity, mainly on physical activity) do not offer insight 

into disease aetiology and true level of asthma control. Also, there are no recommendations 

as to treatment failure identification and changes recommended towards the treatment of 

choice (different drug classes or their combinations) or only general choice recommendations 

are made (the physician can choose between several treatment options with the generally 

preferred option recommended).  

The lack of benefit to patients from this inadequate and ultimately arbitrary treatment 

selection process is probably due to the overgeneralized approach to asthma as a disease, 

disregarding very specific (individual) disease forms. Hence, in order to optimize medication 
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selection and maximize treatment response, further classification and characterization of 

specific asthma subtypes (phenotypes and endotypes) is more than necessary. Currently, a 

series of asthma subtypes have been reported and described, based on inflammation level and 

type (specific biomarkers), clinical features and natural course of disease, reversibility of 

airway obstruction, disease severity, response to treatment (resistance to inhaled 

corticosteroids, sensitivity to leukotriene receptor antagonists etc.), level of tissue remodeling 

and allergic sensitization (Bush and Menzies-Gow 2009).  

There is mounting evidence that despite the availability of several classes of asthma 

medications and their overall satisfactory effectiveness, a significant portion of patients fail to 

respond adequately to these therapeutic agents. Available data, according to numerous 

pharmacogenetic studies, suggest that genetics may contribute for as much as 60-80% to the 

interindividual variability in treatment response for all asthma medications (Duong-Thi-Ly et 

al. 2017). Although many studies are limited by small sample sizes and replication of the 

findings is needed, several candidate genes have consitently been identified. These include 

polymorphisms in the GLCCI1, CRHR1, TBX21 and FCER2 genes associated with the 

response to treatment with inhaled corticosteroids; polymorphisms in the ADRB2 gene 

associated with the response to treatment with-agonists and polymorphisms in the  ALOX5 

and MRP1 genes associated with the response to treatment with leukotriene modifiers 

(Vijverberg et al. 2018). Pharmacogenetic research, such as that presented in this doctoral 

thesis, is a step towards more personalized treatment of asthma, which will improve 

therapeutic outcomes, minimize side effects and lead to a more cost-effective care. 

The purpose of this translational research approach is to ultimately improve the health and 

wellbeing of asthmatic children. Today, asthma is diagnosed only after clinical symptoms 

arise, primarily because current technologies and guidelines do not enable earlier detection. 

Preventive measures and treatments are designed in a “one size fits all” approach, frequently 

leading to over- or under-medication and undesirable or possibly dangerous side effects. 

Gaining better insight into asthma pathophysiology and factors predisponing for asthma is 

important and in recent years advances in the pharmacogenetics of asthma have indicated that 

a number of genes associated with susceptibility to asthma or its intermediate phenotypes and 

disease characterization are also involved in an altered treatment response. The main focus of 

this doctoral research is to identify major factors underlying the huge interindividual 

variability in the response to common asthma medications, as well as genetic variants 

predisponing for the level of treatment success in children with asthma and specific disease 
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phenotypes. This might ensure more precise, individually tailored and personalized treatment 

options in this common chronic condition in the pediatric population, enabling them to be 

more effective, cause fewer side effects and be more cost-effective due to stratification of 

specific patient risk and even prediction of response to treatment. 

The main objectives in this doctoral thesis are: 

 To determine the differences in clinical presentation, genetic predisposition and 

response to treatment in children with asthma and specific disease subtypes 

(phenotypes); 

 More specifically, to determine the differences in response to treatment with common 

medication classes (inhaled corticosteroids, leukotriene receptor antagonists and -

agonists) in children with asthma (and certain disease phenotpyes) in regard with 

specific genetic polymorphisms in the GLCCI, TBX21, CRHR1, ADRB2 and MMP9 

genes. 

The main hypothesis is that there is marked variability in clinical parameters, the level of 

response to treatment and genetic predisposition in children with specific asthma phenotypes 

and that this variability is associated with certain genetic variants in the GLCCI, TBX21, 

CRHR1, ADRB2 and MMP9 genes. 

In order to address the issues in treatment success/failure in children with asthma, 365 

patients (aged 2-22 years) with physician diagnosed asthma of the outpatient clinic at 

Srebrnjak Children`s Hospital in Zagreb, Croatia were recruited to the study. At their first 

visit patients underwent physical examination, skin prick tests and other allergy assays, lung 

function tests and blood sampling for routine laboratory diagnostics and subsequent genetic 

analysis. After they were diagnosed with asthma, patients started treatment with inhaled 

corticosteroids (alone or in combination with -agonists) and/or leukotriene receptor 

antagonists, according to disease severity and previously assessed disease control (according 

to GINA guidelines, GINA 2018). Follow-up visits with lung function and other testing, 

physical examination as well as clinical assessment of treatment outcomes were made on 

average every 6 months over the period of 2.5 years. Patients were genotyped for the 

following genetic polymorphisms: rs37973 (GLCCI1), rs9910408 (TBX21), rs242941 and 

rs1876828 (CRHR1), rs1042713 (ADRB2) and rs17576 (MMP9). The level of response to 

treatment ("good", "moderate" and "bad") was analyzed in association with certain clinical 
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parameters and specific genotypes, and additionally, patients were stratified by cluster 

analysis (using the hierarchical clustering and Ward`s method)  into several subgroups based 

on specific biomarkers, clinical features, plausible pathophysiological mechanisms, response 

to treatment and genetic predisponing factors (analyzed genetic polymorphisms). 
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2. A LITERATURE OVERVIEW IN ASTHMA AND 

PHARMACOGENETICS 

Asthma is a heterogeneous disorder characterized by chronic airway inflammation. It is also 

associated with airway hyperresponsiveness and airway remodeling (to a more or less extent), 

and is classically considered to be a reversible airways disorder. Common symptoms of 

asthma include wheeze, shortness of  breath, chest tightness and/or cough, particularly at 

night or early in the morning. Patients with asthma can also experience exacerbations 

(commonly known as asthma attacks or flare-ups), which are triggered by a number of 

endgenous and exogenous factors such as exercise, exposure to allergens or irritants (eg. air 

pollutants), changes in weather (particularly cold weather) or viral respiratory infections 

(GINA 2018). 

Asthma is one of the most common chronic diseases in general, with up to 300 million people 

currently suffering from the disorder and up to 250 000 people estimated to now be dying 

from asthma annually. It is also the most common chronic disease in children (WHO 2013). 

Today, one child in three has some form of an allergic disorder (including asthma), and it is 

estimated that in 2015 half of the European population may have been suffering from one or 

more allergic disorders. One in four Europeans has some form of respiratory allergy and 

experts estimate that one in five infants develop asthma during childhood or later in life. 

Asthma symptoms vary from mild to life threatening and can have a devastating impact on 

patients` day to day life, their families and children’s school activity. According to the World 

Health Organization, asthma kills one person in Europe each hour.  

 

2.1. Global burden of asthma 

Asthma typically begins much earlier in life than other chronic disorders, and consequently 

imposes a significant lifetime burden on individuals, their caregivers and society in general. 

The financial costs of asthma in Europe are estimated to be up to 18 billion € per year. These 

only include direct costs of asthma management (diagnostics, medication, management of 

exacerbations) and, along with other indirect costs, including diminished quality of life and 

social impact (eg. reduced professional capacity), the total costs of asthma management range 

from €55 - €151 billion per annum (Zuberbier et al. 2014, ERS 2003), and can be avoided to 

a large extent. The WHO has estimated that 15 million disability-adjusted life years (DALYs) 
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are lost annually due to asthma, representing 1% of the total global disease burden (WHO). In 

the case of childhood asthma, the repercussions of the disease affect not only the asthmatic 

child, but also the parents and other members of the family. Parental fears of a serious attack 

create anxiety, and even with mild forms of the disease, family activities may be limited. 

Children miss days at school and abstain from sports and other recreational activities. 

Breathing problems and other accompanying conditions can also harm the self-image of 

young children, adults and especially teenagers. 

The European Commission (EC) is recognizing the growing health issue of asthma, 

particularly in children and is developing strategies to adequately address it. There is a strong 

link between poor health and environmental problems. A recent report from the European 

Environmental Agency (EEA) shows that as many as 60 000 deaths per year in large 

European cities are caused by long-term exposure to air pollution, including those caused by 

asthma (EEA 2009). Children are more sensitive to environmental risks than adults. In order 

to reverse this alarming trend the European Commission has launched a European 

Environment and Health Strategy. With this new strategy the Commission expects to achieve 

a better understanding of the complex relationship between environment and health and to 

identify and reduce diseases caused by environmental factors, including asthma. Also, this 

issue is of great importance for the Croatian Ministry of Health, as they included asthma as 

an important focus in the National Health Strategy (Croatian National Health Strategy 2012-

2020). 

 

2.2.   The prevalence of asthma 

Based on numerous epidemiological evidences it appears that there are marked variations in 

the prevalence of asthma in different countries. The prevalence, causes and clinical 

presentation of asthma all vary significantly with age. Many children first develop symptoms 

during infancy, but many cease wheezing in early childhood. Asthma can appear de novo 

throughout life, but it most commonly starts in early childhood.  

Like in other western (developed) countries of the world, there has been a three- to four-fold 

increase in the prevalence of childhood asthma in Europe in the last three to four decades. 

According to the ISAAC Phase I study, the highest prevalence of childhood asthma in Europe 

was found in the British Isles, with lifetime prevalence rates of asthma ranging from 1.6% in 
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Albania to 20.7% in the UK for 13-14-year-old children, and from 1.4% in Estonia to 22.9% 

in the UK among 6-7-year-olds, with markedly increasing rates across Europe from East to 

West (Figure 1). This East-to-West difference has changed over recent years with a relative 

increase in lifetime prevalence rates in eastern Europe compared with the western countries. 

This may be related to simultaneous changes in lifestyle in eastern Europe- a shift from 

traditional lifestyle to „westernized“ habits (sedentary lifestyle, changes in diet etc.). 

Currently, Croatia belongs to the countries with moderate prevalence of asthma in children 

with up to 10% of the paediatric population suffering from this (Figure 1), but further 

increase can be expected (GINA 2018). 

 

Figure 1. Lifetime asthma prevalence rates in European school children. a) Asthma prevalence rates in European 

countries in younger children (aged 6-7 years), b) asthma prevalence rates in European countries in older 

children (aged 13-14 years). Prevalence rates in Croatia (HR) range from 5 to 8 % (higher in older children). 

Source: ISAAC 1998 and Lai et al. 2009. 

 

2.3.   Pathophysiology of asthma 

Asthma is characterized by reversible airway obstruction, bronchial hyper-responsiveness to 

specific and non-specific stimuli (such as allergens, exercise or cold air), persistent 
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inflammation, mucus hyper-production, airway tissue remodeling (primarily airway 

narrowing), sub-epithelial fibrosis, smooth muscle tissue hypertrophy and hyperplasia, 

epithelial cell metaplasia, vasodilatation, angiogenesis and increased vascular permeability 

which lead to oedema and changes in the extracellular matrix, due to protein leakage to the 

extracellular space. The level of these structural changes correlates with disease severity and 

progressive lung function deterioration (Ribatti et al. 2009, Towns and van Asperen 2009, 

Lemanske and Busse 2010, Harkness et al. 2014). 

Characteristic pathophysiologic features of asthma are shown in Figure 2. Genetics, in 

combination with early life events as well as the environment, modulate the development of 

CD4+ (cluster of differentiation 4 or T) lymphocytes towards a type 2 helper (Th2) 

immunophenotype. These cells then produce cytokines, such as interleukin 3 (IL-3), 

interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 13 (IL-13), and granulocyte–

macrophage colony-stimulating factor (GM-CSF) and thereby promote the synthesis of 

immunoglobulin E (IgE), an important allergic effector molecule, creating an inflammatory 

airway milieu. Chemokines, such as eotaxin, Regulated on Activation, Normal T Cell 

Expressed and Secreted (RANTES)/Chemokine (C-C motif) ligand 5 (CCL5) and interleukin 

8 (IL-8) produced by epithelial and inflammatory cells, serve to amplify and perpetuate the 

inflammatory events. Several bronchoactive mediators, such as histamine, leukotrienes, and 

neuropeptides are released into the airways and precipitate an asthma attack by causing 

airway smooth muscle constriction, mucus secretion and oedema. In time, smooth muscle 

tissue proliferates and the deposition of subepithelial connective tissue occurs- a process that 

is commonly referred to as airway remodeling. As a result, patients with asthma have 

difficulty exhaling air because of an increase in airway resistance that is a consequence of 

smooth muscle contraction, inflammation and remodeling (Barnes 1996, Weiss et al. 2006). 
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Figure 2. A schematic representation of major contributors to asthma pathophysiology. Asthma is an 

inflammatory disorder of the airways induced by various environmental and endogeneous factors, including 

genetic predisposition. Chronic inflammation leads to a number of structural and functional changes in the 

airways which in turn lead to airway narrowing and the rise of characteristic asthma symptoms. TH17- type 17 T 

helper cells, TH0- naive T cells, TH1- type 1 T helper cells, TReg- regulatory T cells, IL-10- interleukin 10, IL-9- 

interleukin 9, IL-17- interleukin 17, IL-22- interleukin 22, TGF-- transforming growth factor beta, TNF- tumor 

necrosis factor, IFN- interferron gamma, FcR- FC fragment of IgE receptor. Modified from (Source): Holgate 

and Polosa (2008). 

2.3.1. Airway inflammation in asthma 

Chronic airway inflammation is a fundamental feature in asthma which involves different cell 

types: inflammatory cells such as mast cells, eosinophils and T lymphocytes, structural cells 

such as epithelial cells and numerous infammatory mediators (Holgate 2008, Olin and 

Wechsler 2014).  

Since allergic asthma is the most common asthma type in children, the inflammation is 

initiated by infiltration of allergens into the lower airway, which are taken up by dendritic 

cells (DCs). DCs process allergens to peptides and present the peptides to naive T (Th0) cells, 

and in a suitable environment the naive T cells develop into type 2 helper T (Th2) cells 

(Vijverberg et al. 2013, Brugha et al. 2015). Th2 cells produce cytokines such as IL-4 and IL-

13 which stimulates B lymphocytes to produce IgE as well as IL-3 and IL-5 which attracts 

eosinophils to the lungs; and IL-4 and interleukin 9I (IL-9), which stimulate mast cell 

hyperplasia. With repeated exposure to allergens that an individual is sensitized to, mast cells, 
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secondary to binding of allergens to IgE, release histamine and start to produce prostaglandin 

D2 (PGD2) and cysteinylleukotrienes (leukotriene C4- LTC4, leukotriene D4- LTD4, and 

leukotriene E4- LTE4), which attract inflammatory cells to the lungs. The early phase of 

asthma is a consequence of the effects of histamine and other mediators released from mast 

cells, while the delayed effect is a consequence of other inflammatory cells and the release of 

inflammatory mediators. The molecular mechanism of inflammation in asthma is 

characterized by increasing various inflammatory genes controlled by proinflammatory 

transcription factors, such as nuclear factor kappa beta (NF-kB) and activator protein-1 

(AP1). Both NF-kB and AP1 are activated by mediators, including cytokines, tumour 

necrosis factor alpha (TNF), IL-1 and other factors. A number of coactivators also 

participate in the activation and repression of inflammatory genes through acetylating core 

histones by recruiting histone acetyltransferases (HATs). As a result, inflammatory proteins 

or enzymes and other proteins are synthesized and their production perpetuates airway 

inflammation (Duong-Thi-Ly et al. 2017). Characteristic inflamamtory and molecular 

mechanisms involved in allergic asthma are shown in Figure 3. 

 

Figure 3. A schematic representation of mechanisms of airway inflammation in allergic asthma. GATA-3- 

GATA binding protein 3, CD154- cluster of differentiation 154; TBX21/Tbet- T-box 21, FcR1- Fc fragment of 

IgE receptor I, FcR2- Fc fragment of IgE receptor II. Source: Duong-Thi-Ly et al. 2017. 

An overview of the roles of inflammatory cells and molecules involved in asthma 

pathophysiology is presented in Tables 1 and 2. 
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Table 1. Different cell types (inflammatory and structural) involved in asthma pathogenesis (Barnes 2016, 

Cosmi et al. 2011, McDougall and Helms 2006, Peters-Golden 2004, Ngoc et al. 2005, Loxham et al. 2014). 

Cell type Role in the pathogenesis of asthma 

Mast cells Activated by various triggers (allergens, exercise, hyperventilation etc.) 

Involved in releasing pro-inflammatory mediators such as histamine, cytokines and 

chemokines, which leads to bronchoconstriction 

Involved in promoting chronic inflammatory responses 

Eosinophils Most prominent cell type involved in allergic inflammation in asthma 

Secrete cytokines and chemokines that promote inflammation via the Th2 cell-

mediated pathway 

Secrete lipid mediators (such as cysteinyl-leukotrienes) that cause airway epithelial  

damage and obstruct the airflow 

Associated with clinical responsiveness to glucocorticosteroids 

Neutrophils Predominatly found in the airways of patients with severe persistent disease, those 

with poor response to treatment with corticosteroids, smokers (with asthma) and 

during disease exacerbations 

Recruited by Th17 cell-mediated pathways and mediated by interleukin 8 (IL8) 

Exact mechanisms and roles in asthma not fully understood- corticosteroid 

medication supresses eosinophilia, which then in some patients results in 

neutrophilia 

Macrophages One of the most prominent and abundant immune cells in asthma pathophysiology 

Derived from monocytes 

Release inflammatory mediators and cytokines thet serve to amplify the 

inflammatory reponse in asthma 

Dendritic cells One of the major antigen-presenting cells (APC) in the airways 

Induce T-cell mediated immune responses 

Promote Th2 cell differentiation 

Lymphocytes B lymphocytes involved in the production of the major effector molecule- 

immunoglobulin E (IgE) 

T lymphocytes: role in coordinating the inflammatory response in asthma 

             Release specific cytokines (Th2 subpopulation) that                                 

             drive the inflammation 

                           Th1 cytokines also play a role in asthma inflammation (eg.   

                           IFNTNF) 

Structural cells 

(epithelial cells, 

fibroblasts, airway 

smooth muscle cells) 

Important sources of inflammatory mediators 

Epithelial cells are central to hostt tissue response to environmental factors 

Epithelial signaling is crucial for the recruitment and localisation of inflammatory 

cells and for informing APCs about the local environment 
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Table 2. Inflammatory mediators involved in asthma pathogenesis (Barnes 2016, Chung and Barnes 1999, 

Bisset and Schmid-Grendelmeier 2005, Prado et al. 2011). 

Inflammatory mediator Role in the pathogenesis of asthma 

Cytokines Orchestrate and perpetuate the chronic inflammatory response in asthma 

Th2 cytokines mediate allergic inflammation (interleukines IL4, IL5, IL9, IL13 

etc.) 

Pro-inflammatory cytokines (eg. IL-1 and TNF-) serve to amplify the 

inlammatory response 

GM-CSF prolongs eosinophil survival in asthmatic airways 

Chemokines Essential in directing the migration of various inflammatory cells into the 

affected (asthmatic) airways 

Contribute to allergic inflammatory response 

Interact with eosinophils and mast cells to maintain local balance in favour of 

Th2 cells 

Cysteinyl leukotrienes Potent bronchoconstrictors 

Successfully targeted by treatment with leukotriene receptor antagonists (LTRA) 

Markers of oxidative stress Activated inflammatory cells (eg. eosinophils) produce reactive oxygen species 

(ROS) 

Levels of oxidative stress correlate with disease severity 

Amplify the inflammatory response 

May contribute to reduced responsiveness to corticosteroid treatment 

Nitric oxide (NO) Produced mainly by inflammatory and epithelial cells 

Potent vasodilatator with a range of effects (neurotransmission, vascular and 

non-vascular smooth muscle relaxation) 

Levels of exhaled nitric oxide (eNO) are increased in asthma- concentrations of 

NO in exhaled breath (fractional nitric oxide, FENO) is a useful biomarker of 

airway inflammation (predominantly of eosinophilia) 

 

Inflammatory cells direct a complex network of mediators in the affected airways which 

results in a general inflammatory environment- the major contributor to the pathophysiology 

of asthma. Chronic inflammation then leads to other characteristic features of the disease: 

bronchoconstriction, mucus hypersecretion and other structural changes, including airway 

remodeling.  

2.3.2. Effects of airway inflammation in asthma 

Airway remodeling is defined as an increased thickness of the airway wall and increased 

airway narrowing, characterized by strucural changes such as subepithelial fibrosis, increased 
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smooth muscle mass, mucus gland and goblet cell hyperplasia, decreased cartilage integrity, 

angiogenesis, vascular proliferation and epithelial alterations- eg. subepithelial layer 

thickening and loss of epithelial integrity (Bergeron et al. 2009). The level of airway 

remodeling results from various factors, including genetic influences, early life exposure 

events, duration of the disease and long-term uncontrolled inflammation. These structural 

changes arise as a response to, for example, environmental exposure- to inhaled allergens, 

viral infections or air pollution, which can work synergistically to enhance them (eg. 

infections may exaggerate these changes in allergen-sensitized individuals). In most patients 

with asthma, airway obstruction and and remodeling (to a certain degree) is reversible and 

complete reversibility of long-standing impaired lung function parametres (such as forced 

expiratory volume in 1 second- FEV1) may be achieved with adequate treatment. However, in 

some patients these changes are more permanent and airway obstruction is not fully 

reversible leading to a progressive loss of lung function, despite substantial anti-inflammtory 

medication use (including inhaled and systemic corticosteroids and other). 

Airway epithelium can be damaged in asthma as a result of proteases released fro 

inflammatory cells and by inflammatory mediators. This contributes to airway 

hyperresponsiveness (another major feaure of asthma, AHR), defined as increased 

bronchoconstrictive reponse to various both specific (eg. allergens) and non-specific (cold 

air) stimuli. Several mechanisms can lead to AHR, such as loss of (epithelial) barrier function 

which enables the penetration of allergens, loss of enzymes that degrade inflammatory 

mediators and exposure of sensory nerves in the airway (Barnes 2016). The relationship 

between AHR and chronic inflammation remains unclear, but there is evidence that that anti-

inflammatory treatment is usually effective at reducing AHR and improving asthma control 

(Busse 2010, Janssen-Heininger et al. 2012).  

Subepithelial fibrosis in asthma leads to the thicknening of the basement membrane 

(Brewster et al. 1990). This is associated with eosinophil infiltration and presumably by the 

release of numerous cytokines, such as transforming growth factor beta (TGF-), platelet 

derived growth factor (PDGF) and certain Th2 cytokines (Bhakta and Woodruff 2011). This 

can lead to irreversible airway narrowing, especially in more severe asthma subtypes. 

Airway smooth muscle tissue plays a key role in asthma by releasing several cytokines, 

chemokines and lipid mediators that contribute to bronchoconstriction. The thickness of the 

airway smooth muscle layer (consisting of smooth muscle tissue, matrix, inflammatory cells, 



17 
 

mast cells and blood vessels) increases in asthma due to hypertrophy and hyperplasia. This is 

caused by the stimulation of airway smooth muscle cells by factors such as PDGF and 

endothelin-1 and is also associated with an increase in extracellular matrix. Smooth muscle 

hypertrophy occurs in the large airways in both non-fatal and fatal types of asthma, but 

hyperplasia is usually present in fatal (more severe) asthma only, and affects both the large 

and small airways (James et al. 2012, Berair et al. 2013). 

Inflammation in asthma also causes changes to blood vessels: vasodilatation, angiogenesis, 

vascular permeability etc. Vasodilatation leads to increased airway mucosal blood flow which 

then contributes to airway narrowing as well, but at the same time it also may be important 

for removing inflammatory mediators from the airways. Angiogenesis occurs in response to 

factors such as vascular endothelial growth factor (VEGF) as well as inflammatory mediators 

(IL-4, IL-5, IL-13 etc.) and is one of the key features of airway remodeling in asthma. 

Moreover, airway oedema is present in the airway mucosa of patients with asthma, resulting 

from increased microvascular permeability during the inflammatory process, which may then 

further increase airway wall thickening and lead to more severe airway obstruction (Zanini et 

al. 2010). Although oedema is a common asthma feature, it is very difficult to directly 

evaluate and quantify oedema in the airways of asthmatic patients. 

Chronic inflammation in asthma also leads to increased mucus secretion. This then 

contributes to the formation of viscid mucus plugs that obstruct or even plug the airways, 

especially in fatal asthma. Also, in asthma hyperplasia of submucosal glands in the large 

airways occurs and the number of epithelial goblet cells (that secrete gel-forming mucins, the 

major component of mucus) increases. Airway mucus hypersecretion may be indicative of 

poor disease control and it certainly contributes to the morbidity (and mortality) in asthma 

(Rogers 2004, Shale and Ionescu 2004, Evans et al. 2009). 

Remodeling in allergic diseases (including asthma) is not restricted solely to the airways, but 

it also affects the upper and lower airways and the skin. Moreover, the same profile of 

inflammation, mediators and adhesion molecules (eosinophil, mast cell and CD4+ T cell 

influx; histamine, cysteinyl-leukotrienes, cytokines etc.) is common for all allergic diseases, 

although long-term structural changes differ. As remodeling is observed in all atopic 

(allergic) diseases, this reinforces the hypothesis that it is a mainly inflammation- driven 

process (Bergeron et al. 2009). 
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2.4.   Diagnosis and assessment of asthma 

Establising and confirming a diagnosis of asthma can be difficult and challenging, as there is 

an absence of a gold standard for defining it (or diagnosing) and it is commonly defined 

simply as reversible airway obstruction. The initial diagnosis of asthma is often based on 

identifying the presence of symptoms such as (recurrent) wheezing, cough, shortness of 

breath (dyspnea), chest tightness and variable expiratory airflow limitation (Figure 4). 

However, these symptoms are not specific to asthma only (similar ones are characteristic to 

bronchitis, especially chronic bronchitis, pneumonia and a number of other respiratory 

diseases) and establishing a diagnosis requires rather extensive clinical experience and 

judgement. Moreover, signs and symptoms of asthma vary significantly between patients and 

may even fluctuate in the same patient at different times and under different circumstances 

(depending on, for example, exposure to allergens). Therefore, it is important to establish 

whether the symptoms are recurrent (and how often they occur) as well as to identify if the 

symptoms are provoked by specific triggers, such as exposure to allergens or exercise. 

Additionally, a detailed personal and family medical history, such as commencement and 

existence of respiratory symptomy in childhood and details on atopy (allergy) as well as any 

other clinically relevant data should be recorded- this significantly increases the certainty in 

diagnosis of asthma (GINA 2018). 

 

Figure 4. Diagnostic flow-chart for asthma in clinical practice. The diagnosis of asthma should be confirmed 

and evidence documented in the patient`s medical notes. Depending on clinical urgency and access to resources, 
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this should preferably be done before initiating controller treatment, as confirming a diagnosis of asthma is more 

difficult after treatment was started. * In case of clinical urgency (eg. current asthma attack), empiric treatment 

(eg. inhaled corticosteroids and bronchodilatator) should be administered and response to treatment assessed. 

Diagnostic tests should be performed again within 1 to 3 months after the event. Modified from (source): GINA 

2018. 

2.4.1. Objective measurements and tests for diagnosing and monitoring asthma 

Of course, besides obtaining the clinical history, objective measurements are required in 

order to make a confident diagnosis of asthma. This is done by measuring lung function 

parametres by spirometry or peak expiratory flow measurement. Spirometry measures airflow 

obstruction, which is usually defined as a ratio of forced expiratory volume in 1 s (the volume 

of air exhaled in the first second of a forced exhalation from a position of maximum 

inhalation, FEV1) to forced vital capacity (the total volume of air exhaled forcibly from 

maximum inhalation to maximum exhalation, FVC). Volumes (%) of FEV1 and FVC below 

80% of the predicted value for age, sex, height and ethnicity and FEV1/FVC ratios below 0.7 

(or 0.75) in adults and below 0.9 in children suggest airway obstruction. The lower the 

FEV1/FVC ratio is, the more severe the obstruction. Peak expiratory flow (PEF) measures the 

maximum flow of air achievable from forced expiration, starting from maximum lung 

inflation. To establish a diagnosis of asthma, average daily diurnal PEF variability (calculated 

from 2 or 3 daily measurements as: PEFmax minus PEFmin for that day, divided by the mean of 

PEFmax and PEFmin, averaged during 1-2 weeks) should be greater than 10% (in children 

greater than 13%), or diurnal variability should be greater that 20% for at least 3 days in a 

week for a period of two weeks. Measures of gas trapping (residual volume- RV and the ratio 

of residual volume to total lung capacity- RV/TLC) as well as specific airway resistance 

(Raw), the so-called body plethysmography, may be superior to measurements of expiratory 

flow in detecting airway obstruction, especially in asymptomatic individuals and children 

(GINA 2018, BTS 2014, Criee et al. 2011). 

When spirometry or PEF exhibit an obstructive pattern, in order to properly diagnose asthma, 

it is important to establish whether this obstruction is reversible. This is usually achieved by 

testing lung function with short-acting bronchodilatators and, when FEV1 is less than 60% of 

the predicted value (for age, sex, ethnicity etc.), also with corticosteroids (oral or inhaled). A 

significant increase in FEV1 (more than 12% from baseline value or more than 200 ml, in 

children more than 12% of the predicted value) after bronchodilatator indicates reversible 

airflow obstruction and supports the diagnosis of asthma. Increases in FEV1 by more than 
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12% and 200 ml from baseline value (in children, by more than 12% of predicted value) after 

(at  least) 4 weeks of anti-inflammatory treatment also strongly suggests a diagnosis of 

asthma. However, an absent response to bronchodilatators or corticosteroids does not exclude 

asthma. It is also worthy to note that response to bronchodilatators and corticosteroids is 

altered during and immediately after an exacerbation of the disease or viral infections, which 

is why it is recommended to perform diagnostic reversibility tests when the patient is 

clinically stable (BTS 2014). 

2.4.2. Peripheral airways in asthma and methods of assessing peripheral airway 

dysfunction 

The small, peripheral or distal airways, defined as airways with an internal diameter of less 

thna 2 mm, account for the majority of the luminal surface area within the airways, 

representing 98% of the total lung volume (James 2002). Due to a lack of accurate small 

airway dysfunction tests, direct evaluation of small airway tissue changes and obstruction has 

lead to the peripheral airways being termed the „lung`s quiet zone“ and to assessments in 

asthma being limited to the large central airways only. With the introduction of new 

techniques such as fiberoptic bronchoscopy, there has been a renewed interest in peripheral 

airways, which are now becoming increasingly appreciated for their significance to the 

clinical manifestations (expression) in asthma. 

Assessments of the peripheral airway have traditionally been challenging due to their small 

internal diameter and deep location in the thoracic cavity. New and more specialized methods 

and techniques have been developed to better assess peripheral airway dysfunctions in 

asthma, such as forced expiratory flow at 50% (FEF50%) and at 25-75% (FEF25-75%) of forced 

vital capacity, measuring airway resistance with impulse oscilometry (IOS), single/multiple 

breath nitrogen washout, alveloar nitric oxide, late-phase sputum induction, imaging 

techniques etc (van der Wiel et al. 2013, Usmani 2014, Downie et al. 2007). Other methods 

such as transbronchial biopsy and bronchoalveolar lavage (BAL) are available, but far more 

invasive and as such not recommended to be performed in children, except in specific 

indications. A list of most commonly used small airways assessment methods are 

summarized in Table 3. 

Table 3. Common methods of assessment of peripheral airways in asthma. FEF25-75% and  FEF50%- forced 

expiratory flow through 25-75% and at 50% of the forced vital capacity, R5- airway resistance at 5 HZ (IOS), 

R20- airway resistance at 20 Hz, R55-R20 – difference of R5 and R20, X5- reactance of the airways at 5 HZ, 
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AX- reactance area, Fres- resonant frequency of reactnace, FRC- functional residual capacity, CV- closing 

volume, CC- closing capacity, Sacin and Scond- ventilation heterogenetiy indices in the acinar and conductive lung 

zones, respectively, HRCT- high-resolution computed tomography, H3HeMRI- magnetic resonance imaging 

with inhaed hyperpolarized helium-3 gas. 

 

Method 

 

What it measures 

Parameter 

Peripheral airways Central airways 

Spirometry Airway obstruction FEF25-75%, FEF50%, 

FVC/SVC 

FEV1, FEV1/FVC, PEF 

Impulse oscilometry  Airway resistance R5-R20, X5, AX, Fres R20 

Body plethysmography Air trapping RV, RV/TLC, FRC  

Single breath nitrogen 

washout 

 

 

Ventilation heterogeneity 

CV, CC, Slope phase III  

Multiple breath nitrogen 

washout 

Sacin, Scond  

Exhaled nitric oxide (NO) Airway inflammation Alveolar NO Bronchial NO 

Induced sputum Airway inflammation Late-phase sputum Early-phase sputum 

HRCT/H3HeMRI Imaging techniques Lung attenuation  

 

Recognizing asthma as a disease of the entire respiratory tract is of great clinical significance 

and highlights the need to target the distal airways in therapeutic strategies for effective 

asthma management. 

2.4.3. Other tests and investigations used in asthma diagnosing 

Additionally, constrictor response tests can also be performed to assess the presence and 

severity of airway hyperresponsiveness. This is achieved by measuring the fall in FEV1 after 

bronchoconstrictor stimuli, such as certain pharmacological agents in metacholine or 

histamine challenge tests, exercise in spiroergometry tests or allergens in allergen challenge 

(provocation) tests. 

Above the age of 5 years, conventional lung function testing (measurements of airway 

obstruction, response to bronchodilatators and bronchoconstrictors and AHR) is usually 

possible in most children and most settings, although cooperation and compliance to the 

procedure is always an issue with children. In children between the age of 2 and 5 years, 

spirometry is commonly not performed, but most can perform other tests that do not rely so 

heavily on their ability to perform a forced expiratory manoeuvre. In general, these tests have 

not been evaluated as diagnostic tests for asthma specifically, as there is often substantial 
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overlap between the values measured in children with and without asthma. Of those tests, 

specific airways resistance (sRaw), impulse oscilometry (IOS) and measurements of residual 

volume (RV) appear most promising. In children under the age of 2 or even 3 years, lung 

function tests are almost impossible to perform and establishing a diagnosis of asthma is 

therefore extremely difficult, especially because episodic respiratory symptoms such as 

wheezing and cough are quite common in this population (associated with respiratory tract 

infections which occur 6-8 times per year in young children). This is why a confirmation of a 

diagnosis of asthma is often postponed for a certain period of time in which the child is 

carefully monitored (BTS 2014, GINA Pediatric 2015, Beydon et al. 2007, NHLBI 2007). 

Recently, novel objective respiratory function methods based on an impedance 

pneumography (IP) and flow-interruption (FI) technologies have been developed. These 

methods enable pulmonary function testing during tidal spontaneous breathing at home, even 

during sleep, which makes them suitable for use in very young children (Benoist et al. 1994, 

Lødrup et al. 1994, Dames et al. 2014., Gugten et al. 2013). 

Other non-invasive tests are often performed to assess certain features of asthma, such as 

tests of eosinophilic airway inflammation. These include induced sputum differential 

eosinophil count and exhaled nitric oxide concentrations (FENO). Higher sputum eosinophil 

counts are associated with a higher degree of airway obstruction and reversibility, greater 

disease severity and atopy in general. In children with newly diagnosed mild asthma forms, 

sputum eosinophilia is present and usually declines with anti-inflammatory treatment (eg. 

with inhaled corticosteroids). Although sputum induction is easily obtainable in school-aged 

children, it is technically demanding as well as time consuming and therefore at present it 

remains mostly a research rather than a routine diagnostic tool (Lex et al. 2005, Rytila et al. 

2004, Covar et al. 2004). Fractional exhaled nitric oxide (FENO) is feasible to measure in 

children from the age of 3 to 4 years. Increased levels of FENO are not a specfic marker of 

asthma and often ovelap with children who do not have asthma, because FENO is closely 

linked with atopy, age and height, but with underlying lung function. Still, measurement of 

FENO in exhaled breath is a quantitative, noninvasive, simple, and safe method of measuring 

the level of airway inflammation that provides a complementary tool to other ways of 

assessing asthma (Malmberg et al. 2005, Brussee et al 2005, Malmberg et al. 2006). 

Atopy status is also often assessed in individuals with suspected asthma, especially in 

children. Positive skin tests (skin-prick tests- SPT), blood eosinophilia (more than 4% of 

relative count) or increased levels of total and especially allergen-specific immunoglobulin E 
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in serum increase the probablity of asthma in children with wheeze (Castro-Rodriguez et al. 

2000, Chan et al. 2005, Simpson et al. 2005). 

 

2.5.   Asthma management and monitoring 

Asthma management is defined as: 

1. the control of symptoms such as wheeze, chest tightness, shortness of breath and 

cough, 

2. reduction  in the risk of severe and/or life-threatening exacerbations and long-term 

morbidity (including disease progression to more severe forms and other 

comorbidities) by therapeutic intervention (eg. with anti-inflammatory treatment), and 

3. reducing adverse events and side-effects of treatment. 

Recently, the main focus in the management of asthma has shifted from preventing (and 

sanation) of acute asthma attacks to achieving overall disease control, including 

improvements in symptoms score and overall quality of life (GINA 2018, BTS 2014). A list 

of tools commonly used to assess and monitor asthma and disease control are listed in Table 

4. 

Table 4. Summary of common tools in asthma management (monitoring and assessment of disease control), 

recommended to be clinically reviewed on at least an annual basis or more frequently, according to physician`s 

judgement (BTS 2014, Simon and Simon 2007, Hoffman et al. 2012). 

Measurement/tool Description/comment 

Spirometry Widely available, robust and enables clear demonstration of airflow obstruction. 

Adequate for children from the age of 5 years on. 

Peak expiratory flow 

(PEF) 

Widely available, simple (adequate for home use), results less reproducible than 

spirometry measurements. 

Changes in PEF are more meaningful that absolute values measured. 

Asthma Control Test 

(ACT), Supplement 1 

5 questions: 3 related to symptoms, 1 related to medication use and 1 to overall 

control. 

Score of  ≥25 indicates good asthma control, 20-24 indicates moderate control and 

≤19 indicates that asthma is poorly controlled. 

Validated in adults and children 4 years and older. 

Airway 

hyperresponsiveness 

Challenge tests (metacholine, indirect tests with inhaled mannitol, allergen challenge 

tests). 

Not applicable in patients with substantially impaired lung function (FEV1/FVC ≤0.7 
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and FEV1 ≤70% predicted). 

Exhaled nitric oxide 

(FENO) 

Normal range is <25 ppb at exhaled flow of 50 ml per second.  

Values >50 ppb in adults and >35 ppb in children highly predictive of eosinophilic 

airway inflammation and predicted positive response to corticosteroid treatment. 

Values <25 ppb highly predictive of absence of airway eosinophilia and of predicted 

poor response to corticosteroids or indicative for step down treatment with 

corticosteroids. 

Eosinophil differential 

count (blood or 

induced sputum) 

Feasible even in children, but time consuming and not available except in specialised 

centres. 

Normal range in sputum is <2% (or <3% in blood for adults and children older than 2 

weeks), and <300 or <350 cells per microliter of blood- absolute values. 

Increased sputum eosinophil count closely related to corticosteroid responsiveness in 

adults and together with FENO in children. 

 

Asthma management is adjusted in a continuous cycle to assess disease control, adjust 

treatment and review response (Figure 5). 

 

Figure 5. The control-based asthma management cycle and its main components. In children, especially those 

under the age of 5 years, parents or caregivers have a very important role in asthma management, which is why 

their preferences and satisfaction is cruicial in the management proccess. Modified from (source): GINA 2018, 

GINA Pediatric 2015. 

A list of currently available and most commonly used treatment options for asthma is 

presented in Table 5. 

Table 5. Most commonly used pharmacological treatment options for asthma today (Bonini and Usmani 2016). 

Table 4. continued 
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Reliever medication (bronchodilatators) Controller medication (anti-inflammatory 

treatment) 

2-agonists: Short-acting (SABA) 

                     Long-acting (LABA) 

Corticosteroids: inhaled corticosteroids (ICS) 

                           oral corticosteroids (OCS) 

                           parenteral corticosteroids 

Anticholinergics Anti-leukotrienes (leukotriene receptor antagonists, 

LTRA) 

 

Theophyline 

Theophyline (slow-releasing) 

Cromones 

Macrolides 

Monoclonal anti-IgE antibody (omalizumab) 

 

For the effective managament of asthma, experts recommend employing a stepwise approach. 

This stepwise approach is aimed at achieving early and adequate disease control by 

eliminating symptoms as soon as possible and to optimise lung function (eliminate airflow 

obstruction) by initiating treatment at the level most likely to achieve this. Based on this 

approach, asthma management in adults and children can be divided into five steps, as shown 

in Figure 6 (GINA 2018, GINA Pediatric 2015, BTS 2014).  
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Figure 6. A schematic representation of the stepwise approach in asthma management. *For children aged 4 to 

11 years, the use of theophyline is not recommended as controller treatment and the preferred option in Step 3 is 

medium dose ICS. In step 5, some patients may benefit from low dose OCS, but long-term systemic side-effects 

may occur. For children under the age of 5 years, step 1 treatment is as needed SABA, step 2 is daily or 

intermittent low dose ICS or LTRA, step 3 is „double low dose ICS“ and add-on option is LTRA, while step 4 is 

increasing the dose of ICS and add-on regular LTRA, with further expert advice, investigation and reconsidering 

diagnosis highly recommended. Source: GINA 2018, GINA Pediatric 2015. 

Patients should be carefully monitored every 1 to 3 months after treatment initiation, and 

every 3 to 12 months after that, if adeqate control is achieved or 1 week after an exacerbation 

for response review. Since asthma is often a variable condition, periodic adjustment of 

controller treatment may be needed. If adequate control is not reached, treatment step-up is 

recommended in a: 

1. sustained step-up manner for at least 2 to 3 months and if symptoms/exacerbations 

persist, other common causes such as incorrect inhaler technique and poor adherence 

(especially in young children), modifiable risk factors (like smoking) or comorbidities 

need to be assessed, 

2. short-term step-up manner for 1-2 weeks due to viral infection or allergen exposure, 

or 

3. day-to-day adjustment manner for patients on treatment steps 3-5.  

If asthma control has been reached and maintained for at least 3 months, treatment step-down 

should be considered by reducing ICS dose by 25-50% at 2 to 3-month-long intervals, during 

which the patient should be carefully monitored and disease control reassessed. A summary 

of the current guidelines in the management and treatment of asthma is presented in 

Supplement 2. 

 

2.6.   Heterogeneity in asthma 

Asthma and its key mechanisms remain poorly understood despite the fact that much 

progress has been made in understanding the underlying pathogenesis in recent years. This 

has largely been due to the failure in successfully identifying the distinct disease subtypes in 

asthma. 
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While asthma is generally considered an inflammatory disorder of the conducting airways, it 

is evident that the disease is extremely heterogeneous with respect to immunopathology, 

clinically observed phenotypes, response to treatment, and natural history. Although it was 

once considered purely an allergic disease dominated by Th2-type lymphocytes, IgE, mast 

cells, eosinophils, macrophages, and cytokines, it is becoming increasingly apparent that the 

pathogenesis of asthma also involves local epithelial, mesenchymal, vascular and neurologic 

events that are involved in directing the Th2 phenotype to the lung and through aberrant 

injury-repair mechanisms to remodeling of the airway wall (Holgate 2008). This 

demonstrates the urgent need for identifying additional immunologic and inflammatory 

pathways involved in asthma, in order to reveal new ways of intervening in the prevention 

and treatment of the disease. 

The most common asthma form is allergic asthma (especially in children), induced by 

allergic sensitization (usually by inhaled allergens) and immunoglobulin E (IgE) as well as 

Th2-mediated immune response play a crucial role in the pathogenesis of allergic asthma. A 

common form of asthma is non-specific asthma, caused by respiratory infections (viral), air 

pollutants (smoke, ash and other large particles), probably due to physical (mechanical) 

damage to the airways, physical activity and emotional stress. Asthma is often accompanied 

by comorbidity- allergic rhinitis/rhino-conjunctivitis (AR), atopic dermatitis (AD), gastro-

oesophageal reflux disease (GERD), obstructive sleep apnoea syndrome (OSAS), obesity etc. 

This, along with the variability in disease aetiology, level of inflammation, bronchial damage 

and lung function impairment, specific clinical features and natural course of the disease 

(persisting to adulthood or remission in adolescence), reflect the vast heterogeneity and 

complexity of asthma. Current knowledge of asthma pathophysiological mechanisms as a 

Th2 cell mediated allergic reaction does not suffice in explaining and dealing with a large 

portion of this heterogeneity, which is why in the past few years asthma has been revised and 

considered as a complex syndrome of several different subtypes (phenotypes) defined by 

newly conceived immuno-pathophysiological mechanisms called endotypes (Gagro 2011). 

This is also reflected in the multiplicity of asthma risk factors, both endogenous (sex, 

hormonal status, genetic predisposition and epigenetic status) as well as environmental 

factors (allergens, viral infections, air pollution etc.). 
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2.6.1. Phenotypes in asthma 

Phenotypes are described as the observable characteristic of an organism produced by 

interactions of the genotype and the environment (Henderson 2014). The presence of distinct 

asthma phenotypes has been described for a number of years: in the mid 20
th

 century there 

were two clinically distinct phenotypes of asthma defined- extrinsic (allergic) or early-onset 

asthma and intrisic (non-allergic) or late-onset asthma, with the age of onset emerging as one 

of the main clinical characteristics to define disease heterogeneity (Rackermann 1947). 

Subsequently, asthma phenotypes which identified the presence of eosinophilic inflammation 

and its link to corticosteroid responsiveness emerged (Brown 1961, Berry et al. 2002). 

Further studies confirmed the heterogeneity in asthma leading to the conclusion that not all 

patients respond to anti-inflammatory (corticosteroid) treatment and that treatment reponse is 

largely dependent on the presence and type of airway inflammation (Pavord et al. 1999, 

Gibson et al. 2001, Wenzel et al. 1999, Green et al. 2002), as well as that patients with poor 

response to treatment tend to develop severe, uncontrolled disease. The group of patients with 

non-eosinophilic type of inflammation were then further stratified into neutrophilic asthma, 

mixed granulocytic asthma with increased eosinophils and neutrophils and paucigranulocytic 

asthma with normal levels of both eosinophils and neutrophils (Simpson et al. 2006). 

Recently, there have been several attempts to use novel computing and machine learning 

techniques (eg. cluster analysis) to identify additional phenotypes in asthma (Haldar et al. 

2008, Siroux et al. 2011, Wu et al. 2014). Although these studies have performed unbiased 

statistically based analyses on large cohorts of patients involving a wide range of clinical 

variables, they have been limited in the terms of clinical characteristics they have used to 

identify different phenotypes in asthma and still do not provide much insight into the 

underlying disease mechanisms (Gauthier et al. 2015, Ray et al 2015).   

2.6.2. Endotypes in asthma 

Although different phenotypic clusters of asthma have emerged, these have been primarily 

clinically oriented and while they are useful for classifying patients, they provide little 

reference to the underlying pathophysiological processes. This has been one of the major 

hindrances in the development of targeted therapies in asthma so far (Chung and Adcock 

2015). Therefore, in order to capture disease mechanisms, molecular phenotypes or 

„endotypes“ are now being defined by integrating and correlating molecular markers with 

clinical phenotypes to describe a specific disease subtype based on distinct 
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pathophysiological mechanisms. For example, a clinical phenotype of asthma may be 

underpinned by several discrete endotypes, each of which leads to a final common pathway 

of disease manifestations that are characteristic to that particular phenotype. Conversely, a 

discrete endotype (for example, a particular inflammatory pathway such as eosinophilic 

airway inflammation) could be exant in a number of different clinical phenotypes, as shown 

in Figures 7A and 7B (Henderson 2014, Lötval et al. 2011, Wenzel 2012, Ray et al. 2015, 

Anderson 2008). 

 

Figure 7. A schematic representation of asthma subtypes: phenotypes and endotypes. A hiearchy of asthma 

phenotypes and endotypes. B Schematic representation of potential asthma phenotypes. For example, Th2-

associated asthma and non-Th2-associated asthma may share key features of symptoms, lung function and 

exacerbations but can be further subdivided according to other characteristics (Phenotypes A, B, C or D), 

including some molecular mechanisms. Source: Lötvall et al. 2011, Wenzel 2012. 

Most recent studies utilizing genetic, epigenetic and transcriptomic data together with 

extensive clinical data have been even more successful in characterizing the underlying 

predisponing genetic, epigenetic and gene expression patterns associated with specific asthma 

endotypes. Such approaches further advance the possibility of stratifying asthma at the 

molecular level in order to achieve personalized treatments and individually tailored 

management strategies (Chung and Adcock 2015, Wesolowska-Andersen and Seibold 2015). 

2.6.3. Asthma and obesity 

Obesity, that is, overweightness is one the most common asthma comorbidities. 

Approximately 38% of current adult asthmatics are also obese in the US, and obesity has 

been shown to be an indepedent risk factor for developing asthma. Obese asthmatics have an 
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increased risk for asthma exacerbations, more frequent and worse respiratory symptoms as 

well as poor disease control and poor quality of life, despite often using high-dose inhaled 

corticosteroids (Baffi et al. 2015). A meta-analysis of  7 longitudinal cohort studies involving 

over 300,000 adults indicated a dose response effect between increasing BMI and the odds 

ratio (OR) of incident asthma (Beuther and Sutherland 2007). Since obesity is a risk factor for 

asthma and a potential culprit for the rise in prevalence of asthma  in both children and adults 

and due to the fact that asthma and obesity have common pathophysiological mechanisms, it 

is now  thought that being obese and having asthma constitutes a unique clinical phenotype; 

in other words, the interaction of obesity (as an environmental risk factor) with underlying 

genetic traits (or other host susceptibility factors) leads to a set of defined observable traits- 

one or, more likely, multiple specific phenotypes. Although the clinical manifestations have 

been well documented, the aetiologies of obese asthma still remain unclear (Scott et al. 

2017). 

The mechanisms by which obesity exacerbates asthma are both mechanistic and 

physiological. Increased adiposity around the chest wall and abdomen may lead to lung 

restriction, resulting in reduced total lung capacity and most notably, low expiratory reserve 

volume, from upward diaphragmatic displacement due to increased abdominal fat. 

Consequently, airway closure occurs at or above functional residual capacity in the dependent 

lung zones, which can lead to significant ventilation/perfusion mismatching (Salome et al. 

2010). Although obesity is not associated with more airway obstruction, studies indicate that 

it is a risk factor for increased bronchial hyperresponsiveness (Dixon et al. 2010). Moreover, 

obesity promotes systemic inflammation, potentially exerting effects in the airways. 

Sputum samples of patients with asthma reveal that the obese have the largest proportion of 

non-eosinophilic airway inflammation. This is probably not due to an absolute reduction of 

airway eosinophils in obese patients, but rather, due to reduced migration into the airway 

lumen. A study of severe asthmatics demonstrates that obesity is associated with increased 

sub-mucosal eosinophils (but not in the airway lumen) and with greater IL-5 sputum levels 

(Desai et al. 2013). In contrast, obesity has been associated with increased airway 

neutrophilia (Telenga et al. 2012). All this suggests appear that the obesity-mediated changes 

in airway inflammation are more consistent with a non-predominant Th-2 phenotype, and 

potentially a more Th-1 polarized immune response (Rastogi et al. 2012). IL-17 producing 

innate immune cells detected in human BAL may constitute an additional non-Th2 pathway 

in obese asthma (Celedon and Kolls 2014). Increase in adipose tissue correlates with an 
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increase in the levels of leptin as well as a reduction in the levels of adiponectin and both of 

these changes have been implicated in the obese asthma pathogenesis (Dixon 2009). The 

levels of leptin are higher among asthmatics, and increase in relation to plasma leptin levels 

and BMI (Holguin et al. 2011,  Lugogo et al. 2012). The magnitude of leptin receptor 

expression in visceral fat has been related to BHR (Sideleva et al. 2012) and moreover, leptin 

has been shown to increase the oxidative and inflammatory response of alveolar macrophages 

derived from overweight and obese asthmatics ex vivo (Lugogo et al. 2012). Adiponectin, on 

the other hand, probably has protective effects. In females, higher plasma adiponectin levels 

are associated with decreased asthma risk (Sood et al. 2008), but whether it has anti-

inflammatory or immunomodulatory effects in the human airway is not clear. Both asthma 

and obesity are characterized by greater oxidative stress and may act synergistically to further 

increase it, especially in the NO metabolism. Exhaled NO (eNO) and BMI are inversely 

correlated in late-onset compared to early onset (childhood) asthma. This may be due to an 

imbalance between L-arginine, the precursor of NO and substrate for inducible nitric oxide 

synthase (iNOS), and asymmetric di-methyl arginine (ADMA), which is an endogenous 

inhibitor of all NOS synthases (Holguin et al. 2013). Lower L-arginine might result from 

increased arginase activity, which is associated with asthma severity, and increased ADMA 

has been related to obesity and metabolic syndrome (Morris et al. 2004, Palomo et al. 2011). 

Having lower airway NO bioavailability at baseline may impair the degree of physiological 

bronchial dilation, leading to increased respiratory symptoms, poorer disese control and 

imparied lung function (Ricciardolo et al. 2004). Compared to those with normal BMI obese 

asthmatics have poorer response to treatment with ICS according to changes in lung function 

parametres and disease control. This reduced steroid response in obese asthmatics could be 

due to increased steroid resistance. Studies have shown that obesity was associated with an in 

vitro blunted response to dexamethasone-induced mitogen-activated protein (MAP) kinase 

phosphatase-1 (MKP-1) and baseline tumor necrosis factor (TNF)-alpha in peripheral blood 

mononuclear cells (PBMCs) and BAL cells (Peters-Golden 2006, Sutherland et al. 2010). 

Obesity in asthma also increases the risk for other chronic diseases (such as OSA, GERD and 

metabolic syndrome), which are associated with worsened respiratory symptoms and poorer 

disease control (Teodorescu et al. 2013, Samson and Garber 2014). A summary of 

pathophysiological mechanisms involved in obese asthma are shown in Figure 8. 
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Figure 8. Pathophysiological mechanisms of obese asthma. A variety of mechanisms have been proposed as 

drivers of the physiologic and clinical observations in obese asthmatics, including changes in adipokines; Th-1 

skewed airway inflammation, lower ADMA to L-arginine ratio resulting in increased oxidative stress and 

decreased physiologic NO- a mediator in smooth muscle dilatation, reduced FRC and ERV due to excess 

abdominal adiposity, IL-17 associated airway inflammation, steroid resistance and dampened response to MKP-

1. Th-1- T-helper 1 cells, ADMA- asymmetric dimethylarginine, NO- nitric oxide, FRC- functional residual 

capacity, ERV- expiratory reserved volume, IL-17- interleukin 17, MKP-1- mitogen-activated protein (MAP) 

kinase phosphatase-1. Source: Baffi et al. 2015. 

Because the origins of obesity and asthma are multifactorial, it is now believed there are 

multiple obese-asthma phenotypes, with varied aetiologies and clinical consequences, and 

with childhood or early-onset obese asthma being an independent one (Baffi et al. 2015). 

 

2.7.  Genetics of asthma 

Genetic predisposition, that is, heritability, undoubtely plays a crucial role in the onset and 

development of asthma, as this disorder, as well as other allergic disorders, is more common 

in individuals with a positive atopic (allergic) and asthmatic family background. Twin studies 

have indicated that certain parameters, such as bronchial hyperresponsivness (BHR), are 

inherited independently (Los et al. 2001). Numerous genetic loci (SNPs, Single Nucleotide 

Polymorphisms) have been associated with the onset, progression and clinical features of 

asthma through genome-wide association studies (GWAS), and have recently been re-

assessed through a large meta-analysis involving more than 10,000 asthma patients (Moffatt 
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et al. 2010). These studies indicated that certain chromosome regions are associated with 

susceptibility to asthma, such as: 6p- containing genes encoding the major histocompatibility 

complex (MHC), 11q- containing genes encoding the high-affinity IgE receptor and 

glutathione S-transferase, 20p- containing the gene encoding ADAM33, which plays an 

important role in cellular fusion, adhesion, signalling and proteolysis processes and certain 

regions on chromosome 17- containing the gene ORMDL3 encoding an epithelial protein 

strongly associated with asthma development (Ober and Yao 2011). A GWAS meta-analysis 

has been recently conducted across different ethnicities highlighting the role of genes at the 

the 17q21 region (including genes encoding for interleukin 1 receptor-like 1- IL1RL1, thymic 

stromal lymphopoietin- TSLP, interleukin 33- IL33 etc.) across different ethnic groups 

(Torgerson et al 2011). Genetic risk of childhood-onset asthma has been reviewed recently 

emphasizing the role of the 17q21 region and more specifically, the GSDMB-ORMDL3 

(encoding for gasdermin B- GSDMB and oromucosoid 1 like-3- ORMDL3) locus in 

childhood asthma (Cookson et al. 2011). Novel technologies such as whole exome 

sequencing are only beginning to be utilized in the field. Recently variants in the CBLB (an 

E3 ubiquitin-protein ligase), KALRN (Kalirin RhoGEF kinase) and PDE4DIP 

(Phosphodiesterase 4D interacting protein) genes were foun d to segregate with patients in a 

family affected by asthma (DeWan et al. 2012). Certain cytokine and chemokine encoding 

genes, involved in the Th2 mediated immunological response, genes encoding proteins 

involved in oxidative stress processes and the keratin-binding protein filaggrin (FLG) have 

also been associated with asthma and other allergic diseases (Michel et al. 2010). 

Genes implicated by genome-wide association studies (GWAS), genome-wide linkage 

studies, and candidate gene studies can broadly be divided into 4 groups (according to their 

function and role in the development of asthma and allergic diseases):  

1. genes involved in epithelial barrier function, 

2. genes involved in environmental sensing and immune detection, 

3. genes ivolved in tissue response to allergic inflammation, and  

4. genes involved in TH2 cell polarization and response (presented in Figure 9). 
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Figure 9. Susceptibility genes for asthma and allergic diseases. Source: Holloway et al. 2010. 

2.7.1. Genes involved in epithelial barrier function 

A high proportion of the novel genes identified for susceptibility to allergic disease through 

genome-wide linkage and association approaches have been shown to be expressed in the 

epithelium. The RAD50 homolog is important for DNA double-strand break repair, cell-cycle 

checkpoint activation, telomere maintenance, and meiotic recombination. This gene is also 

adjacent to the interleukin 4/13 (IL4/IL13) locus and asoociated with increased total IgE 

levels, eczema, and atopic dermatitis. The FLG (filaggrin) gene, as well as RAD50 and IL-13 

have already been associated with allergic diseases (atopic dermatitis) and recent studies have 

implicated an overlap of certain loci within these genes with asthma and allergic rhinitis 

pathogenesis. Genes encoding filaggrin (a protein involved in keratin aggregation), defensin 

beta-1 and the RAD50/IL-13/IL4 loci may be also associated with asthma susceptibility and 

level of response to treatment in patients with loss-of-function FLG variants or defensin and 

RAD50/IL-13, which may be due to allergen sensitisation that occurs after the breakdown of 

the epithelial barrier (Weidinger et al. 2013). Other susceptibility genes, such as 

ORMDL3/GSDML (gasdermin-like or gasdermin B), PCDH1 (encoding protcadherin 1), and 

C11orf30 (or EMSY, BRCA2 Interacting Transcriptional Repressor) are also expressed in the 

airway epithelium and might have a role in regulating epithelial barrier function (Koppleman 

et al. 2009, Moffat et al. 2007, Holloway et al. 2010). 
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2.7.2. Genes involved in environmental sensing and immune detection 

Genes involved in sensing of environmental influences and immune detection include genes 

of the MHC class, genes encoding Toll-like receptors (TLR1, TLR6 and TLR10) an others. 

This group of genes encodes molecules that directly modulate the effect of environmental 

risk factors for allergic disease. For example, genes such as TLR2, TLR4, and CD14, 

encoding components of the innate immune system, interact with levels of microbial 

exposure to alter the risk of allergic immune responses (Yang et al. 2007).  Additionally, 

polymorphisms in genes encoding glutathione-S-transferase (GSTM1, GSTM2, GSTM3, 

GSTM5, GSTT1, and GSTP1) have been shown to modulate the effect of environmental 

exposures involving oxidant stress, including tobacco smoke and air pollution, on 

susceptibility for asthma (Romieu et al 2009, Breton et al. 2009). 

2.7.3. Tissue response to allergic inflammation 

A variety of genes involved in mediating the response to allergic inflammation and oxidative 

stress on tissue level appear to be important contributors to asthma and allergy susceptibility 

as well as disease progression and treatment effectiveness. Examples include genes encoding 

ADAM33, a disintegrin and metalloprotease expressed in lung fibroblasts and smooth muscle 

cells, the alpha-1 chain of type 29 collagen (COL29A1), phosphodiesterase 4D (PDE4D), 

leukotriene C4 synthase (LTC4S), glutathione-S-transferase (GSTP1, GSTM1), arachidonate 

5-lipoxygenase (ALOX-5), nitric oxide synthase 1 (NOS1), metallopeptidase 9 (MMP9), 

which are expressed in lung fibroblasts and smooth muscle cells, as well as the 2 adrenergic 

receptor (ADRB2) etc. (Lotvall et al. 2011, Himes et al. 2009).  The latter two genes (MMP9 

and ADRB2) have also been significantly associated with remodeling events that occur in 

asthma and related conditions (such as chronic obstructive pulmonary disease, COPD) as 

well as with response to certain classses of common asthma treatment, with MMP9 being 

pivotal in remodeling in asthma for its role in extracellular matrix degradation and ADRB2 

being crucial for bronchodilatation (Ohbayashi and Shimokata 2005, Litonjua et al. 2010). 

Polymorphisms in the VEGFA gene (vascular endothelial growth factor A, involved in tissue 

remodeling processes, mainly angiogenesis) have been associated with asthma, especially 

with phenotypes involving extensive airway tissue remodeling. The TBXA2R gene encodes 

the thromboxane receptor (TP), also known as the prostanoid TP receptor. Variations in this 

gene have been associated with asthma and level of response to therapy. TBX21 encodes the 

T-box transcription factor TBX21, a member of a phylogenetically conserved family of genes 



36 
 

that share a common DNA-binding domain, the T-box. TBX21 protein is a Th1 cell-specific 

transcription factor that controls the expression of the hallmark Th1 cytokine, interferon-

gamma (IFN). Variations in this gene have also been assoicated with asthma as well a to 

response to treatment (Van Eerdewegh al. 2002, Söderhall et al. 2007). 

2.7.4. Th2 cell polarization and response 

Th2 cell-mediated adaptive immune responses have been widely recognized as a crucial 

component of allergic disease. Genes involved in Th2 cell differentiation and function have 

been extensively studied in asthma candidate-gene association studies, and as one might 

expect, SNPs in many of these genes have been associated with asthma and other allergic 

phenotypes. Genes important for Th1 versus Th2 T cell polarization, such as those encoding 

transcription factors and certain cytokines (GATA3, TBX21, IL4, IL4RA, STAT6, and IL12B), 

have been implicated with asthma and specific disease phenotypes, as well as with response 

to treatment (Agache et al. 2012). The genes encoding IL-13 and the beta-chain of the IgE 

receptor FcεR1 are well replicated contributors to asthma susceptibility. This group includes 

genes that regulate Th1/Th2 differentiation and effector function (eg. IL13, IL4RA, STAT6, 

TBX21 and GATA3), as well as genes such as IRAKM, PHF11 and UPAR, that potentially 

regulate both allergic sensitisation and the level of inflammation that occurs at the end-organ 

location for allergic disease. This group also includes genes shown to regulate the level of 

blood eosinophilia: IL1RL1, IL33, MYB, and WDR36 (Kabesch et al. 2006, Suttner et al. 

2009, Pykäläinen et al. 2005, Barton et al. 2009). 

2.7.5. Corticosteroid transport and signaling genes 

Genes involved in corticosteroid transport have been associated with specific asthma 

endotype pathogenesis and response to treatment (ICS) in patients with different asthma 

phenotypes. These include: the gene encoding the corticosteroid-binding globulin SERPIN1, 

a major glucocorticoid transporter, that has already been associated with certain asthma 

subtypes and with the level of response to inhaled corticosteroids (Dijkstra et al. 2011), the 

gene encoding the solute carrier family 22, member 2 (SLC22A2), also known as organic 

cation transporter 2 (OCT2), which is predominantly expressed in the luminal membrane of 

airway epithelial cells and is involved in the release of acetylcholine from bronchial 

epithelium, and has previously been associated with certain asthma endotypes and response 

to medication (Park et al. 2011, Lips 2005) and other. Corticosteroid-induced genes, that is, 

corticosteroid-responsive genes, namely the gene GLCCI1, encoding the glucocorticoid 
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induced 1 protein of unknown function (although it may be an early marker for 

glucocorticoid-induced apoptosis), has already been associated with asthma pathogenesis and 

the level of response to asthma treatment, along with CRHR1, encoding the corticotropin 

releasing hormone receptor 1, essential for the activation of signal transduction pathways that 

regulate diverse physiological processes including stress, reproduction, immune response and 

obesity (Tantisira et al. 2011, McGeachie et al. 2013). 

As all of these genes were identified in screens for asthma susceptibility genes, most of them 

are listed as risk factors. Protective factors for asthma are less well characterized, and are 

often more descriptive of general genetic or lifestyle factors, such as a negative family 

history, history of breastfeeding, and exposure to pets and/or livestock and farm animals 

(Sandini et al. 2011). Exposure to endotoxin at young ages has been shown to be protective 

against the development of asthma. There is also a correlation between higher levels of the 

endotoxin binding molecule CD14 (soluble form) and lower asthma prevalence, and in 

animal models this is dependent on the Toll-like receptor 4 (TLR4). The proteins encoded by 

the TBX21 and IL12B genes promote the development of Th1 cells, which contribute to 

inflammation and generally suppress atopic phenotypes. It is likely that future studies of the 

genes identified as susceptibility loci will show that some have roles more consistent with 

protection from rather than susceptibility to asthma, at which point those genes would be 

recategorized. 

 

2.8.  Response to asthma treatment  

As there is still no real cure to asthma (due to the overwhelming complexity of this disease), 

today, common asthma treatment is actually symptomatic treatment, with short-term 

medications that are mostly used to relieve current symptoms (reliever medication) and long-

term medication used in case of persistent symptoms to control the underlying inflammation 

and prevent exacerbations (controller medication). These short term treatment options 

involve:  

1. bronchodilators, such as short acting β-adrenoreceptor agonists (SABA), used for 

example in case of asthma attacks or shortness of breath, 
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2.  both oral and parenteral corticosteroids, such as medrol (methylprednisolone), 

prednisone, pronisone, dexamethasone and solu-medrol (methylprednisolone sodium 

succinate), 

3.  and other drugs, such as theophylline, which are mostly used in the management of 

asthma exacerbations.  

Long-term medication involves:  

1. inhaled glucocorticoids (inhaled corticosteroids, ICS), the most commonly used 

treatment option in asthma, 

2. leukotriene receptor modifiers (LTM)- most commonly leukotriene receptor 

antagonists (LTRA) and, less frequentely, leukotriene inhibitors (LTI), and  

3. long acting β-adrenoreceptor agonists (LABA), which are commonly used in 

combination with ICS by millions of patients with asthma, mostly those with greater 

disease/symptom severity as maintenance treatment. 

Corticosteroids are synthesized and secreted by the cortex of the adrenal gland as a result of 

stimulation by the hypothalamus-pituitar-adrenal (HPA) axis. The HPA axis is responsible 

for the adaptation to stress and inflammatory stimuli. This response is characterized by a 

hypothalamic release of corticotropin-releasing hormone (CRH), which acts by combining 

with the CRH receptor (CRHR), predominantly CRH receptor 1 (CRHR1). Both endogenous 

and exogenous corticosteroids act by binding intracellularly to glucocorticoid receptors (GR). 

A protein complex including heat shock proteins HSP70 and HSP90 binds the inactive GR. 

While HSP70 inactivates GR through partial unfolding, HSP90 reverses this inactivation, and 

is required for activation of GR. GR homodimers bind to glucocorticoid response elements 

(GREs) in the promoter region of steroid-sensitive genes, by which the anti-inflammatory 

genes such as annexin-1, secretary leukocyte protease inhibitor (SLPI), MAPK phosphatase-1 

(MKP-1/DUSP1/MAPK1), NF-kB, inhibitor of NF-kB alpha (NFKBIA), IL-10 and 

glucocorticoid-induced leucine zipper (GILZ) are activated. Certain transcription factors (NF-

kB and AP1) activate coactivator molecules, like CBP (cAMP-response-element-binding-

protein (CREB) binding protein) which bind to nuclear GRs, which inactivates  a number of 

pro-inflamamtory genes, such as IL-8 (Barnes 2006, Duong-Thi-Ly et al. 2017). Molecular 

mechanisms involved in the anti-inflammatory action of corticosteroids are shown in Figure 

10. Corticosteroids also exert their anti-inflammatory action by inducing histone acetylation 

(and subsequent activation) of anti-inflammatory genes (eg. MKP-1), and by recruiting 
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histone deacetylases (HDAC2) and inducing deacetylation (and subsequent silencing) of 

proinflammatory genes, for example IL-8, NF-κB, AP-1 (Barnes 2009). 

 

Figure 10. A schematic representation of anti-inflammatory mechanism of corticosteroids. ACTH- 

adrenocorticotropic hormone, MC2R- melanocortin 2 receptors, STIP1- stress induced phosphoprotein 1, 

NR3C1- nuclear receptor subfamily 3 group C member 1, DUSP1- dual specificity phosphatase 1, ORMDL3, 

ORMDL sphingolipid biosynthesis regulator 3, pCAF- p300/CBP-associated factor, SRC- steroid receptor co-

activator, POMC- proopiomelanocortin, CRF- corticotrophin releasing factor. Source: Duong-Thi-Ly et al. 

2017. 

The leukotriene pathway begins with the conversion of arachidonic acid to leukotriene A4 

(LTA4), a reaction catalyzed by the enzyme 5-lipoxygenase (5-LO). LTA4 is subsequently 

converted to LTC4 under the influence of leukotriene C4 synthase (LTC4S), which is 

transported extracellularly. Sequential cleavage of glutamate and glycine residues results in 

the formation of leukotriene E4 and D4. Leukotrienes bind to receptors present on leukocytes 

and lung smooth muscle cells, such as cysteinyl leukotriene receptor 1 (CysLTR1), to cause 

smooth muscle contraction and mucus secretion. Current antileukotriene treatment (LTM) 

include CysLTR blockers or LTRA and inhibitors of 5-LO or LTI (Tse et al. 2011). The 

leukotriene pathway and mechanisms of LTM action are shown in Figure 11. 
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Figure 11. A schematic representation of the leukotriene pathway, with sites of action of antileukotriene 

treatment indicated in red x. Zileuton- an LTI, a 5-LO inhibitor montelukast, zafirlukast and pranlukast- LTRA, 

blockers of CysLTRs. CysLTR1- cysteinyl leukotriene receptor 1, CysLTR2- cysteinyl leukotriene receptor 2. 

Source: Tse et al. 2011. 

Combination treatment (ICS+LABA) is frequently used in the control of asthma and it is now 

recognized that there are important molecular interactions between these two classes of drug. 

Corticosteroids increase β2-receptor gene transcription, resulting in increased expression of 

cell surface receptors, thus protecting against the down-regulation of β2-receptors after long-

term administration. This is important for both bronchodilation and other 2-agonist effects, 

such as mast cell stabilization. Corticosteroids may also enhance the coupling of β2-receptors 

to G-proteins, which enhances β2-agonist effects and reverses the uncoupling of β2-receptors 

that may occur in response to inflammatory mediators, such as IL-1β through a stimulatory 

effect on a G-protein coupled receptor kinase (Figure 12). β2-agonists also act on 

glucocorticoid receptors to increase the anti-inflammatory effects of corticosteroids (Barnes 

2010). 

 

Figure 12. Biological actions of combination treatment (ICS+LABA). Corticosteroids have anti-inflammatory 

effects but also increase the number of β2-receptors, whereas β2-agonists, act on glucocorticoid receptors (GRs) 

to increase the anti-inflammatory effects of corticosteroids. Source: Barnes 2010. 
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Addtionally, low concentrations of theophylline, another drug commonly used for asthma 

treatment (usually in case of management of exacerbations), have been shown to reverse the 

effects of corticosteroid resistance by restoring HDAC2 activity, possibly via selective 

inhibition of phosphoinositide-3-kinase (PI3K)-δ and the phosphorylation of downstream 

kinases (Barnes, P. 2009). 

When it comes to asthma controller treatment options, there is marked patient-to-patient 

variability in the therapeutic response. For example, about one in three patients with asthma 

who use inhaled glucocorticoids may not benefit adequately from this treatment (Szefler 

2005). As asthma seems to be a complex genetic syndrome, the response to asthma treatment 

is also genetically complex and is characterized by high intra-individual repeatability and 

high inter-individual variability, with up to 50% of asthmatic patients having poor or even no 

response to treatment (Drazen et al. 2000, Szefler et al. 2002). Inhaled glucocorticoids are the 

most widely prescribed medications for controlling asthma. Levels of endogenous 

glucocorticoids are heritable and vary significantly, both at baseline and in response to 

environmental perturbation (Inglis et al. 1999, Ober et al. 2002, Steptoe et al. 2009). 

Moreover, studies in families with conditions other than asthma have shown both familial 

segregation and heritability in responses to glucocorticoid medications (Armaly 1967, 

Schwartz et al. 1972). 

 

2.9.  Pharmacogenetics of asthma 

Given the heritability within response to therapeutic classes of common asthma as well as the 

high degrees of between-patient variability and within-patient repeatability in the response to 

treatment of asthma, it is likely that this response has a strong genetic basis. Previous studies 

have suggested that up to 80% of asthma patients have different responses due to genetic 

factors (Baye et al. 2011). In fact, a number of single nucleotide polymorphisms in candidate 

genes have been identified by genome-wide association studies (GWAS), linkage and 

candidate gene studies that might influence the clinical response to treatment in patients with 

asthma. Different genetic variants associate with the response to commonly used asthma drug 

classes (bronchodilators, inhaled corticosteroids and leukotriene modifiers) and their direct or 

indirect effects depend on their role in the inflammatory immune response in asthma or the 

anti-inflammatory action of the medication, respectively (Duong-Thi-Ly et al. 2017). Certain 

genetic loci associated with the response to asthma treatment are shown in Table 7. 
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Table 6. Genetic variants (loci) associated with the response to different classes of asthma medication (ICS, 

LABA, SABA, LTM, theophylline) identified by GWAS and candidate gene studies. Bronchodilatator response 

(BDR)- reversibility after bronchodilatator, change in FEV1 after administration of SABA (Duong-Thi-Ly et al. 

2017, Vijverberg et al. 2018, Morrow 2007, Lima et al. 2009, Fal and Rosiek-Biegus 2012, Tse et al. 2011). 

Gene/genetic locus Relevant medication Outcome (assessed in study) 

FGF14, ASB3, SOCS, PRKCQ, 

IL15RA, IL2RA, COL22A1, 

CLOCK, SPATA13-AS1, 

SLC22A15, SPATS2L; ADRB2 

Gly16Arg, ADRB2 Gln271Glu 

SABA Bronchodilatator response (BDR) 

CMTR1, ALLC, FBXL7, T gene, 

GLCCI1, CRHR1, FCER2, 

GR/NR3C1, TBX21, STIP1, 

DUSP1, HDAC, ORMDL3, VEGF 

ICS Lung function changes, Symptom 

frequency and severity, 

Exacerbation frequency and 

severity, AHR 

CYP1A2, HNMT T314 allele Theophylline Drug metabolism and clearance, 

Toxicity 

ADRB2 Gly16Arg, CRHR1, ARG1 LABA Risk of exacerbations 

LTC4S, ALOX5, LTA4H, CysLTR1, 

CYPBA4, CYP2C9, SLCO2B1, 

MRP1/ABCC1, MLLT3, GLT1D1, 

MRPP3 

LTM Lung function changes, Symptom 

and exacerbation frequency and 

severity 

 

For example, certain loci  in the gene encoding T-box 21 (TBX21) and Fc fragment of IgE 

receptor II (FCER2) contribute indirectly to the variability in the response to ICS by altering 

the inflammatory mechanisms involved  in asthma pathogenesis, while other genetic loci 

such as those in the gene encoding corticotropin releasing hormone receptor 1 (CRHR1), 

nuclear receptor subfamily 3 group C member 1 (NR3C1), stress induced phosphoprotein 1 

(STIP1), dual specificity phosphatase 1 (DUSP1), glucocorticoid induced 1 (GLCCI1), 

histone deacetylase 1 (HDAC), ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), 

and vascular endothelial growth factors (VEGF) directly affect treatment response variability 

through the anti-inflammatory mechanisms of ICS (Vijverberg et al. 2018). 

TBX21 (T bet or T-box 21) is a transcription factor that acts as a regulator of Th1 cell 

development by inducing IFN- production and by inhibiting Th2 cytokines, such as 

interleukin IL-4, IL-5 and IL-13 (Lopert et al. 2013). Gene knockout mice lacking TBX21 

spontaneously develop histological and physiological features of asthma, including bronchial 

hyperresponsiveness (BHR), peribronchial inflammation and collagen deposit in the lung 
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basement membrane. Among others, ICS also affect BHR in asthma patients, so it is more 

than likely that treatment efficacy may be altered by variants in the TBX21 gene. Certain 

genetic polymorphisms, such as rs9910408 (c.-7947) and rs2240017 (H33Q C>G) have been 

associated with a decrease in BHR in both children and adults (Lopert et al. 2013, Raby et al. 

2006, Tantisira et al. 2004). 

CRHR1 is the key CRH (corticotropin releasing hormone) receptor in the pituitary gland, 

mediating the release of adrenocorticotropic hormone (ACTH, Figure 10) and the 

catecholaminergic response to CRH (Duong-Thi-Ly et al. 2017, Tantisira et al. 2004). 

Peripherally, CRH may bind to mast cells via CRHR1 (Theoharides et al. 1998). Alterations 

of any of these CRH effects, mediated by the CRHR1 gene, have the potential to influence the 

pathogenesis of asthma. For example, the absence of CRHR1 leads to enhanced airway 

inflammation and dysfunction (Maitland-van der Zee and Daly 2012). Moreover, decreased 

expression or function of CRHR1, due to genetic variations, could diminish the capacity to 

secrete cortisol in response to inflammation, as a consequence of decreased ACTH release. 

Therefore, asthmatic patients with certain CRHR1 variations would probably respond better 

following the administration of an exogenous corticosteroid. Certain genetic polymorphisms, 

such as rs242941 and  rs1876828 have been associated with a positive treatment response in 

both children and adults with asthma (Tantisira et al. 2004, McGeachie et al. 2013). 

The GLCCI1 gene encodes encodes the glucocorticoid induced element 1, a protein of a still 

unknown function. The expression of GLCCI1 is induced by glucocorticoids and may be an 

early marker for glucocorticoid-induced apoptosis. Certain genetic polymorphisms, such as 

rs37972 and rs37973, which are in complete linkage disequilibrium (i.e., perfectly 

correlated), are associated with decreases in GLCCI1 expression and poorer response to 

treatment with ICS in asthmatic patients, that is with reduced lung function in response to 

ICS (Tantisira et al. 2011). 

The non-intronic ADRB2 gene encodes the beta-2 adrenergic receptor (β2 adrenoreceptor) 

that binds epinephrine (adrenaline) whose signaling, via a downstream L-type calcium 

channel interaction, mediates physiologic responses such as smooth muscle relaxation and 

bronchodilation. This receptor-channel complex also contains a G protein, a cAMP-

dependent kinase, and the counterbalancing phosphatase, PP2A. Different polymorphic 

forms, point mutations, and/or changes in the expression of ADRB2 have been associated 

with asthma (especially severe asthma and exacerbations), obesity and type 2 diabetes 
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(Szczepankiewicz et al. 2009, Jocken et al. 2007, Puranik et al. 2017). For example, certain 

genetic polymorphisms such as rs1042713 (Arg→Gly16, 46A→G) and rs1042714 

(Gln→Glu27, 79C→G) are associated with higher agonist promoted receptor down-

regulation, rs1042714 with stronger desensitization of the 2 receptor and an additonal 

polymorphism rs1800888 (Thr→Ile164, 491C→T) with diminished affinity of 2-agonist to 

the receptor, decreased adenylate cyclase binding and 50% shorter lasting SABA. 

Consequently, patients with these polymorphisms had poorer response to SABA and LABA 

as well as more frequent and more severe asthma exacerbations (Fal and Rosiek-Biegus 2012, 

Green et al. 2001). 

The MMP9 gene encodes a matrix metalloproteinase (family of Zn
2+

-dependent 

endoproteinases) or gelatinase B produced mainly by macrophages and neutrophils (but also 

epithelial cells, mast cells, fibroblasts nad smooth muscle cells). MMP9 has several functions, 

displaying  gelatinolytic, elastolytic and collagenolytic activity, which is why it plays a key 

role in physiologic extracellular matrix turnover as well as tissue remodeling in certain 

diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Additionally, 

MMP9 may also modulate the activity of various biological factors, including other 

proteinases (MMP13), their inhibitors (1-antitrypsin) and cytokines such as IL-1 (Grzela et 

al. 2016). Moreover, MMP9 seems to have a regulatory role in neutrophil migration across 

the basement membrane (Delclaux et al. 1996). Certain genetic polymorphisms such as 

rs17576 (Gln279Arg) are associated with non-atopic asthma in children, obesity and 

increased levels of systemic inflammation in children (Grzela et al. 2016, Belo et al. 2012) 

and may be involved in the pathophysiology of non-eosinophilic asthma and moreover, 

response to treatment in certain asthma phenotypes (Goleva et al. 2007, Grzela et al. 2016, 

Naik et al. 2017). 
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3. MATERIALS AND METHODS 

In order to study treatment success in asthmatic children, 365 pediatric patients (355 children 

aged 2-17 years and 10 adolescents aged 18-22 years) with atopic and non-atopic, intermitent 

to severe persistent asthma (according to GINA guidelines; GINA 2018, GINA Pediatric 

2015), patients of the outpatient clinic at the Srebrnjak Children`s Hospital, were recruited in 

a prospective, non-interventional type of clinical study. Informed consent was obtained from 

the childrens` parents/legal guardians following a presentation of the study by the physician 

and distribution of written material regarding the study. Parents/guardians were also asked to 

provide clinically relevant information about the child (personal and family medical history).  

This study protocol was compliant with all national, EU and international ethics related rules 

and professional codes of conduct. The study was approved by the Ethics Committees of the 

Srebrnjak Children`s Hospital and School of Medicine at the University of Zagreb, and 

written parental consent was obtained. 

 

3.1.  Establishing a diagnosis of asthma 

At their first visit patients underwent physical examination, anthropometric measurements 

(height and weight), along with a standard battery of diagnostic procedures and 

measurements to establish a diagnosis of asthma. These included skin prick tests for common 

allergens, lung function tests and blood sampling for routine laboratory tests (hematology, 

biochemistry and allergy assays) to establish a diagnosis of asthma. Peripheral whole blood 

samples were collected by venepuncture into EDTA coated vacutainers (for hematology 

analyses) and into vacutainers with clot activator and gel for serum separation (for 

biochemistry and certain allergy assays). Serum was separated by centrifugation at 3000 g for 

10 min (Eppendorf centrifuge 5702R, Eppendorf AG, Germany). During this study a total of 

10,5 ml peripheral blood samples per participant maximum was collected at the baseline visit 

(recruitment point). The remainder of blood samples (in EDTA coated vacutainers) and sera 

left over after diagnostic tests was stored at -20°C for subsequent analyses, including 

genotyping. 
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3.1.1. Assessment of allergy  

To assess their atopy status, all participants underwent skin prick testing (SPT) to a standard 

battery of inhaled allergens (Alyostal, Stallergenes Greer, France), including house dust mite, 

grass pollen, animal dander, weed pollen, tree pollen and molds, as well as additional inhaled 

(eg. Mediterranean species) and food allergens, if indicated. A full list of allergens tested is 

presented in Supplement 3 (Table 30). SPT was performed on the volar surface of the non-

dominant forearm with the listed allergen extracts, using plastic lancets and 0.9% phenolated 

glycero-saline solution as the negative and 10 mg/mL histamine hydrochloride solution as the 

positive control (Stallergenes Greer, France). The size of each urtica reaction wheal (in 

millimeters) was documented as the mean of the longest diameter and the diameter 

perpendicular to it at its mid-point, according to the International Study of Asthma and 

Allergies in Childhood (ISAAC) skin prick test (SPT) protocol (Asher et al. 1995). 

In addition to SPT, other standard assays of allergy status assessment was performed. More 

specifically, concentrations of total immunoglobulin E (IgE) and allergen-specific IgE (sIgE) 

in serum was determined in all participants, using a standardized sandwich fluorescent 

enzyme immunoassay- ImmunoCAP
®
 (Phadia AB, Sweden) on a Phadia 100 Laboratory 

system (Phadia AB, Sweden). In house established age dependent cut-off values were used to 

determinate elevated serum total IgE level (Dodig et al. 2006). 

3.1.2. Lung function assessment 

In order to evaluate the level of airflow obstruction, all participants underwent routine lung 

function measurements, according to age and indication (where applicable according to 

relevant clinical judgement). These included: 

1. spirometry (FEV1, FVC, PEF, MEF50% and other relevant parameters), SpiroScout, 

Ganshorn Medizin Electronic, Germany 

2. FEV1 reversibility (changes in FEV1 % predicted) 20 minutes after inhalation of 100-

400 g bronchodilatator (salbutamol), depending on body weight, SpiroScout, 

Ganshorn Medizin Electronic, Germany 

3. impulse oscillometry (in younger children, as indicated),  MasterScreen-IOS, Erich 

JÄEGER GmbH & CoKG, Germany 

4. body plethysmography, Q-box, COSMED, Italy, and  
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5. bronichial/airway challenge tests to assess airway hyperresponsiveness (metacholine 

challenge test- APS Pro System, Erich JÄEGER GmbH & CoKG, Germany and 

spiroergometry- MTM-1500 med ergometer, Schiller AG, Switzerland). 

Forced expiratory volume in one second (FEV1) was measured with SpiroScout, Ganshorn 

Medizin Electronic, Germany. The predicted value (% of predicted) was calculated for each 

subject, according to Stanojevic et al. 2008. 

As for the metacholine challenge test the decline in FEV1 was calculated from the control 

value, i.e. the value of FEV1 at baseline and after several inhalations of 3.2% metacholine 

solution (with the initial inhalation being with normal saline) using an automatic inhalation-

synchronized dosimeter jet nebulizer. Methacholine chloride was nebulized automatically by 

the measuring device in cumulative doses of  22.5 g, 45 g, 90 g, 180 g, 360 g, 720 g, 

1440 g and 2000 g. FEV1 was measured, before the challenge and 2 minutes after 

inhalation of saline and each dose of methacholine (APS Pro System, Erich JÄEGER GmbH 

& CoKG, Germany). Changes in post-metacholine FEV1 of 20% were considered a positive 

reaction (with a grading scale of: severe bronchial hyperresponsiveness- positive reaction to 

metacholine doses <24.5 g, intermediate bronchial hyperresponsiveness- positive reaction to 

doses 24.5-389.3 g and mild bronchial hyperresponsiveness- positive reaction to doses 

389.3-1291.3 g). The test was not performed if the post-saline FEV1 was reduced by more 

than 10% compared with the pre-saline FEV1. Methacholine challenges were terminated after 

a fall of FEV1 greater than 20% from the control value or after the last dose inhaled (Brannan 

and Lougheed 2012). 

Spiroergometry testing was performed according to the Bruce treadmill protocol for children 

(Van Der Cammen-van Zijp et al. 2009) on a MTM-1500 med ergometer, Schiller AG, 

Switzerland. Briefly, the participants had their heart rate, ECG and lung function monitored 

(oxygen uptake- VO2), as well as carbon dioxide production- VCO2, minute ventilation- VE, 

and respiratory exchange ratio at 10-second intervals). The treadmill protocol consisted of a 

60-second warm-up period (pacing at 2.74 km/h on a flat treadmill) followed by the initiation 

of the test at 2.74 km/h and a 10% gradient for 3 minutes then by incremental increases in 

speed and incline every 2 minutes until volountary exhaustion. After the test, participants 

were monitored for 2 min to ensure a normal recovery of heart rate (2 km/h with a flat 

treadmill). The test was terminated if at any point the participants felt diziness, exhaustion, 

shortness of breath etc. 
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Impulse oscillometry (IOS) was performed  in younger children (preschool, under the age of 

5 years) using sound waves to detect airway changes, requiring only normal tidal breathing 

from the patient. Pulmonary mechanics are determined by superimposing small external 

pressure signals on the spontaneous breaths of the participants. When analyzed, these 

pressure signals separately quantify the degree of obstruction in the central and peripheral 

airways. Briefly, in IOS a loudspeaker generates harmonic sound waves of single or multiple 

frequencies (2 and 4 Hz to between 30 and 35 Hz) that flow through a conduit tube and 

mouthpiece into the participant`s respiratory tract. The sound impulses travel superimposed 

on normal tidal breathing through the large and small airways, with higher frequencies 

reflecting back from the large airways to the mouth and lower frequencies traveling deeper 

into the lung before returning. A pressure and flow transducer measures inspiratory and 

expiratory flow and pressure. Respiratory impedance is the sum of all the forces (resistance 

and reactance) opposing the pressure impulses (oscillations) and is calculated from the ratio 

of pressure and flow at each frequency (Bickel et al. 2014). 

Body plethysmography provides measures of the lung that reflect a multitude of functional 

and structural aspects (such as lung residual volume- RV, total lung capacity- TLC etc.) that 

cannot be assessed with other tecniques (eg. spirometry). Briefly, it was performed in certain 

participants by detecting changes in pressure in combination with either changes of mouth 

pressure or with flow rate under defined breathing conditions in a sealed box with rigid walls 

(chamber), according to the law of Boyle-Mariotte (for a fixed amount of gas in a closed 

compartment, such as the sealed box used, the relative changes in the compartment’s volume 

are always equal in magnitude but opposite in sign to the relative changes in pressure, 

inferring relative volume changes from pressure changes). These signals are evaluated in 

order to determine static lung volumes and airflow resistance (Criee et al. 2011). 

3.1.3. Assessment of levels of inflammation 

In order to assess the levels and type of both systemic and local inflammation, certain 

inflammatory biomarkers were measured at baseline in all participants, including fractional 

exhaled nitric oxide (FENO), high-sensitive C-reactive protein (hsCRP) as well as certain 

inflammatory cell counts, such as eosinophils and neutrophils. 

FENO is used to detect the level of airway inflammation as well as likeliness to respond to 

treatment with inhaled corticosteroids. It can also help to predict the onset of asthma 

symptoms or loss of asthma control, and to monitor compliance with corticosteroid therapy 
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and the effectiveness of such treatment. Briefly, the FENO small and portable device 

(Medisoft, Belgium) was used to determine exhaled nitric oxide concentration in the 

participant`s breath sample, requiring 10-second exhalation of breath at a pressure of 10–20 

cm H2O to maintain a fixed flow rate of 50 ± 5 ml/s. The last 3 seconds of the 10-second 

exhalation were analyzed by a calibrated electrochemical sensor to give a definitive result in 

parts per billion (ppb). Clinical cut-off values can be applied to the exhaled nitric oxide 

values to categorise readings as low, intermediate or high according to the reference ranges 

for children and adults (Dweik et al. 2011). 

Serum C-reactive protein levels measured by high-sensitivity assays (hs-CRP) are known to 

be a marker of low-grade systemic inflammation, present in many chronic conditions, 

including cardiovascular diseases and asthma. It may also be associated with airflow 

obstruction and even serve as a surrogate marker of airway inflammation in asthma and 

moreover, it may indicate the level of disease control (Takemura et al. 2006, Navratil et al. 

2009). Brielfy, a highly sensitive CRP assay was performed with an Olympus AU680 

automated system (Beckman Coulter Inc., USA) using the latex agglutination method to 

quantitate CRP in serum samples of all participants at baseline (Rifai et al. 1999).  

In order to assess both the type and level of inflammation, total eosinophil and neutrophil 

counts were measured at baseline in peripheral blood samples of all participants, absolute 

and/or relative (to total white blood cell- WBC count) counts, using a Sysmex cell counter 

(Sysmex XT-1800i Automated Hematology Analyzer, Sysmex Canada Inc., Canada). 

3.1.4. Other assessments and diagnostic tests 

In order to assess their health status, other diagnostic measurements and tests were performed 

in all participants at baseline, including complete blood count (absolute and/or relative)- 

white blood cells (basophils, monocytes, lymphocytes etc.) and total number of platelets 

using the same cell counter (Sysmex XT-1800i Automated Hematology Analyzer, Sysmex 

Canada Inc., Canada), as well as other relevant biochemistry assays, such as immunoglobulin 

levels (immunoglobulin A- IgA, immunoglobulin G- IgG and immunoglobulin M- IgM), 

using a commercial turbidimetry assay and an Olympus AU680 automated system (Beckman 

Coulter Inc., USA). 

In order to identify additional conditions that might affect and aggravate the underlying 

disease (and asthma control), the participants were tested for common asthma comorbidities, 
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such as gastroesophageal reflux disease (GERD), obstructive sleep apnoea syndrome 

(OSAS), allergic rhinitis and atopic dermatitis. 

All participants (and/or their parents/legal guardians) were asked about the child`s medical 

history on allergic rhinitis/rhinoconjuctivitis (AR) and atopic dermatitis (AD). Additionally, 

participants who were suspected to have AR, underwent measurements of nasal fractional 

exhaled nitric oxide (nasal FENO) for diagnostic purposes (to assess the degree of local upper 

airway allergic inflammation as well as subjective symptoms), using the same FENO 

analyzer as with bronchial FENO with a nose adaptor (Medisoft, Belgium). 

Participants with unresolved persistent cough etiology or otherwise suspected reflux disease 

underwent 24-hour pH monitoring with a esophageal probe positioned approximately 5 cm 

above the lower esophageal sphincter barrier using a Ohmega pH and impedance monitoring 

system (Medical Measurement Systems B.V., The Netherlands), recording the number, type 

and duration of acidic, weakly acidic and non-acidic reflux episodes (Streets and DeMeester 

2003). This data was then used to calculate certain indices (such as the Boix-Ochoa and 

Johnson-DeMeester score) and association to reflux symptoms in order to diagnose or 

exclude GERD. 

Obstructive sleep apnoea syndrome (OSAS), characterized by episodes of complete or partial 

upper airway obstruction during sleep, is a common comorbidity in asthma and moreover, 

has been associated with disease severity (Salles et al. 2013). In order to diagnose or exclude 

any obstructive sleep disorder (including OSAS), certain participants (those with adequate 

indication- nocturnal symptoms, AR, extensive fatigue or affected cognitive and learning 

abilities due to sleep deprivation etc.) were subjected to all-night polysomnography (a multi-

parametric sleep study). Briefly, the participants spent one night sleeping in the Sleep lab at 

the Srebrnjak Children`s Hospital, at least 8 hours in duration. They were put to bed at their 

usual bedtimes, without the use of any hypnotic agents. During this procedure, the particpants 

had multiple body functions monitored using Nihon Kohden (Japan) digital system and PolyT 

software as well as standardized proceudre (Gjergja Juraški et al. 2013). These included 

monitoring of brain functions (electroencephalography, EEG), eye movements 

(electrooculography, EOG), chin and leg muscle activity (electromyography, EMG) and heart 

rhythm (electrocardiography, ECG), along with breathing functions such as nasal pressure, 

nasal airflow, respiratory effort (thoracic and abdominal plethysmography), pulse oxymetry, 

snore detection, body position sensoring etc. These recorded sleep onset latency, sleep 
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efficiency, stages of sleep (1, 2, 3 and REM- Rapid eye movement), breathing irregularities, 

arousals, cardiac rhythm abnormalities, leg movements and body positions during sleep and 

oxygen saturation, required for the assessment of sleep disorders, according to standard 

criteria of Rechtschaffen and Kales, including the apnoea-hypopnoea index, AHI (Lerman et 

al. 2012, Gjergja Juraški et al. 2013).  

3.1.5. Asthma severity assessment 

After the participants were diagnosed with asthma, the level of disease control and disease 

severity (grade) was assessed according to GINA guidelines (GINA 2018, GINA Pediatric 

2015), taking into account symptom severity and occurance (including nocturnal symptoms), 

need for reliever medications (namely SABA), number of asthma exacerbations, lung 

function and scoring based on certain health and quality-of-life questionnaires such as the 

Asthma Control Test (ACT). According to these severity criteria, participants were classified 

as either having: intermittent or persistent asthma, with persistent asthma being mild, 

moderate or severe. A summary of the GINA classification of asthma severity is presented in 

Tables 7 and 8. 

Table 7. Classification (grading system) of asthma severity in adults and children older than 5 years of age, 

according to GINA guidelines, involving daytime and nocturnal symptom severity and frequency, as well as 

certain lung function parameters. *The presence of one of the features of severity is sufficient to place a patient 

in that category (grade). May be applicable to children 5 years of age and younger. Source: GINA 2018, GINA 

Pediatric 2015. 

 Symptoms (daytime) Symptoms 

(nocturnal) 

PEF or 

FEV1 (% of 

predicted) 

PEF 

variability 

STEP/GRADE 1 

(Intermittent asthma) 

< 1 time a week; 

Asymptomatic and normal 

PEF between attacks 

≤ 2 times a month ≥ 80% < 20%  

STEP/GRADE 2 (Mild 

persistent asthma) 

> 1 time a week but  < 1 

time a day; Attacks may 

affect daily functioning 

>2 times a month ≥ 80% 20-30% 

STEP/GRADE 3 

(Moderate persistent 

asthma) 

Daily; Attacks affect 

activity and daily 

functioning 

>1 time a week 60-80% >30% 

STEP/GRADE 4 (Severe 

persistent asthma) 

Continuous; Limited 

physical activity 

Frequent ≤ 60% >30% 
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Table 8. Classification (grading system) of asthma severity in children under 5 years of age, according to GINA 

guidelines. Source: GINA Pediatric 2015. For persistent asthma, consider severity and interval since last 

exacerbation. Frequency and severity may fluctuate over time.* Exacerbations of any severity may occur in 

patients in any severity category (grade). 

 

Components of severity 

(criteria) 

Classification of asthma severity (children aged 0-4 yrs) 

Intermittent 

asthma 

(grade 1) 

Persistent asthma 

Mild (grade 2) Moderate 

(grade 3) 

Severe (grade 4) 

Im
p

a
ir

m
e
n

t 

   Im
p

a
ir

m
e
n

t 

Symptoms ≤ 2 days per 

week 

>2 days per week, but 

not daily 

Daily Daily, throughout 

the day 

Night-time 

awakenings 

0 1-2 times per month 3-4 times per 

month 

>1 times per week 

Use of reliever 

medication (SABA) 

≤ 2 days per 

week 

>2 days per week, but 

not daily 

Daily Severeal times per 

day 

Intereference with 

normal activity 

None Minor limitation Some 

limitation 

Extremely limited 

R
is

k
 

 

Exacerbations 

requiring OCS 

0-1 per annum ≥ 2 exacerbations in the last 6 months requiring OCS use, or ≥ 

4 episodes per year lasting for > 1 day AND risk factors for 

persistent asthma 

 

3.1.6. Assessment of treatment response 

After they were diagnosed with asthma, patients started treatment with inhaled 

corticosteroids, ICS  (alone or in combination with LABA) and/or LTRA, according to 

disease severity and previously assessed disease control. Follow-up visits with lung function 

and airway inflammation testing as well as physical examination were made on average every 

6 months over the period of  2 years. Additionally, treatment success (response) and the level 

of disease control (according to GINA guidelines) was assessed at each visit. A summary of 

GINA recommendations for asthma control monitoring is presented in Table 9. 

Table 9. Grading system for the assessment of asthma control between clinical visits, according to GINA 

guidelines. Source: GINA 2018, GINA Pediatric 2015. 

 Controlled Partly controlled Uncontrolled 

Characteristic Controlled if all of 

the following 

Any of the features 

present in one week 

 

 

 

 

Daytime symptoms (wheezing, cough, 

difficulty in breathing) 

None (≤ 2 times per 

week) 

>2 times per week 

short periods- 
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minutes)  

 

Three or more 

features of partly 

controlled present 

in one week 

Limitation of activities (cough, 

wheezing or difficulty in breathing 

during exercise, playing or laughing) 

 

None 

 

Any 

Nocturnal symptoms/awakenings 

(cough, wheezing or difficulty in 

breathing) 

 

None 

 

Any 

Need for reliever/rescue treatment None (≤ 2 times per 

week) 

>2 times per week 

Lung function (PEF or FEV1) Normal <80% predicted or 

personal best 

Exacerbations None One or more per year One or more per 

week 

 

Acute exacerbation severity and frequency was assessed at each follow-up visit as: none, 

mild, moderate and severe. 

 

3.2. Genetic analysis 

3.2.1. DNA isolation 

Genomic DNA was extracted from EDTA-containing peripheral whole blood samples, 

previously stored at -20°C, using QIAamp DNA Blood Mini Kit (Qiagen GmbH, Germany) 

according to the manufacturer’s instructions, by an automated (Qiacube, Qiagen GmbH, 

Germany) or manual spin protocol. DNA was eluted in a total volume of 100 l. The quality 

and concentration (A260/A280 ratio, concentration in ng/l, A260/A230 ratio) of each DNA 

isolate was checked using a NanoDrop
™

 2000 spectrophotometer (ThermoFisher Scientific 

Inc., USA).  

3.2.2. Genotyping 

The genotypes of the SNPs analyzed were determined using a 5`-nuclease allelic 

discrimination assay in a 96-well format and Taqman technology. Primers and probes were 

purchased from Applied Biosystems (Life Technologies, USA) for SNP genotyping assays 

rs37973 in GLCCI1, rs9910408 in TBX21 and rs242941 and rs1876828 in CRHR1, as well as 

rs1042713 in ADRB2. Allelic discrimination assays were performed in 5 L reaction 

Table 9. continued 
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volumes, using approximately 5 ng of DNA as a template, 2x TaqMan Fast Advanced Master 

Mix, and predesigned SNP genotyping assays provided by Applied Biosystems for rs37973, 

rs9910408, rs242941 and rs1876828. Temperature conditions for qPCR were set at 50°C for 

2 minutes and 95°C for 20 seconds, followed by 40 cycles at 95°C for 3 seconds and at 60°C 

for 30 seconds.  

For rs17576 SNP (MMP9) genotyping a primer and probe set were designed using a free 

online software qPCR primer & probe design tool and design service (Eurofins Genomics, 

Germany). The forward and reverse primer as well as probe sequences are presented in Table 

10. 

Table 10. Primers (forward and reverse) and probes (allele 1 and allele 2) design for the rs17576 genotyping 

assay (MMP9 Gln279Arg, A/G transition detection). FWD- forward primer, REV- reverse primer, Allele 1 PR- 

probe for SNP allele 1, Allele 2 PR- probe for SNP allele 2, bp- base pairs (length of sequence in base paris), 

reporter- fluorescent dye, quencher- fluorescent dye quencher pair. For probe sequences nucleotides highlighted 

in red denote the ambiguity position (transition). 

Oligonucleotide type Length (bp) Sequence  Reporter/quencher 

MMP9 Gln279Arg FWD primer 19 TCCCCCTTTCCCACATCCT  

MMP9 Gln279Arg REV primer 21 CAGGGTTTCCCATCAGCATTG  

MMP9 Gln279Arg Allele 1 PR 17 CTCTACACCCAGGACGG VIC-BHQ1 

MMP9 Gln279Arg Allele 2 PR 17 TCTACACCCGGGACGG FAM-BHQ1 

 

Allelic discrimination assays for rs1042713 and rs17576 was performed in 12.5 l reaction 

volume, using approximately 5 ng of DNA template, 100 M of primer set (forward and 

reverse) and 10 M of probes, with qPCR conditions as follows: 50°C for 2 minutes and 

95°C for 10 minutes, followed by 40 cycles at 95°C for 15 seconds and at 60°C for 1 minute.   

Genotyping of the amplified PCR products was determined by differences in VIC and FAM 

fluorescent levels, using the ABI Prism 7500 Fast Real-Time PCR system (system instrument 

equipped with SDS v2.0.5 software, Applied Biosystems, ThermoFisher Scientific Inc., 

USA) for rs37973, rs9910408, rs242941 and rs1876828 and using the Agilent AriaMX Real-

Time PCR system (system instrument equipped with AriaMx software v1.0, Agilent 

Technologies, USA) for rs1042713 and rs17576. 
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3.3. Statistical analysis 

The Hardy-Weinberg equilibrium was tested using the chi-squared (

) test for the goodness-

of-fit (one degree of freedom) model and Michael H. Court's (2005-2008) online calculator 

(Court 2012). Data distribution was evaluated by the Kolmogorov-Smirnov test and the 

Shapiro-Wilk’s W test. Parametric statistics (one-way ANOVA) were used on normally 

distributed data, and non-parametric statistics (the Kruskal-Wallis test) was used if the 

distribution deviated from normal. Genotypic distribution and allelic frequencies in „good’’, 

„moderate“ and „bad’’ responders (with regard to change from baseline in FEV1, MEF50, 

FENO and level of asthma control after 6 months, 12 months, 18 months and 2 years of  

treatment) were compared using the 
2
 test calculated on contingency tables. A Spearman's 

rank-order correlation was run to determine the relationship between the response to 

treatment (according to the above mentioned changes in lung function parameters- FEV1 and 

MEF50, changes in exhaled nitric oxide and level of asthma control) and other baseline 

parameters (demographic and clinical parameters, including cell count, inflammation 

biomarkers, comorbidity etc.). A multivariate general linear model (or a multi-way 

ANCOVA) was conducted to determine a statistically significant association between the 

level of response to treatment (according to changes in FEV1, MEF50, FENO and asthma 

control) and specific genotypes for rs37973, rs9910408, rs242941, rs1876828, rs1042713 and 

rs17576 controlling for certain confouding variables. IBM
®
 SPSS

®
 Statistics software was 

used for these analyses (version 21, release 21.0.0.0 for Windows; International Business 

Machines Corp., USA). A p-value of  less than 0.05 was accepted as statistically significant. 

 

3.4. Cluster analysis 

Following the 2-year clinical assessment period, all participants were stratified into specific 

subgroups (asthma phenotypes/endotypes) by a cluster analysis, according to specific 

biomarkers- clinical features, treatment success, possible pathophysiological mechanisms and 

genetic predisposition by hierachical clustering analysis (HCA). HCA is considered an 

unsupervised machine learning method. It is used to reveal structures within data based on 

certain distance or similarity between objects and/or variables. All operations on data were 

performed either in R (https://www.r-project.org/) or Python (https://www.python.org/). Data 

taken for hierarchical clustering were the data gathered at baseline (demographic and clinical 

https://www.r-project.org/
https://www.python.org/
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parameters, including cell count, lung function, inflammation biomarkers, comorbidity etc.), 

follow up visits (lung function, airway inflammation- FENO and level of disease control 

according to GINA guidelines) and response to treatment data.  

Hierachical clustering analysis was performed using the Ward method (Moore et al 2010, 

Kim et al. 2013, Qiu et al. 2018) with the use of Pythons’ SciPy library. Ward's method 

minimizes the total within-cluster variance. This method is implemented in a way that each 

step finds the pair of clusters that leads to minimum increase in total within-cluster variance 

after merging. The clusters were subsequently tested on stability using bootstrapping, i.e. the 

data was reshuffled and separated on train-test splits. Jaccard similarity (Irani et al. 2016) was 

used to calculate similarities between the patients` association to the same cluster, i.e. the 

clusters are more stable the higher the Jaccard similarity. To increase cluster stability the 

entry data for HCA was performed on PCA (principal component analysis) transformed data 

(Deliu et al. 2018). PCA is a dimensionality reduction technique based on orthogonal 

transformation. The reduced data was represented as principal components which are 

mutually uncorrelated, each being a linear combination of original variables, and ordered by 

the amount of variance they cary. 
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4. RESULTS 

Basic participant demographic and clinical data at baseline (age, gender and BMI 

distribution, common comorbidities, and disease severity assessment according to GINA 

guidelines, GINA 2018 as well as disease duration) are shown in Table 11. 

Table 11. Basic participant data (clinical and demographic) at baseline (recruitment point). M- male, F- female 

participants; AR- allergic rhinitis; AD ever- atopic dermatitis ever; AD curr- atopic dermatitis in the last 12 

months; GERD- gastroesophageal reflux disease; RI score- reflux index; OSA- obstructive sleep apnea, AHI- 

apnea/hipopnea index; Y- yes, N- no, SD- standard deviation, y- years. Underweight- ≤5 centile, normal- 5-85 

centile, overweight- 85-95 centile, obese- ≥95 centile. 

Age (years)- 

Mean (SD) 

Gender 

(male/female, 

M/F)- N (%) 

Percentile of 

height and 

weight- N (%) 

Disease 

severity 

(GINA)- N 

(%) 

Duration of 

disease (y)- 

mean (SD) 

Comorbidity- N 

(%), mean (SD) 

 9.97 (3.97) 

 

M 9.68 (3.93) 

 

F 10.44 (4.01) 

M 223 (61.10)  

 

F 142 (38.90) 

Underweight- 

11 (3.01) 

Normal- 253 

(69.32) 

Overweight- 50 

(13.70) 

Obese- 51 

(13.97) 

Grade 1- 221 

(60.55) 

Grade 2- 119 

(32.60) 

Grade 3- 19 

(5.21) 

Grade 4- 6 

(1.64) 

3.27 (2.83) 

(N=302) 

AR 312 (85.48) 

AD ever 101 

(27.82) 

AD curr 23 (6.33) 

GERD 101 

(27.67) 

RI score 9.10 ± 

11.19 

OSA 14 (3.84), 

AHI 0.57 ± 2.84 

 

Participant atopy status as well as key allergy and inflammation features (total serum IgE,  

peripheral blood eosinophil count, peripheral blood neutrophil count, hsCRP, lung FENO) at 

baseline (recruitment point) are shown in Table 12. 

Table 12. Participant atopy status and certain allergy and inflammation features. IgE- immunoglobulin, hsCRP- 

high-sensitive C-reactive protein, FENO- fraction of exhaled nitric oxide, WBC- white blood cells (leukocytes). 

Atopy 

(Y/N)- 

N(%) 

Total IgE 

(kIU/l)- 

mean (SD) 

Eosinophil count (Dunger)- 

median (SD) 

Neutrophil 

count (% of 

total WBC)- 

mean (SD) 

hsCRP 

(mg/l)- 

mean (SD) 

Lung FENO 

(ppb)- mean 

(SD) 

Y 319 

(87.40) 

614.54 

(1145.62) 

416.35 (341.27) (N=355) 49.76 (12.86) 

(N=364) 

2.23 (9.30) 

(N=311) 

20.49 (20.07) 

(N=350) 
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N 46 

(12.60) 

(N=351) 

 

Participant lung function data (% of FEV1 and MEF50 predicted for age, gender and posture) 

at baseline is shown in Table 13. 

Table 13. Participant lung function parameters at recruitment point (baseline). FEV1- forced expiratory volume 

in 1 second, MEF50- maximum expiratory flow at 50%, N=365. 

% of FEV1 predicted (at baseline)- mean (SD) % of MEF50 predicted (at baseline)- mean (SD) 

87 (17.14) 88 (23.11) 

 

Genotype distribution (frequency) for each genetic polymorphism is shown in Figure 13. All 

participants were successfully genotyped for rs37973, rs9910408, rs242941 and rs1876828. 

For rs1042713 and rs17576 genotype data was missing for 1 and 19 participants, 

respectively, due to insufficient DNA extract material or degraded DNA samples in 

subsequent/repeated analysis. 

 

Figure 13. Genotype frequency (%) for respective genetic polymorphisms: rs37973, rs9910408, rs242941, 

rs1876828, rs1042713 and rs17576. GLCCI1- glucocorticoid induced 1; TBX21- T-box 21, T-bet; CRHR1- 

corticotropin releasing hormone receptor 1, ADRB2- beta-2-adrenergic receptor; MMP9- matrix 

metallopeptidase 9. For rs37973, rs9910408, rs242941 and rs1876828 N=365, for rs1042713 N=364 and for 

rs17576 N=346.

Table 12. continued 
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Consistency with the Hardy- Weinberg equilibrium (HWE) for each genetic polymorphism, along with global and population-specific minor 

allele frequency (MAF) is presented in Table 14. 

Table 14. HWE consistency for genotype frequencies for rs37973, rs9910408, rs242941, rs1876828, rs1042713 and rs17576. 

chi-squared value, p < 0.05 consistent with 

HWE. Global and population specific (Central European) MAF according to NCBI dbSNP (https://www.ncbi.nlm.nih.gov/SNP/). HWE- Hardy-Weinberg equilibrium, MAF- 

minor allele frequency, CEU- Central European, reference population. Calculated using Michael H. Court's (2005-2008) online calculator (Court 2012). 

 

Genotype 

rs37973 rs9910408 rs242941 rs1876828 rs1042713 rs17576 

Observed Expected Observed Expected Observed Expected Observed Expected Observed Expected Observed Expected 

Homozygote 

reference 

130 130.2 103 106.9 150 155.2 270 270.1 113 88.0 50 83.0 

Heterozygote 176 175.6 189 181.3 176 165.6 88 87.7 132 182.0 239 172.9 

Homozygote 

variant 

59 59.2 73 76.9 39 44.2 7 7.1 119 94.0 57 90.0 

Variant allele 

frequency 

0.40 0.46 0.35 0.14 0.51 0.51 



 0.002 0.664 1.433 0.003 27.433 50.508 

p (1 degree of 

freedom) 

0.965 0.415 0.231 0.956 0.000 0.000 

Global MAF 0.396 0.384 0.323 0.086 0.476 0.456 

CEU MAF 0.442 0.456 0.282 0.240 0.358 0.381 

https://www.ncbi.nlm.nih.gov/SNP/
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4.1.  Definition of response  

According to their response to specific classes of treatment (ICS alone, LTRA alone, 

combination treatment- ICS+LABA/LTRA), patients were divided into ‘‘poor’’ or 

„inadequate“ („moderate“ and „bad“) and ‘‘good’’ responders in accordance with the 

American Thoracic Society (ATS) and European Respiratory Society (ERS) task forces` 

interpretation of changes in lung function (FEV1 and MEF50) as well as data from other 

studies evaluating treatment response in asthma- by taking into account changes in the level 

of disease control (according to GINA), as well as changes in the level of airway 

inflammation, i.e. FENO values (GINA 2018, Pellegrino et al. 2005, Reddel et al. 2009, Oei 

et al. 2011, Dweik et al. 2011, Buchvald et al. 2003, Smith et al. 2005, de Jongste 2005, 

Smith et al. 2005).  

4.1.1.     Definition of response according to changes in lung function 

Bad response to treatment according to changes in FEV1 was defined as a decrease in FEV1 

predicted (for children of certain age, gender and posture- height, weight) by 10% or more 

between clinical visits/follow-ups (≤10%). Moderate response to treatment according to 

changes in FEV1 was defined as a relative change in FEV1 predicted by ±10% and good 

response to treatment was defined as an increase in FEV1 predicted by 10% or more (≥10%) 

between clinical assessments/follow-ups.  

Bad response to treatment according to changes in MEF50 was defined as a decrease in 

MEF50 predicted (for children of certain age, gender and posture) by 15% or more (≤15%); 

moderate response was defined as a relative change in MEF50 predicted by ±15% and good 

response to treatment was defined as an increase in MEF50 predicted by 15% or more (≥15%) 

between clinical visits/follow-ups (Telenga et al. 2013, Boskabady et al. 2008).  

4.1.2.     Airway inflammation 

According to ATS recommendations, cut points rather than reference values were used when 

interpreting FENO levels (Dweik et al. 2011): low FENO (25 ppb in adults; 20 ppb in 

children), high FENO (50 ppb in adults, 35 ppb in children), intermediate FENO (between 25 

ppb and 50 ppb in adults; 20- 35 ppb in children). Bad response to treatment was defined as 

an increase in FENO greater than 20% for values over 35 (50 for patients older than 18 years) 

ppb or more than 10 ppb for values lower than 35 (50) ppb between clinical visits. A 

reduction of at least 20% in FENO for values over 35 (50) ppb or more than 10 ppb for 
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values lower than 35 (50) ppb was defined as the cut point to indicate a significant (good) 

response to anti-inflammatory treatment. Moderate response to treatment was defined as 

changes in FENO values ranging from a reduction of ≤20% and increase ≤20% for FENO 

values over 35 (50) ppb and ±10 ppb for values lower than 35 (50) ppb from one visit to the 

next. 

4.1.3.    Asthma control 

The level of asthma control between clinical visits was assessed according to GINA 

guidelines (GINA 2018): symptom occurance (including nocturnal symptoms), need for 

reliever medications (namely SABA), number and severity of asthma exacerbations, lung 

function and Asthma Control Test (ACT), where applicable. The level of control was defined 

as either controlled, partly controlled or uncontrolled, whereas bad response to treatment was 

defined as a deterrioration in asthma control between visits (controlled to uncontrolled or 

partly controlled), good response was defined as an improvement in asthma control (partly- 

or uncontrolled to controlled) and moderate response was defined as no changes in partial 

asthma control between clinical visits, with the exception of the patient having uncontrolled 

asthma from visit to visit, which was considered a bad response or good response to 

treatment, when the patient had controlled asthma symptoms between visits. 

 

4.2.  Association of response to treatment with genetic and other 

parameters 

Significant correlations in response to treatment (in general, including all 3 major classes of 

treatment- ICS, LTRA and combination treatment- ICS+LABA/LTRA) according to relative 

changes in lung function parameters (FEV1 and MEF50), changes in markers of local (airway) 

inflammation (FENO) and changes in the level of asthma control according to GINA 

guidelines, between respective visits over the period of (on average) 2 years with specific 

genetic polymorphisms (rs37973, rs9910408, rs242941, rs1876828, rs1042713 and rs 17576) 

are presented in Table 15. 

Table 15. Correlation of response to treatment after 6, 12, 18 and 24 months (on average), according to changes 

in FEV1, MEF50, FENO and asthma control, with the analyzed genetic polymorphisms: rs37973 (GLCCI1), 

rs9910408 (TBX21), rs242941 (CRHR1), rs1876828 (CRHR1), rs1042713 (ADRB2) and rs17576 (MMP9). 
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Spearman`s correlation test, p< 0.05. Abbreviations for respective responses to treatment are defined in 

Supplement 4. R- Spearman`s Rho (correlation coefficient). 

 rs37973 rs9910408 rs242941 rs1876828 rs1042713 rs17576 

Resp_MEF50_diagn_1
st
 

control 

   R= -0.116 

p= 0.027 

N= 365 

  

Resp_FENO_1
st
_2

nd
 

control 

 R= -0.141 

p= 0.008 

N= 350 

    

Resp_FENO_3
rd

_4
th 

control 

     R= -0.175 

p= 0.009 

N= 223 

Resp_MEF50_3
rd

_4
th

 

control 

R= 0.180 

p= 0.006 

N= 234 

     

Resp_FEV1_diagn_4
th

 

control 

  R= 0.158 

p= 0.016 

N= 231 

   

Resp_CRTL_diagn_4
th

 

control 

    R= 0.147 

p= 0.024 

N= 234 

 

 

Significant correlations in response to treatment (in general, including all 3 major classes of 

treatment- ICS, LTRA and combination treatment- ICS+LABA/LTRA) according to relative 

changes in lung function parameters (FEV1 and MEF50), changes in markers of local (airway) 

inflammation (FENO) and changes in the level of asthma control according to GINA 

guidelines, between respective visits over the period of (on average) 2 years with other 

clinical and physiological parameters are presented in Table 16. 

Table 16. Correlation of response to treatment after 6, 12, 18 and 24 months (on average), according to changes 

in FEV1, MEF50, FENO and asthma control, with all other physiological and clinical variables (medical 

history, biochemical, lung function, demographic and other parameters). Spearman`s correlation test, p< 0.05. 

Abbreviations for respective responses to treatment are defined in Supplement 4. R- Spearman`s Rho 

(correlation coefficient). Diagnosis- recruitment point; AD- atopic dermatitis, AR- allergic rhinitis, OSA- 

obstructive sleep apnea. 
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Response to treatment Association with physiologic and clinical parameters 

Resp_FEV1_diagn_1
st
 control 

(N=365) 

MEF50 at diagnosis (R= 0.236, p= 0.000), total IgE (R= 0.108, p= 0.040), FVC at 1
st
 control (R= -0.364, p=0.000), PEF at 1

st
 control (R= 

-0.303, p= 0.000), MEF50 at 1
st
 control (R= -0.376, p= 0.000), Atopy (R=0.120, p= 0.021), Asthma severity (R= 0.114, p= 0.029), 

Exacerbation severity at 1
st
 control (R= 0.111, p= 0.034), FVC at 2

nd
 control (R= -0.175, p= 0.001), PEF at 2

nd
 control (R= -0.112, p= 

0.033), MEF50 at 2
nd

 control (R= -0.180, p=0.001), FVC at 3
rd

 control (R= -0.184, p= 0.000),  PEF at 3
rd

 control (R= -0.190, p= 0.000), 

MEF50 at 3
rd

 control (R= -0.159, p= 0.002), FENO at 4
th

 control (R= 0.134, p= 0.010), Asthma control at 4
th

 control (R= 0.109, p= 0.038) 

Resp_FENO_diagn_1
st
 control 

(N= 352) 

Asthma control at diagnosis (R= -0.121, p=0.023), Age (R= 0.199, p= 0.000), Disease duration (R= 0.166, p= 0.002), total IgE (R= 

0.113, p= 0.034), Eosinophil count (R= 0.114, p= 0.033), AD (R= -0.105, p= 0.049), Night symptoms at 3
rd

 control (R= -0.110, p= 0.039) 

Resp_CTRL_diagn_1
st
 control 

(N= 365) 

MEF50 at diagnosis (R= -0.118, p= 0.024), Age (R= 0.153, p= 0.003), total IgE (R= 0.204, p= 0.000), Basophil count (R= 0.125, p= 

0.017), FEV1 at 1
st
 control (R= -0.109, p= 0.037), MEF50 at 1

st
 control (R= -0.142, p= 0.007), FENO at 1

st
 control (R= 0.149, p= 0.004), 

AR (R= 0.121, p= 0.021), AD (R= 0.147, p= 0.005), Atopy (R= 0.134, p= 0.010), FEV1 at 2
nd

 control (R= -0.137, p= 0.009), FVC at 2
nd

 

control (R= -0.115, p= 0.028), FENO at 2
nd

 control (R= 0.174, p= 0.001), FENO at 3
rd

 control (R= 0.169, p= 0.001) 

Resp_MEF50_diagn_1
st
 control 

(N= 365) 

FEV1 at diagnosis (R= 0.236, p= 0.000), Eosinophil count (R= -0.112, p= 0.033), FEV1 at 1
st
 control (R= -0.375, p= 0.000), FVC at 1

st
 

control (R= -0.168, p= 0.001), PEF at 1
st
 control (R= -0.294, p= 0.000), FEV1 at 2

nd
 control (R= -0.227, p= 0.000), FVC at 2

nd
 control 

(R= -0.132, p= 0.012), PEF at 2
nd

 control (R= -0.156, p= 0.003), FEV1 at 3
rd

 control (R= -0.141, p= 0.007), PEF at 3
rd

 control (R= -0.194, 

p= 0.000) 

Resp_FEV1_1
st
_2

nd
 control (N= 

365) 

Disease duration (R= 0.130, p= 0.013), OSA (R= 0.122, p= 0.019), total IgE (R= -0.118, p= 0.024), Neutrophil count (R= -0.107, p= 

0.040), Basophil count (R= 0.107, p= 0.041), FVC at 1
st
 control (R= 0.284, p= 0.000), PEF at 1

st
 control (R= 0.256, p= 0.000), MEF50 at 

1
st
 control (R= 0.306, p= 0.000), Atopy (R= -0.111, p= 0.034), FVC at 2

nd
 control (R= -0.194, p= 0.000), PEF at 2

nd
 control (R= -0.221, 

p= 0.000), MEF50 at 2
nd

 control (R= -0.119, p= 0.023), FVC at 4
th

 control (R= -0.105, p= 0.046), Asthma control at 4
th

 control (R= -

0.127, p= 0.015) 

Resp_FENO_1
st
_2

nd
 control 

(N= 350) 

BMI percentile (R= -0.113, p= 0.035), Neutrophil count (R= -0.133, p= 0.013), PEF at at 2
nd

 control (R= -0.145, p= 0.007), FEV1 at 4
th
 

control (R= -0.151, p= 0.005), FVC at 4
th

 control (R= -0.182, p= 0.001), PEF at 4
th

 control (R= -0.188, p= 0.000), MEF50 at 4
th

 control 

(R= -0.135, p= 0.01), Asthma control at 4
th

 control (R= -0.154, p= 0.004) 

Resp_CTRL_1
st
_2

nd
 control 

(N=365) 

Neutrophil count (R= 0.125, p= 0.016), AD (R= 0.116, p= 0.027), FEV1 at 2
nd

 control (R= -0.231, p= 0.000), FVC at 2
nd

 control (R= -

0.116, p= 0.027), MEF50 at 2
nd

 control (R= -0.212, p= 0.000), FEV1 at 3
rd

 control (R= -0.131, p= 0.012), MEF50 at 3
rd

 control (R= -0.119, 
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p= 0.023) 

Resp_MEF50_1
st
_2

nd
 control 

(N=365) 

Disease duration (R= 0.198, p= 0.000), Eosinophil count (R= 0.121, p= 0.020), Neutrophil count (R= -0.117, p= 0.025), Basophil count 

(R= 0.119, p= 0.024), FEV1 at 1
st
 control (R= 0.354, p= 0.000), FVC at 1

st
 control (R= 0.243, p= 0.000), PEF at 1

st
 control (R= 0.337, p= 

0.000), Exacerbation severity at 1
st
 control (R= -0.110, p= 0.035), FEV1 at 2

nd
 control (R= -0.190, p= 0.000), FENO at 2

nd
 control (R= 

0.110, p= 0.035), Asthma control at 4
th

 control (R= -0.123, p= 0.019) 

Resp_FEV1_2
nd

_3
rd

 control (N= 

365) 

Age (R= 0.109, p= 0.037), BMI percentile (R= 0.112, p= 0.032), FVC at 2
nd

 control (R= 0.166, p= 0.001), PEF at 2
nd

 control (R= 0.175, 

p= 0.001), MEF50 at 2
nd

 control (0.229, p= 0.000), Asthma control at 2
nd

 control (R= -0.109, p= 0.037), FVC at 3
rd

 control (R= -0.112, p= 

0.032), PEF at 3
rd

 control (R= -0.136, p= 0.009), MEF
50

 at 3
rd

 control (R= -0.167, p=0.001) 

Resp_FENO_2
nd

_3
rd

 control 

(N= 350) 

Atopy (R= 0.167, p= 0.002), PEF at 2
nd

 control (R= 0.164, p= 0.002), FEV1 at 4
th

 control (R= 0.214, p= 0.000), FVC at 4
th

 control (R= 

0.254, p= 0.000), PEF at 4
th

 control (R= 0.243, p= 0.000), MEF50 at 4
th

 control (R= 0.198, p= 0.000), Asthma control at 4
th

 control (R= 

0.228, p= 0.000), Exacerbation severity at 4
th

 control (R= 0.106, p= 0.049) 

Resp_CTRL_2
nd

_3
rd

 control 

(N= 365) 

MEF50 at diagnosis (R= -0.152, p= 0.004), Age (R= -0.187, p= 0.000), Monocyte count (R= -0.112, p= 0,032), FEV1 at 1
st
 control (R= -

0.172, p= 0.001), FVC at 1
st
 control (R= -0.155, p= 0.003), PEF at 1

st
 control (R= -0.142, p= 0.006), MEF50 at 1st control (R= -0.127, p= 

0.015), FENO at 1
st
 control (R= -0.225, p= 0.000), AD (R= 0.140, p= 0.007), FVC at 2

nd
 control (R= -0.105, p= 0.046), PEF at 2

nd
 control 

(R= -0.151, p= 0.004), MEF50 (R= -0.141, p= 0.007), FENO at 2
nd

 control (R= -0.132, p= 0.012), FEV1 at 3
rd

 control (R= -0.314, p= 

0.000), FVC at 3
rd

 control (R= -0.162, p= 0.002), PEF at 3
rd

 control (R= -0.230, p= 0.000), MEF50 at 3
rd

 control (R= -0.299, p= 0.000), 

FEV1 at 4
th

 control (R= -0.139, p= 0.008), FVC at 4
th

 control (R= -0.134, p= 0.010) 

Resp_MEF50_2
nd

_3
rd

 control 

(N= 365) 

OSA (R= -0.115, p= 0.028), Platelet count (R= 0.122, p= 0.020), FEV1 at 2
nd

 control (R= 0.137, p= 0.009), FVC at 2
nd

 control (R= 0.108, 

p= 0.039), PEF at 2
nd

 control (R= 0.120, p= 0.022), FEV1 at 3
rd

 control (R= -0.201, p= 0.000), Asthma control at 3
rd

 control (R= 0.240, 

p= 0.000), Exacerbation severity (R= 0.222, p= 0.000) 

Resp_FEV1_3
rd

_4
th

 control 

(N=234) 

Age (R= -0.149, p= 0.023), Disease duration (R= -0.129, p= 0.049), FVC at 2
nd

 control (R= -0.136, p= 0.038), MEF50 at 3
rd

 control (R= 

0.139, p= 0.034), FVC at 4
th

 control (R= -0.209, p= 0.001), PEF at 4
th

 control (R= -0.129, p= 0.049) 

Resp_FENO_3
rd

_4
th

 control 

(N= 223) 

Exacerbation severity at 1
st
 control (R= -0.141, p= 0.035) 

Resp_CTRL_3
rd

_4
th

 control hsCRP (R= 0.134, p= 0.040), Neutrophil count (R= 0.151, p= 0.021), MEF50 at 1
st
 control (R= -0.147, p= 0.023), PEF at 2

nd
 control (R= 
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(N= 236) 0.160, p= 0.014), PEF at 3
rd

 control (R= 0.216, p= 0.001) 

Resp_MEF50_3
rd

_4
th

 control 

(N= 234) 

FEV1 at 3
rd

 control (R= 0.132, p= 0.044), FEV1 at 4
th

 control (R= -0.181, p= 0.006), PEF at 4
th

 control (R= -0.143, p= 0.029) 

Resp_FEV1_diagn_2
nd

 control 

(N= 365) 

MEF50 at diagnosis (R= 0.387, p= 0.000), Asthma control (R= -0.104, p= 0.047), Disease duration (R= 0.108, p= 0.040), Neutrophil count 

(R= -0.135, p= 0.010), FVC at 2
nd

 control (R= -0.240, p= 0.000), PEF at 2
nd

 control (R= -0.191, p= 0.000), MEF50 at 2
nd

 control (R= -

0.306, p= 0.000), FVC at 3
rd

 control (R= -0.113, p= 0.032), PEF at 3
rd

 control (R= -0.114, p= 0.029), MEF50 at 3
rd

 control (R= -0.179, p= 

0.001) 

Resp_FENO_diagn_2
nd

 control 

(N= 349) 

Disease duration (R= 0.145, p= 0.007), GERD (0.155, p= 0.004), Asthma control at 3
rd 

control (R= -0.133, p= 0.013), Exacerbation 

severity at 3rd control (R= -0.111, p= 0.039) 

Resp_CTRL_diagn_2
nd

 control 

(N= 365) 

Disease duration (R= 0.117, p= 0.025), Neutrophil count (R= 0.109, p= 0.037), Monocyte count (R= -0.104, p= 0.046), AR (R= 0.120, p= 

0.022), FEV1 at 2
nd

 control (R= -0.256, p= 0.000), FVC at 2
nd

 control (R= -0.129, p= 0.013), MEF50 at 2
nd

 control (R= -0.200, p= 0.000), 

FEV1 at 3
rd 

control (R= -0.120, p= 0.022) 

Resp_MEF50_diagn_2
nd

 control 

(N= 365) 

FEV1 at diagnosis (R= 0.400, p= 0.000), Asthma control at diagnosis (R= -0.119, p= 0.023), MEF50 at 1
st
 control (R= -0.167, p= 0.001), 

FEV1 at 2
nd

 control (R= -0.332, p= 0.000), PEF at 2
nd

 control (R= -0.217, p= 0.000), FEV1 at 3
rd

 control (R= -0.170, p= 0.001), PEF at 3
rd

 

control (R= -0.149, p= 0.004) 

Resp_FEV1_diagn_3
rd

 control 

(N= 365) 

MEF50 at diagnosis (R= 0.457, p= 0.000), Asthma control at diagnosis (R= -0.122, p= 0.020), total IgE (R= 0.110, p= 0.036), Neutrophil 

count (R= -0.105, p= 0.044), AR (R= 0.104, p= 0.047), FVC at 2
nd

 control (R= -0.142, p= 0.007), PEF at 2
nd

 control (R= -0.124, p= 

0.018), MEF50 at 2
nd

 control (R= -0.108, p= 0.039), FVC at 3
rd

 control (R= -0.188, p= 0.000), PEF at 3
rd

 control (R= -0.261, p= 0.000), 

MEF50 at 3rd control (R= -0.290, p= 0.000), Asthma control at 3
rd

 control (R= 0.149, p= 0.004), Exacerbation severity at 3
rd

 control (R= 

0.173, p= 0.001) 

Resp_CTRL_diagn_3
rd

 control 

(N= 365) 

Age (R= -0.129, p= 0.014), Monocyte count (R= -0.162, p= 0.002), FEV1 at 1
st
 control (R= -0.162, p= 0.002), FVC at 1

st
 control (R= -

0.152, p= 0.004), PEF at 1
st
 control (R= -0.134, p= 0.010), MEF50 at 1

st
 control (R= -0.120, p= 0.022), FENO at 1

st
 control (R= -0.161, p= 

0.002), AD (R= 0.127, p= 0.015), FEV1 at 2
nd

 control (R= -0.166, p= 0.001), FVC at 2
nd

 control (R= -0.113, p= 0.032), PEF at 2
nd

 control 

(R= -0.120, p= 0.021), MEF50 at 2
nd

 control (R= -0.135, p= 0.010), FEV1 at 3
rd

 control (R= -0.313, p= 0.000), FVC at 3
rd

 control (R= -

0.181, p= 0.001), PEF at 3
rd

 control (R= -0.240, p= 0.000), MEF50 at 3rd control (R= -0.295, p= 0.000) 
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Resp_MEF50_diagn_3
rd

 control 

(N= 365) 

FEV1 at diagnosis (R= 0.435, p= 0.000), Asthma control at diagnosis (R= -0.123, p= 0.019), Age (R= 0.114, p= 0.029), FEV1 at 2
nd

 

control (R= -0.119, p= 0.023), PEF at 2
nd

 control (R= -0.124, p= 0.018), FEV1 at 3
rd

 control (R= -0.275, p= 0.000), PEF at 3
rd

 control (R= 

-0.189, p= 0.000), FENO at 3
rd

 control (R= 0.115, p= 0.028), Asthma control at 3
rd

 control (R= 0.142, p= 0.007), Exacerbation severity at 

3
rd

 control (R= 0.141, p= 0.007) 

Resp_FEV1_diagn_4
th

 control 

(N= 231) 

MEF50 at diagnosis (R= 0.413, p= 0.000), hsCRP (R= -0.147, p= 0.025), AR (R= 0.137, p= 0.037), FVC at 2
nd

 control (R= -0.143, p= 

0.030), MEF50 at 3rd control (R= -0.194, p= 0.003), FVC at 4
th

 control (R= -0.196, p= 0.003), PEF at 4
th

 control (R= -0.184, p= 0.005), 

MEF50 at 4
th

 control (R= -0.274,  p= 0.000) 

Resp_FENO_diagn_4
th

 control Disease duration (R= 0.152, p= 0.023), Basophil count (R= -0.144, p= 0.032), Atopy (R= 0.156, p= 0.020), FVC at 2
nd

 control (R= -

0.134, p= 0.046) 

Resp_CTRL_diagn_4
th

 control FEV1 at 3
rd 

control (R= -0.155, p= 0.017), FEV1 at 4
th

 control (R= -0.143, p= 0.028) 

Resp_MEF50_diagn_4
th

 control FEV1 at diagnosis (R= 0.417, p= 0.000), PEF at 2
nd

 control (R= -0.137, p= 0.037), PEF at 4
th

 control (R= -0.176, p= 0.007) 

 

 

4.3. Association of treatment response with genetic and other parameters in specific treatment class groups 

Significant associations in treatment response according to relative changes in FEV1, MEF50, FENO and level of asthma control between 

respective visits over the period of 2 years (recruitment to 4
th

 control visit) with specific genetic polymorphisms (rs37973, rs9910408, rs242941, 

rs1876828, rs1042713 and rs17576), as well as significant associations adjusted for certain confouding variables- covariates (demographic and 

clinical parameters, previously identified by a Spearman`s correlation test- see Table 16) in specific subgroups of participants on different 

classes of asthma treatment (ICS alone, LTRA alone and combination treatment- ICS+LABA/LTRA) are presented in Tables 17 (use of ICS 

alone), 18  (use of LTRA alone) and 19 (use of combination treatment). 
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Table 17. Association of response to treatment after 6, 12, 18  and 24 months (on average), according to changes in FEV1, MEF50, FENO and asthma control with the 

analyzed genetic polymorphisms: rs37973 (GLCCI1), rs9910408 (TBX21), rs242941 (CRHR1), rs1876828 (CRHR1) and rs17576 (MMP9) in patients using inhaled 

corticosteroids (ICS) alone. Kruskal-Wallis test, p< 0.05, 2- chi square, N= 158.     Adjusted model (F adjusted) corrected for possible confounding variables: age, disease 

duration, atopy status, total IgE level, eosinophil count, neutrophil count, basophil count, hsCRP level, monocyte count, platelet count,  BMI percentile category, comorbidity 

(AR, AD, OSA, GERD). General linear model test, p< 0.05, Partial 2- partial eta squared (effect size statistics), N= 158. BMI percentile category: underweight (0-3 

percentile), normal (5-85 percentile), overweight (86-95 percentile), obese (>95 percentile). Abbreviations for respective responses to treatment are defined in Supplement 4. 

rs37973 (GLCCI1) 

 Resp_CTRL_

diagn to 1
st 

control 

Resp_FEV1_ 1
st
 

to 2
nd

 control 

Resp_FENO_

1
st
 to 2

nd
 

control 

Resp_CTRL_

1
st 

to 2
nd

 

control 

Resp_MEF50_

1
st
 to 2

nd
 

control 

Resp_CTRL_3
rd

 

to 4
th 

control 

Resp_CTRL_diagn 

to 2
nd 

control 

Resp_MEF50

_diagn to 3
rd

 

control 


2
 10.736 9.353 11.111 16.525 6.492 9.122 14.543 8.600 

p value (two-tailed) 0.005 0.009 0.004 0.000 0.039 0.010 0.001 0.014 

 Resp_FENO_1
st
 to 2

nd
 control Resp_FENO_2

nd
 to 3

rd
 control 

F (adjusted) 2.397 2.139 

p value 0.005 0.012 

Partial 
2
 0.519 0.491 

rs9910408 (TBX21) 

 Resp_MEF50_dia

gn to 1
st 

control 

Resp_FEV1_1
st
 

to 2
nd

 control 

Resp_FENO_1
st
 

to 2
nd

 control 

Resp_FEV1_ 2
nd

 

to 3
rd

 control 

Resp_FENO_

2
nd

 to 3
rd

 

control 

Resp_MEF50_

2
nd

 to 3
rd

 

control 

Resp_CTRL_

3
rd

 to 4
th

 

control 

Resp_MEF50

_diagn to 2
nd

 

control 


2
 6.768 6.545 25.672 17.028 20.671 7.337 15.960 7.314 

p value (two-tailed) 0.034 0.038 0.000 0.000 0.000 0.026 0.000 0.026 

 Resp_FEV1_1
st
 to 2

nd
 control Resp_FENO_1

st
 to 2

nd
 control Resp_CTRL_3rd to 4th control 

F (adjusted) 1.769 2.685 2.143 
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p value 0.047 0.002 0.013 

Partial 
2
 0.428 0.532 0.476 

rs242941 (CRHR1) 

 Resp_FENO_ 1
st
 

to 2
nd

 control 

Resp_MEF50_

1
st
 to 2

nd
 

control 

Resp_FEV1_diagn 

to 2
nd

 control 

Resp_FENO_ 

diagn to 2
nd

 

control 

Resp_FEV1_diag

n to 3
rd

 control 

Resp_FEV1

_diagn to 

4
th

 control 

Resp_CTRL_

diagn to 4
th

 

control 

Resp_MEF50

_diagn to 4
th

 

control 


2
 12.335 11.023 17.452 15.395 10.556 17.303 12.966 11.617 

p value (two-tailed)  0.002 0.004 0.000 0.000 0.005 0.000 0.002 0.003 

 Resp_FENO_ 1
st
 to 2

nd
 control Resp_FENO_ diagn to 2

nd
 control 

F (adjusted) 2.550 2.077 

p value 0.003 0.015 

Partial 
2
 0.535 0.484 

rs1876828 (CRHR1) 

 Resp_CTRL_

diagn to 1
st
 

control 

Resp_CTRL_ 

1st to 2nd 

control 

Resp_FENO_3
rd

 

to 4
th

 control 

RespFEV1_diagn 

to 2
nd

 control 

Resp_MEF50_diagn 

to 2
nd

 control 

Resp_FEV1_diagn 

to 3
rd 

control 

Resp_CTRL_diagn 

to 3
rd 

control 


2
 7.017 6.542 6.980 13.423 6.891 6.511 11.313 

p value (two-tailed) 0.030 0.038 0.031 0.001 0.032 0.039 0.003 

rs17576 (MMP9) 

 Resp_CTRL_diagn to 1
st
 control Resp_FEV1_3

rd
  to 4

th
 control Resp_FENO_diagn to 2

nd
 control 


2
 11.327 14.268 6.035 

p value (two-tailed) 0.003 0.001 0.049 
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Table 18. Association of response to treatment after 6, 12, 18 and 24 months (on average), according to changes in FEV1, MEF50, FENO and asthma control with the 

analyzed genetic polymorphism rs17576 (MMP9) in patients using leukotriene antagonists (LTRA) alone. Kruskal-Wallis test, p< 0.05, 2- chi square, N= 38.    Adjusted 

model (F adjusted) corrected for possible confounding variables: age, disease duration, atopy status, total IgE level, eosinophil count, neutrophil count, basophil count, 

hsCRP level, BMI percentile category, comorbidity (AR, AD, OSA, GERD). General linear model test, p< 0.05, Partial 
2
- partial eta squared (effect size statistics), N= 38. 

BMI percentile category: underweight (0-3 percentile), normal (5-85 percentile), overweight (86-95 percentile), obese (>95 percentile).Abbreviations for respective responses 

to treatment are defined in Supplement 4. 

rs17576 (MMP9) 

 Resp_FENO_3
rd

 to 4
th

 control 


2
 7.119 

p value (two-tailed) 0.028 

 Resp_CTRL_1
st
 to 2

nd
 control 

F (adjusted) 8.488 

p value 0.026 

Partial 
2
 0.971 

 

Table 19. Association of response to treatment after 6, 12, 18 and 24 months (on average), according to changes in FEV1, MEF50, FENO and asthma control with the 

analyzed genetic polymorphisms: rs37973 (GLCCI1), rs9910408 (TBX21), rs242941 (CRHR1) and rs1042713 (ADRB2) in patients using combination treatment (ICS + 

LABA and/or LTRA). Kruskal-Wallis test, p< 0.05, 2- chi square, N= 106. Adjusted model (F adjusted) corrected for possible confounding variables: age, disease duration, 

atopy status, total IgE level, eosinophil count, neutrophil count, basophil count, monocyte count, platelet count, hsCRP level, BMI percentile category, comorbidity (AR, AD, 

OSA, GERD). General linear model test, p< 0.05, Partial 2- partial eta squared (effect size statistics), N= 106. BMI percentile category: underweight (0-3 percentile), 

normal (5-85 percentile), overweight (86-95 percentile), obese (>95 percentile). Abbreviations for respective responses to treatment are defined in Supplement 4. 

rs37973 (GLCCI1) 

 Resp_FENO_diagn to 1
st
 Resp_CTRL_1

st
 to 2

nd
 Resp_MEF50_3

rd
 to 4

th
 Resp_FENO_diagn to 2

nd
 Resp_CTRL_diagn to 
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control control control control 2
nd

 control 


2
 9.076 13.275 11.903 13.822 14.722 

p value (two-tailed) 0.011 0.001 0.003 0.001 0.001 

rs9910408 (TBX21) 

 Resp_FENO_1
st
 to 2

nd
 control Resp_FEV1_2

nd
 to 3

rd
 control Resp_MEF50_3

rd
 to 4

th
 control Resp_FEV1_diagn to 3

rd
 control 


2
 20.335 6.927 8.165 6.152 

p value (two-tailed) 0.000 0.031 0.017 0.046 

 Resp_FENO_1
st
 to 2

nd
 control 

F (adjusted) 2.060 

p value 0.031 

Partial 
2
 0.586 

rs242941 (CRHR1) 

 Resp_ME

F50_diagn 

to 1
st
 

control 

Resp_FEV1

_1
st
 to 2

nd 

control 

Resp_FEV1

_2
nd

 to 3
rd

 

control 

Resp_ME

F50_2
nd

 to 

3
rd

 control 

Resp_FEV1

_3
rd

 to 4
th

 

control 

Resp_FEN

O_3
rd

 to 4
th

 

control 

Resp_FEN

O_diagn to 

3
rd

 control 

Resp_FEN

O_diagn to 

4
th

 control 

Resp_CTR

L_diagn to 

4
th

 control 

Resp_ME

F50_diagn 

to 4
th

 

control 


2
 8.844 14.822 23.482 18.020 8.162 6.342 10.527 11.913 6.150 7.273 

p value (two-tailed) 0.012 0.001 0.000 0.000 0.017 0.042 0.005 0.003 0.046 0.026 

 Resp_FENO_diagn to 4
th

 control 

F (adjusted) 2.463 

p value 0.010 

Partial 
2
 0.629 

rs1042713 (ADRB2) 

 Resp_FENO_diagn to 1
st 

control Resp_CTRL_2
nd

 to 3
rd

 control Resp_FENO_diagn to 2
nd

 control Resp_CTRL_diagn to 3
rd

 control 
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
2
 16.814 7.926 12.803 12.942 

p value (two-tailed) 0.000 0.019 0.002 0.002 

 Resp_FENO_diagn to 1
st 

control 

F (adjusted) 2.321 

p value 0.015 

Partial 
2
 0.615 
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Genotype distribution (frequencies) for respective genetic polymorphisms (rs37973, 

rs9910408, rs242941, rs1876828, rs1042713 and rs17576) in „good“, „moderate“ and „bad“ 

responders according to relative changes in FEV1, MEF50, FENO and level of asthma control 

between each visit over the period of 2 years (recruitment to 4
th

 control visit) in specific 

subgroups of participants on different classes of asthma treatment (ICS alone and 

combination treatment- ICS+LABA/LTRA) are presented in Tables 20 (use of ICS alone) 

and 21 (use of combination treatment). 

Table 20. Genotype distribution for analyzed genetic polymorphisms: rs37973 (GLCCI1), rs9910408 (TBX21) 

and rs242941 (CRHR1) in patients with „good“, „moderate“ and „bad“ response to treatment with ICS alone 

according to changes in FEV1, MEF50, FENO and asthma control after (on average) 6, 12, 18 and 24 months of 

medication use. Abbreviations for respective responses to treatment are defined in Supplement 4. Pearson`s 
2
 

test, p < 0.05. 
2
- chi square, N= 158. 

rs37973 (GLCCI1) 

 GG GA AA Total 
2
 p value  

Resp_FENO_

1
st
 to 2

nd
 

control 

Good response 10 64 38 112 13.980 0.007 

Moderate response 7 6 9 22 

Bad response 3 5 9 17 

Total 20 75 56 151 

Resp_FENO_

2
nd

 to 3
rd

 

control 

Good response 10 16 12 38 10.210 0.037 

Moderate response 6 47 38 91 

Bad response 4 11 6 21 

Total 20 74 56 150 

rs9910408 (TBX21) 

    AA AG GG Total 
2
 p value 

Resp_FEV1_1
st
 to 2

nd
 

control 

Good response 2 24 5 31 

19.340 0.000 
Moderate response 28 54 12 94 

Bad response 15 9 9 33 

Total 45 87 26 158 

Resp_FENO_1
st
  to 2

nd
 

control 

Good response 40 63 9 112 

27.663 0.000 
Moderate response 0 14 8 22 

Bad response 2 8 7 17 

Total 42 85 24 151 

Resp_CTRL_3
rd

  to 4
th

 

control 

Good response 7 26 9 42 

22.710 0.000 Moderate response 16 36 7 59 

Bad response 13 4 0 17 
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Total 36 66 16 118 

rs242941 (CRHR1) 

    AA AC CC Total 
2
 p value  

Resp_FENO_diagn to 

2
nd

 control 

Good response 7 6 4 17 

19.650 0.000 
Moderate response 11 38 48 97 

Bad response 0 18 19 37 

Total 18 62 71 151 

Resp_FENO_1
st
 to 2

nd
 

control 

Good response 8 45 59 112 

14.210 0.007 
Moderate response 4 11 7 22 

Bad response 6 6 5 17 

Total 18 62 71 151 

 

Table 21. Genotype distribution for analyzed genetic polymorphisms: rs9910408 (TBX21), rs242941 (CRHR1) 

and rs1042713 (ADRB2) in patients with „good“, „moderate“ and „bad“ response to treatment with combination 

therapy (ICS+LABA/LTRA) according to changes in FEV1, MEF50, FENO and asthma control after (on 

average) 6, 12, 18 and 24 months of medication use. Abbreviations for respective responses to treatment are 

defined in Supplement 4. Pearson`s 
2
 test, p < 0.05. 

2
- chi square, N= 106. 

rs9910408 (TBX21) 

    AA AG GG Total 
2
 p value (

2
) 

Resp_FENO_1
st
 to 2

nd
 

control 

Good response 29 37 2 68 

28.745 0.000 
Moderate response 8 6 11 25 

Bad response 1 7 3 11 

Total 38 50 16 104 

rs242941 (CRHR1) 

    AA AC CC Total 
2
 p value (

2
) 

Resp_FENO_diagn to 

4
th

 control 

Good response 0 7 8 15 

13.522 0.007 
Moderate response 4 23 21 48 

Bad response 7 7 4 18 

Total 11 37 33 81 

rs1042713 (ADRB2) 

    GG GA AA Total 
2
 p value (

2
) 

Resp_FENO_diagn to 

1
st
 control 

Good response 13 30 30 73 

17.460 0.001 
Moderate response 2 0 3 5 

Bad response 12 1 13 26 

Total 27 31 46 104 

 

Table 20. continued 
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Significant allelic frequencies (distribution) for respective genetic polymorphisms (rs37973, 

rs9910408, rs242941, rs1876828, rs1042713 and rs17576) in „good“, „moderate“ and „bad“ 

responders according to relative changes in FEV1, MEF50, FENO and level of asthma control 

between each visit over the period of 2 years (recruitment to 4
th

 control visit) in specific 

subgroups of participants on different classes of asthma treatment (ICS alone, LTRA alone 

and combination treatment- ICS+LABA/LTRA) are presented in Tables 22 (use of ICS 

alone), 23 (use of LTRA alone) and 24 (use of combination treatment). 

Table 22. Allelic distribution for analyzed genetic polymorphisms: rs37973 (GLCCI1), rs9910408 (TBX21) and 

rs242941 (CRHR1) in patients with „good“, „moderate“ and „bad“ response to treatment with ICS alone 

according to changes in FEV1, MEF50, FENO and asthma control after (on average) 6, 12, 18 and 24 months of 

medication use. Abbreviations for respective responses to treatment are defined in Supplement 4. 
2
 test, p < 

0.05. 
2
- chi square, N= 158. 

rs37973 

Response GG GA+AA 
2
 p value 

 Good 10 102 

8.707 0.0129 Resp_FENO_1
st
 to 2

nd 
control Moderate 7 15 

Bad 3 14 

Good 10 28 

9.713 0.008 Resp_FENO_2
nd

 to 3
rd

 control Moderate 6 85 

Bad 4 17 

rs9910408 

Response AA AG+GG 
2
 p value  

Good 2 29 

12.130 0.0023 Resp_FEV1_1
st
 to 2

nd
 control Moderate 28 66 

Bad 15 18 

Good 7 35 

21.05 <0.0001 Resp_CTRL_3
rd

 to 4
th

 control Moderate 16 43 

Bad 13 4 

Good 40 72 

14.14 0.0009 Resp_FENO_1
st
  to 2

nd
 control Moderate 0 22 

Bad 2 15 

rs242941 

Response AA AC+CC 
2
 p value 

 Good 7 10 
18.90 <0.0001 Resp_FENO_diagn to 2

nd
 control 

Moderate 11 86 
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Bad 0 37 

Good 8 104 

12.10 0.0024 Resp_FENO_1
st
 to 2

nd
 control Moderate 4 18 

Bad 6 11 

 

Table 23. Allelic distribution for analyzed genetic polymorphisms: rs17576 (MMP9) in patients with „good“, 

„moderate“ and „bad“ response to treatment with LTRA alone according to changes in FEV1, MEF50, FENO 

and asthma control after (on average) 6, 12, 18 and 24 months of medication use. Abbreviations for respective 

responses to treatment are defined in Supplement 4. 2 test, p < 0.05. 2- chi square, N= 38. 

rs17576 

Response AA+AG GG 
2
 p value 

 Good 29 4 

6.221 0.0446 Resp_CTRL_1
st
 to 2

nd
 control Moderate 0 1 

Bad 2 1 

 

Table 24. Allelic distribution for analyzed genetic polymorphisms: rs9910408 (TBX21), rs242941 (CRHR1) and 

rs1042713 (ADRB2) in patients with „good“, „moderate“ and „bad“ response to treatment with combination 

therapy (ICS+LABA/LTRA) according to changes in FEV1, MEF50, FENO and asthma control after (on 

average) 6, 12, 18 and 24 months of medication use. Abbreviations for respective responses to treatment are 

defined in Supplement 4. 
2
 test, p < 0.05. 

2
- chi square, N= 106. 

rs9910408 

Response AA+AG GG 
2
 p value 

 Good 66 2 

25.01 <0.0001 Resp_FENO_1
st
 to 2

nd
 control Moderate 14 11 

Bad 8 3 

rs242941 

Response AA AC+CC 
2
 p value 

 Good 0 15 

13.31 0.0013 Resp_FENO_diagn to 4
th

 control Moderate 4 44 

Bad 7 11 

rs1042713 

Response GG GA+AA 
2
 p value 

 Good 13 60 

8.552 0.0139 Resp_FENO_diagn to 1
st
 control Moderate 2 3 

Bad 12 14 

 

Table 22. continued 
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4.4.  Clustering analysis 

Prior to cluster analysis, the data had to be preprocessed. The data consisted of 365 patients 

and 280 variables in total. The dataset did not include any incomplete cases up to the 3
rd

 

control visit, which corresponds to the roughly 1.5 year- follow-up period.  At the 4
th

 control 

visit, a significant proportion of the dataset had missing values due to the fact that not all 

patients were followed up to the 4
th

 control visit (ca. 2 years after recruitment) or simply 

dropped out of the study. Some features had missing values due to patients` lack of 

cooperation (eg. patient was too young to cooperate for lung function or FENO 

measurement), there was insufficient blood/serum sample to perform certain biochemical 

tests etc.  

The variables used in this study can be broadly separated into: 

 baseline demographics (such as gender, age); 

 subjective clinical data obtained from the parents/patient at the patient`s first research 

contact (personal and family medical history, such as atopy status, allergic rhinitis, 

atopic dermatitis); 

 objective clinical data collected at the patient`s first research contact and other follow-

up appointments. These include personal anamnesis in the period since the last visit, 

such as symptom control and frequency and severity of exacerbations, lung function 

and airway inflammation (FENO) measurement; 

 biologically (and clinically) relevant data collected at the patient`s first research 

contact (such as skin prick and total and specific IgE allergy test results, hematologic 

and biochemical blood test results, comorbidity status- pH probing and reflux 

episodes monitoring for diagnostics of GERD, polysomnography for diagnostics of 

OSAS, anthropometric measurements- height and weight and calculation of BMI and 

BMI percentiles); 

 genetic data- genotypes for rs37973 (GLCCI1), rs9910408 (TBX21), rs242941 

(CRHR1), rs1876828 (CRHR1), rs1042713 (ADRB2) and rs17576 (MMP9). 

The data was divided into treatment periods, i.e. diagnosis (baseline), first, second, third and 

fourth control visit. Feature selection in clustering was conducted through filtering based on 

the variance threshold, which was set to 5%, meaning variables with less than 5% variance 

were excluded from further analysis (Belgrave et al. 2018).  
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Features describing allergic sensitization were converted to binary or ordinal features, and 

grouped into 4 clinically relevant categories: seasonal allergens (i.e. grass, weed and tree 

pollen), perennial allergens (house dust mite and molds), insect venom (bee, wasp or hornet) 

and food allergens. Both SPT results and specific IgE results were into account for each 

respective sensitization category. Additionally, certain sensitization features were assigned 

separate variables, due to their possible clinical relevance- strong sensitization to house dust 

mite (D. pteronyssinus, D. farinae), cat dander and ragweed (Ambrosia). These sensitizations 

have previously been associated with disease severity and more severe outcomes (Sheehan 

and Phipatanakul 2016, Li et al. 2013, Lombardi et al. 2017). Strong sensitization was 

defined as sIgE class R4-R6 to the respective allergen. 

Features with string notation (e.g. “medication (treatment) prescribed”) were numerically 

coded and converted to categorical features. Features with a large portion of missing values 

(ca. 20%) were imputed by median for continuous variables and most frequent value for 

categorical variables. 

Data clustering was performed with data regarding treatment outcomes (level of response to 

treatment according to changes in lung function, airway inflammation and asthma control, as 

defined in Section 4.1) to identify patterns of response to treatment with common classes of 

asthma treatment ("response" clusters). These clusters were transformed to classes and 

relevant data (at recruitment point, baseline) was used to establish plausible underlying 

disease phenotypes (clusters) predisponing for certain treatment outcomes (classes). To 

understand feature importance for classification the decision tree algorhytm was used. For 

this, a Gini index (Gini coefficient) which represents a measure of statistical dispersion 

(Wittebole et al. 2009) was set to 0.2 as the lowest limit. A Gini coefficient of zero expresses 

perfect equality, but to avoid potential noise and overfitting the clustering data, an empirical 

cutoff of 0.2 was implemented. 

Response clusters are presented in Figure 14. Relevant features (main discriminants) 

distinguishing each cluster according to the decision tree algorhytm for the response clusters 

are shown in Figure 15. The relevant features corresponding to clinical, demographic and 

genetic data from recruitment point (baseline) characterizing each response cluster/class 

(main discriminants) are shown in Figure 16. Cluster statistics related to response to 

treatment patterns and data from recruitment point (baseline) are shown in Tables 25 and 26, 

respectively.  
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Figure 14. Heatmap of response clusters indicating patterns of response to treatment with common classes of asthma treatment (ICS alone, LTRA alone, ICS+LABA/LTRA). 

Ward`s Euclidean method, p< 0.05. 
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Figure 15. Main discriminants distinguishing between each response cluster (N= 4) according to the decision tree algorhytm. Ward`s Euclidean method, p< 0.05, Gini < 0.2. 

Disc- discrete variable, asthmalev- level of asthma control, fen0- FENO, th- treatment (therapy), init- 1
st
 control visit (after 6 months of treatment use), 1st- 2

nd
 control visit 

(after 12 months of medication use), 2nd- 3
rd

 control visit (after 1.5 years of treatment use), resp- response.  

  



80 
 

 

F
ig

u
re

 1
6

. 
M

ai
n
 d

is
cr

im
in

an
ts

 (
re

le
v
an

t 
fe

at
u
re

s)
 c

h
ar

ac
te

ri
zi

n
g
 e

ac
h
 r

e
sp

o
n
se

 c
lu

st
er

s/
cl

as
s 

co
rr

es
p

o
n
d

in
g
 t

o
 c

li
n
ic

al
, 

d
em

o
g
ra

p
h
ic

al
 a

n
d

 g
en

et
ic

 d
at

a 
fr

o
m

 r
ec

ru
it

m
e
n
t 

p
o

in
t,

 a
cc

o
rd

in
g
 t

o
 t

h
e 

d
ec

is
io

n
 t

re
e 

al
g
o

rh
y
tm

. 
W

ar
d

`s
 E

u
cl

id
ea

n
 m

et
h
o

d
, 

p
<

 0
.0

5
, 

G
in

i 
<

 0
.2

. 
D

is
c-

 d
is

cr
et

e 
v
ar

ia
b

le
, 

as
th

m
al

e
v

- 
le

v
el

 o
f 

as
th

m
a 

co
n

tr
o

l,
 f

en
0

- 
F

E
N

O
, 

th
- 

tr
ea

tm
en

t 
(t

h
er

ap
y
),

 i
n
it

- 
1

st
 c

o
n
tr

o
l 

v
is

it
 (

a
ft

er
 6

 m
o

n
th

s 
o

f 
tr

ea
tm

e
n
t 

u
se

),
 1

st
- 

2
n
d
 c

o
n
tr

o
l 

v
is

it
 (

a
ft

er
 1

2
 m

o
n
th

s 
o

f 
m

ed
ic

at
io

n
 u

se
),

 2
n
d

- 
3

rd
 c

o
n

tr
o

l 
v
is

it
 (

a
ft

er
 1

.5
 

y
ea

rs
 o

f 
tr

ea
tm

e
n
t 

u
se

),
 a

n
ti

le
u
k

- 
L

T
R

A
 t

re
at

m
en

t,
 I

C
S

_
L

ab
a
- 

co
m

b
in

a
ti

o
n
 t

re
at

m
e
n
t,

 e
so

in
o

p
h
il

s_
d

u
n

g
er

- 
E

o
si

n
o

p
h
il

 c
o

u
n
t 

(D
u
n

g
er

),
 e

o
si

n
o

p
h
il

s_
b

lo
o

d
_

 r
el

at
iv

e 

eo
si

n
o

p
h
il

 b
lo

o
d

 c
o

u
n
t 

(%
),

 n
eu

tr
o

p
h
il

s_
b

lo
o

d
- 

re
la

ti
v
e 

n
eu

tr
o

p
h
il

 b
lo

o
d

 c
o

u
n
t,

 a
st

h
m

a_
ct

rl
- 

as
th

m
a 

co
n
tr

o
l.

 



81 
 

Table 25. Response to treatment- related cluster statistics. Ward`s Euclidean method, 
2
 test, p< 0.05. Abbreviations for respective responses to treatment are defined in 

Supplement 4. 

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Significa

nce 

No of patients N= 58 N= 87 N= 138 N= 64 p value 

 Good 

N (%) 

Moderate 

N (%) 

Bad N 

(%) 

Good 

N (%) 

Moderate 

N (%) 

Bad N 

(%) 

Good 

N (%) 

Moderate 

N (%) 

Bad N 

(%) 

Good 

N (%) 

Moderate 

N (%) 

Bad N 

(%) 

 

Resp_FEV1_diagn to 

1
st
 control 

17 

(29.31) 

27 (46.55) 14 

(24.14) 

8 (9.2) 45 (51.72) 34 

(39.08) 

75 

(54.35) 

49 (35.51) 14 

(10.14) 

19 

(29.69) 

24 (37.5) 21 

(32.81) 

< 0.001 

Resp_FENO_diagn to 

1
st
 control 

1 (1.72) 57 (98.28) 0 (0) 79 

(90.8) 

7 (8.05) 1 (1.15) 108 

(78.26) 

14 (10.14) 16 

(11.59) 

58 

(90.62) 

4 (6.25) 3 (3.12) < 0.001 

Resp_CTRL_diag to 

1
st
 control 

34 

(58.62) 

12 (20.69) 12 

(20.69) 

55 

(63.22) 

22 (25.29) 10 

(11.49) 

94 

(68.12) 

16 (11.59) 28 

(20.29) 

34 

(53.12) 

11 (17.19) 19 

(29.69) 

< 0.05 

Resp_MEF50_diag to 

1
st
 control 

18 

(31.03) 

22 (37.93) 18 

(31.03) 

5 (5.75) 43 (49.43) 39 

(44.83) 

75 

(54.35) 

43 (31.16) 20 

(14.49) 

20 

(31.25) 

22 (34.38) 22 

(34.38) 

< 0.001 

Resp_FEV1_1
st
 to 2

nd
 

control 

9 

(15.52) 

46 (79.31) 3 (5.17) 10 

(11.49) 

64 (73.56) 13 

(14.94) 

44 

(31.88) 

70 (50.72) 24 

(17.39) 

18 

(28.12) 

40 (62.5) 6 (9.38) < 0.001 

Resp_FENO_1
st
 to 

2
nd

 control 

48 

(82.76) 

10 (17.24) 0 (0) 55 

(63.22) 

21 (24.14) 11 

(12.64) 

84 

(60.87) 

30 (21.74) 24 

(17.39) 

39 

(60.94) 

14 (21.88) 11 

(17.19) 

< 0.05 

Resp_CTRL_1
st
 to 

2
nd

 control 

52 

(89.66) 

2 (3.45) 4 (6.9) 59 

(67.82) 

11 (12.64) 17 

(19.54) 

118 

(85.51) 

4 (2.9) 16 

(11.59) 

46 

(71.88) 

6 (9.38) 12 

(18.75) 

< 0.01 

Resp_FEV1_2
nd

 to 3
rd

 

control 

3 (5.17) 45 (77.59) 10 

(17.24) 

11 

(12.64) 

73 (83.91) 3 (3.45) 21 

(15.22) 

89 (64.49) 28 

(20.29) 

4 (6.25) 42 (65.62) 18 

(28.12) 

< 0.001 

Resp_FENO_2
nd

 to 

3
rd

 control 

16 

(27.59) 

26 (44.83) 16 

(27.59) 

29 

(33.33) 

48 (55.17) 10 

(11.49) 

54 

(39.13) 

75 (54.35) 9 (6.52) 23 

(35.94) 

29 (45.31) 12 

(18.75) 

< 0.01 



82 
 

Res_CTRL_2
nd

 to 3
rd

 

control 

53 

(91.38) 

3 (5.17) 2 (3.45) 82 

(94.25) 

5 (5.75) 0 (0) 128 

(92.75) 

6 (4.35) 4 (2.9) 2 (3.12) 9 (14.06) 53 

(82.81) 

< 0.001 

Resp_MEF50_2
nd

 to 

3
rd

 control 

3 (5.17) 41 (70.69) 14 

(24.14) 

20 

(22.99) 

57 (65.52) 10 

(11.49) 

38 

(27.54) 

76 (55.07) 24 

(17.39) 

4 (6.25) 36 (56.25) 24 

(37.5) 

< 0.001 

Resp_FEV1_diagn to 

2
nd

 control 

22 

(37.93) 

23 (39.66) 13 

(22.41) 

6 (6.9) 42 (48.28) 39 

(44.83) 

79 

(57.25) 

54 (39.13) 5 (3.62) 19 

(29.69) 

30 (46.88) 15 

(23.44) 

< 0.001 

Resp_FENO_diagn to 

2
nd

 control 

7 

(12.07) 

0 (0) 51 

(87.93) 

13 

(14.94) 

65 (74.71) 9 

(10.34) 

25 

(18.12) 

90 (65.22) 23 

(16.67) 

14 

(21.88) 

42 (65.62) 8 (12.5) < 0.001 

Resp_CTRL_diagn to 

2
nd

 control 

50 

(86.21) 

6 (10.34) 2 (3.45) 61 

(70.11) 

16 (18.39) 10 

(11.49) 

120 

(86.96) 

10 (7.25) 8 (5.8) 42 

(65.62) 

10 (15.62) 12 

(18.75) 

< 0.01 

Resp_MEF50_diagn 

to 2
nd

 control 

17 

(29.31) 

27 (46.55) 14 

(24.14) 

3 (3.45) 36 (41.38) 48 

(55.17) 

74 

(53.62) 

60 (43.48) 4 (2.9) 14 

(21.88) 

35 (54.69) 15 

(23.44) 

< 0.001 

Resp_FEV1_diagn to 

3
rd

 control 

19 

(32.76) 

20 (34.48) 19 

(32.76) 

8 (9.2) 49 (56.32) 30 

(34.48) 

71 

(51.45) 

62 (44.93) 5 (3.62) 8 (12.5) 39 (60.94) 17 

(26.56) 

< 0.001 

Resp_FENO_diagn to 

3
rd

 control 

12 

(20.69) 

25 (43.1) 21 

(36.21) 

15 

(17.24) 

56 (64.37) 16 

(18.39) 

34 

(24.64) 

86 (62.32) 18 

(13.04) 

10 

(15.62) 

37 (57.81) 17 

(26.56) 

< 0.01 

Resp_CTRL_diagn to 

3
rd

 control 

53 

(91.38) 

5 (8.62) 0 (0) 81 

(93.1) 

6 (6.9) 0 (0) 135 

(97.83) 

3 (2.17) 0 (0) 4 (6.25) 20 (31.25) 40 

(62.5) 

< 0.001 

Resp_MEF50_diagn 

to 3
rd

 control 

11 

(18.97) 

30 (51.72) 17 

(29.31) 

5 (5.75) 37 (42.53) 45 

(51.72) 

71 

(51.45) 

61 (44.2) 6 (4.35) 4 (6.25) 36 (56.25) 24 

(37.5) 

< 0.001 

 

 

 

 

Table 25. continued 
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Table 26. Cluster statistics related to relevant clinical, demographic and genetic data from recruitment point (diagnosis). Ward`s Euclidean method, Kruskal- Wallis and 2 

test, p< 0.05. Strong sensitization defined as sIgE to respective allergen of  >17.51 kU/L (classes 4-6), food allergy defined as any sIgE to food allergens > 0.35 kU/L (> class 

1). Abbreviations for respective responses to treatment are defined in Supplement 4.  

Feature Cluster 1 Cluster 2 Cluster 3 Cluster 4 Significa

nce 

No of patients N= 58 N= 87 N= 138 N= 64 p value 

 No Yes No Yes No Yes No Yes  

Strong sensitization 

to dust mite (sIgE d1) 

18 (31.03%) 40 (68.97%) 40 (45.98%) 47 (54.02%) 73 (52.90%) 65 (47.10%) 31 (48.44%) 33 (51.56%) < 0.05 

Food allergy 51 (87.93%) 7 (12.07%) 70 (80.46%) 17 (19.54%) 122 (88.41%) 16 (11.59%) 54 (84.38%) 10 (15.63%)  

AD comorbidity 44 (75.86%)  14 (24.14%) 60 (68.96%)  27 (31.03%) 94 (68.12%)  44 (31.88%)  34 (53.12%)  30 (46.88%) < 0.05 

Gene_rs37973 

 GG GA AA GG GA AA GG GA AA GG GA AA < 0.05 

13 

(22.41%) 

18 

(31.03%) 

27 

(46.55

%) 

13 

(14.94

%) 

48 

(55.17%) 

26 

(29.89%) 

15 

(10.87

%) 

70 

(50.72%) 

53 

(38.41%) 

12 

(18.75%) 

34 

(53.12%) 

18 

(28.12

%) 

 
Mean (STD) 

% FEV1 predicted at 

baseline 
0.89 (0.20) 0.96 (0.13) 0.82 (0.17) 0.88 (0.15) < 0.001 

% MEF50 predicted 

at baseline 
0.92 (0.22) 1.03 (0.19) 0.79 (0.22) 0.84 (0.24) < 0.001 

FENO at baseline 

(ppb)  
21.5 (23.61) 17.23 (16.15) 23.07 (23.14) 18.59 (13.38)  

Age (yrs) 
11.79 (3.39) 10.16 (3.82) 9.98 (3.84) 9.61 (3.64) < 0.01 
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Height (cm) 
153.05 (17.78) 143.9 (19.11) 143.86 (21.12) 142.23 (21.24) < 0.05 

Disease duration 

(yrs) 
5.72 (3.43) 5.08 (3.84) 4.12 (3.8) 3.45 (3.11) < 0.001 

Total IgE (kIU/L) 
686.34 (744.36) 421.95 (578.5) 653.9 (1164.19) 484.79 (516.04)  

Eosinophil absolute 

count (Dunger) 
419.99 (284.96) 418.71 (347.17) 380.16 (305.29) 377.22 (349.65)  

Neutrophil blood 

count (%) 
49.72 (11.26) 50.79 (13.18) 49.57 (12.82) 51.99 (12.96)  

hsCRP (mg/L) 
2.58 (6.31) 4.02 (14.45) 3.11 (7.52) 2.57 (3.72)  

Platelets (x 10
9
/L) 

291.09 (86.54) 278.68 (108.14) 283.72 (105.47) 257.7 (105.31)  

Asthma severity Grade 1-2 Grade 3-4 Grade 1-2 Grade 3-4 Grade 1-2 Grade 3-4 Grade 1-2 Grade 3-4  

55 (94.83%) 3 (5.17%) 84 (96.55%) 3 (3.45%) 131 (94.93%) 7 (5.07%) 55 (85.93%) 9 (14.06%) < 0.05 

 

BMI percentile 

0-5, 

N(%) 

5-85, 

N(%) 

>85, 

N(%) 

0-5, 

N(%) 

5-85, 

N(%) 

>85, 

N(%) 

0-5, 

N(%) 

5-85, 

N(%) 

>85, 

N(%) 

0-5, 

N(%) 

5-85, 

N(%) 

>85, 

N(%)  

0 (0) 

47 

(81.03) 

11 

(18.87) 3 (3.45) 

52 

(59.77) 

32 

(36.78) 4 (2.9) 

94 

(68.11) 

40 

(28.99) 3 (4.69) 

47 

(73.43) 

14 

(21.88) < 0.05 

Table 26. continued 
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5. DISSCUSSION 

A number of studies have demonstrated that there is a high degree of variability in the 

magnitude of response to common asthma medications and that this is largely due to genetic 

predisposition, i.e. specific genetic variants. Moreover, several genetic variants have 

reproducibly been identified by large genomic (GWAS) studies as well as candidate gene 

studies for each class of medications commonly used in asthma management (Vijverberg et 

al. 2018, Duong-Thi-Ly et al. 2017). These genetic variants (including those in the TBX21, 

GLCCI1, CRHR1 and ADRB2 genes) have been associated with the heterogeneity in 

bronchodilator reversibility and asthma worsening (exacerbations) in patients continuously 

using SABA and LABA (ADRB2 polymorphisms), as well as with the variability in response 

regarding lung function improvement, airway hyperresponsiveness, and exacerbations in 

patients on ICS- GLCCI1, CRHR1, TBX21 polymorphisms (Lima et al. 2009). Despite the 

urging need for standardization in reporting measures of clinical validity, there still no 

consensus in defining primary outcomes/endpoints in pharmacogenetic studies, although 

most of them focus on lung function parameters, BHR and exacerbation risk (Vijverberg et 

al. 2018). 

 

5.1.  Selection of outcomes (study endpoints) 

In clinical trials, including pharmacogenetic studies such as this one, the degree of resistance 

and physiological lung function impairment is quantitated most commonly by the forced vital 

capacity in 1 s, FEV1 (ATS 1987, Fal and Rosiek-Biegus 2012). FEV1 is a commonly used 

endpoint in respiratory disease trials, because the measurement is reproducible, standardized 

and easy to measure. On the other hand, there is no consensus as to what constitutes a 

clinically meaningful change. In general, FEV1 abnormalities tend to parallel clinical 

measures of respiratory health and the European Medicines Agency (EMA) definition of 

clinical endpoints and pulmonary exacerbations in lung disease list FEV1 as a primary 

endpoint (EMEA/CHMP/EWP/9147 2008). However, certain studies have shown relatively 

poor correlations of FEV1 with episodes of dyspnea or exercise tolerance in patients with 

stable forms of lung diseases (Niewoehner et al. 2000). Although EMA lists other lung 

function parameters (FVC, FEF25-75) as surrogate endpoints, they are rarely assessed as 

outcomes in clinical studies investigating treatment success. 
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Recently, there has been a renewed interest in the peripheral airways, which are now 

becoming increasingly appreciated for their significance to the clinical manifestations 

(expression) in asthma. The level of inflammation present in the peripheral airways of 

asthmatics may be more intense than the one observed in the large airways (Corren 2008). 

Moreover, peripheral airways resistance in patients with asthma contributed to up to 50% of 

the total airways resistance and the distal parts of the lung have been recognized as a 

predominant site of airflow obstruction in asthmatics (Hamid and Tulic 2007). Small airways 

dysfunction has been associated with nocturnal asthma, exercise-induced asthma and more 

severe and difficult-to-treat disease forms (Yanai et al. 1992, Kraft et al. 1999, Anderson 

2006, Veen et al. 2000).  Also, the small (peripheral) airways seem to contribute significantly 

to the severity of bronchial hyperresponsiveness (BHR), independently of the level of FEV1 

measured (Telenga et al. 2013). Although it is not commonly used as a clinical endpoint, the 

level of reponse to treatment according to parameters of the distal (small or peripheral) 

airway function (MEF50) was assessed as one of 4 primary study endpoints, due to the 

mounting evidence of the distal airway involvement being a crucial factor in asthma in 

children (Torrego Fernandez and Munoz Cano 2011). 

The level of response to treatment according to the measurement of fractional nitric oxide 

(FENO) in exhaled breath was also assessed, because it is a quantitative, noninvasive (which 

is imperative in pediatric asthma management), simple, and safe method of measuring airway 

inflammation that provides a complementary tool to other ways of assessing airways disease, 

including asthma (Dweik et al. 2011). The latest GINA guidelines even suggest that FENO-

guided treatment adjustment significantly reduces exacerbation rates compared with 

guideline-based treatment in children (GINA 2018). 

According to GINA gudielines, the long-term goals in asthma management are achieving 

adequate symptom control, maintaining normal activity levels as much as possible (minimum 

impairment of quality of life), minimizing future risk of exacerbations, fixed airflow 

limitation and medication side-effects (GINA 2018). Although asthma control assessment is a 

multifactorial parameter that involves symptom occurance (including nocturnal symptoms) 

and severity, need for reliever medications (namely SABA), number and severity of asthma 

exacerbations (especially those that require the use of oral corticosteroids and 

hospitalization), as well as patient self-assessment (ACT) and provides good insight into the 

current disease status, it is rarely used as an endpoint in clinical studies probably because it 

encompasses certain subjective variables and there is always the risk of patient-originated 
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bias. On the other hand, objective measurements (such as lung function parameters) are not 

always in concordance with symptom control nor predictive of exacerbation episodes, and 

patient self- assessment is an essential part of the "shared- care approach" in asthma 

management (implying a high level of patient involvement in tailoring their own treatment 

care) associated with improved outcomes (Wilson et al. 2010), which is why the parameter of 

asthma control was used in assessment of the level of response to treatment in this doctoral 

research. 

 

5.2.  Selection of genetic variants 

rs37973 is a polymorphism in the promoter region of the gene encoding the glucocorticoid 

induced transcript 1 (GLCCI1) located on chromosome 7. In patients with asthma, treatment 

with ICS increases the expression levels of the GLCCI1 protein in epithelial lung cells. This 

increase is suggested to be followed by inflammatory cell apoptosis and diminished airway 

inflammation levels. Studies report that the level of response to treatment with ICS as well as  

the amount of GLCCI1 protein induced by glucocorticoids in the bronchial epithelial cells of 

patients with the GG genotype is significantly lower/poorer as compared to wild type 

homozygotes- AA (Chiba et al. 2018, Tantisira et al. 2011, McGeachie et al. 2013), which is 

why it was chosen as a candidate genetic variant in this doctoral research. 

rs9910408 (c.-7947) is a polymorphism in the 3`UTR region of the gene encoding the Th1 

transcription factor T-bet (TBX21, T-box 21) located on chromosome 17. TBX21 influences 

naive T lymphocyte development and has been implicated in asthma pathogenesis by GWAS 

(Tantisira et al. 2004). It serves as a regulator of Th1 cell differentiation by inducing IFN- 

production and it may play a critical role in the supression of the Th2-mediated immune 

response by inhibiting interleukins IL-4, IL-5, and IL-13 (Lopert et al. 2013, Zhu et al. 2012) 

Moreover, TBX21 knockout mice spontaneously develop airway hyperresponsiveness and 

other asthma related features (Finotto et al. 2002). Studies have established the association of 

rs9910408 with BHR in both children and adults, as well the association of the AA genotype 

with good (adequate) levels of response to treatment with ICS in non-smoking and non-atopic 

adult patients with asthma  (Raby et al. 2006,  Lopert et al. 2013), which is why it was chosen 

as a candidate SNP in this doctoral research. 
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rs242941 and rs1876828 are polymorphisms in the intronic region of the gene encoding the 

corticotropin-releasing hormone receptor 1 (CRHR1) located on chromosome 17. CRHR1 is 

the key corticotropin releasing hormone receptor, mediating the release of 

adrenocorticotropic hormone and the catecholaminergic response to CRH (Duong-Thi-Ly et 

al. 2017). The absence of CRHR1 leads to enhanced airway inflammation and dysfunction 

(Maitland-van der Zee and Daly 2012). Certain genetic variants may cause decreased 

expression of CRHR1 and diminished cortisol secreting capacity in response to inflammation. 

Moreover, in both children and adult patients with asthma (and other respiratory conditions) 

certain CRHR1 genotypes (including rs242941 and rs1876828) have been shown to be 

associated with either better or poor response to treament in terms of lung function 

improvement (FEV1), bronchodilatator reponse and risk of exacerbations following the 

administration of an exogenous corticosteroid, such as ICS (Tantisira et al. 2004, McGeachie 

et al. 2013, Rogers et al. 2009, Kim et al. 2009), which is why they were chosen as candidate 

genetic variants in this study. 

rs1042713 is a non-synonymous variation in the intronless gene encoding the beta-2-

adrenergic receptor located on chromosome 5. ADRB2 is a member of the G protein-coupled 

receptor superfamily, mediating a plethora of physiologic responses such as smooth muscle 

relaxation, bronchodilation, glucose and lipid metabolism, inhibition of histamine release fom 

mast cells etc. Genetic variants (including rs1042713) and changes in the expression of this 

gene have been associated with a number of disorders, including asthma (nocturnal asthma, 

severe forms and exacerbations), obesity and type 2 diabetes mellitus (Saliba et al. 2014, 

Rebordosa et al. 2011, Thomsen et al. 2012). The G allele encodes the G (glycine) form at 

position 16 in ADRB2, while the A allele encodes the R (arginine) residue. A Scottish study 

involving pediatric patients with asthma showed that the rs1042713 A allele is associated 

with disease exacerbations, regardless of treatment regime. The risk of exacerbations in 

patients with the A allele was higher in patients using both short- and long-acting -agonists, 

odds ratio- OD ca 1.6 for AA homozygotes and 1.2 for hetergozygotes (Basu et al. 2009, 

Vijverberg et al. 2018), which is why it was chosen as a candidate genetic variant in this 

doctoral research, primarily regarding treatment success in patients using combination 

therapy. 

rs17576 is a non-synonymous variation in exon 6 of the gene encoding the matrix 

metelloproteinase 9 (MMP9) located on chromosome 20. MMP9 plays an essential role in 

remodeling in asthma (and other conditions such as COPD) including airway wall thickening 
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and inflammation due to its role in extracellular matrix degradation and genetic variants in 

the MMP9 gene (including rs17576) have been associated with different forms of childhood 

asthma (non-atopic phenotypes) as well as wheezing (Pinto et al. 2010). The rs17576 G allele 

encodes the R (arginine) residue at position 279 of MMP9 and has been associated with higer 

morbidity risk, while the A allele encodes the glutamine residue (Q). Additionally, rs17576 

has been associated with childhood obesity causing lower plasma MMP9 levels which may 

modify relevant pathogenetic mechanisms involved in the development of a number of 

conditions (including asthma) associated with obesity in childhood (Belo et al. 2012). 

Although rs17576 has not been reviewed in the context of treatment outcomes in asthma, a 

recent study involving 127 pediatric patients with asthma indicated that other genetic variants 

in the MMP9 gene are associated with better asthma control and with better response to 

treatment (Dragicevic et al. 2018). It is therefore highly likely that other poylmorphisms in 

this gene, including rs17576 are also involved in modulating treatment success in asthmatic 

patients, which is why it was chosen as a candidate genetic variant in this study. 

 

5.3.  Association of genetic variants with treatment outcomes 

Treatment outcomes were assessed at 4 timepoints (follow-up visits) over the period of 2 

years with folow-up appointments on average 6 months apart (6-8 months), according to 

relative changes in lung function parameters (FEV1 and MEF50 predicted for age, gender and 

posture), changes in FENO levels and changes in the level of disease (symptom) control as 

well as exacerbation rate and severity according to GINA guidelines (as discussed in section 

4.1). These were then associated with genotype and allele frequencies for polymorpisms in 

the GLCCI1 gene (rs37973), TBX21 gene (rs9910408), CRHR1 gene (rs242941 and 

rs1876828), ADRB2 gene (rs1042713) and MMP9 gene (rs17576) in patients using different 

classes of treatment (ICS alone, LTRA alone and combination treatment- 

ICS+LABA/LTRA). 

5.3.1. Association of genetic variants with treatment outcomes in patients using 

ICS only 

158 patients were treated with inhaled corticosteroids continuously over the period of 2 years. 

When success of treatment with ICS alone was assessed by changes in lung function 

parameters, the polymorphisms rs37973 in the GLCCI1 gene, rs9910408 in the TBX21 gene 
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as well as rs242941 and rs1876828 in the CRHR1 gene were associated with the level of 

response to treatment according to % change in FEV1 after 6 months (for rs37973 and 

rs9910408) as well as after 12 months and 1.5 years (for rs242941 and rs1876828) and 2 

years of medication use (rs242941)- see Table 17, which was in concordance with previous 

studies (Chiba et al. 2018, Lopert et al. 2013, McGeachie et al. 2013). Additionally, the 

polymorphism rs37973 was significantly associated with the level of response to treatment 

according to relative changes in MEF50 (see Table 17) after 6 months and 1.5 years of ICS 

use, which was previously reported in a small pediatric asthma cohort (Ding et al. 2017). The 

rs9910408 polymorphism in the TBX21 gene, rs242941 and rs1876828 in the CRHR1 gene 

were also associated with the level of response to treatment according to relative changes in 

MEF50 after 6 and 12 months (for rs9910408), after 6 months and 2 years for rs242941 and 

after 12 months of medication use for rs1876828 (see Table 17), which was not previously 

reported. Interestingly, the rs17576 SNP in the gene encoding MMP9 was significantly 

associated with the level of response to treatment assessed by % change in FEV1 after 6 

months of ICS use, which has not been reported so far.  

Moreover, when outcomes in treatment with ICS alone were assessed by relative changes in 

the level of airway inflammation (FENO level), the rs37973 polymorphism (GLCCI1 gene), 

rs9910408 in the TBX21 gene, rs242941 and rs1876828 in the CRHR1 gene as well as 

rs17576 (MMP9) were significantly associated with the level of reponse to treatment after 6 

months. The rs242941 and rs17576 polymorphisms were also associated associated with the 

level of reponse to treatment according to changes in FENO after 12 months of medication 

use (see Table 17). None of these associations (of these polymorphisms and changes in 

FENO) have been reported so far.   

When treatment outcomes were assess by changes in the level of disease control (symptom 

control and exacerbation frequency and severity, as discussed in section 4.1), the rs37973 

(GLCCI1), rs9910408 (TBX21), rs1876828 (CRHR1) and rs17576 (MMP9) polymorphisms 

were significantly associated with the level of response to treatment after 6 months of ICS 

use, while rs37973 was also associated with the level of response after 12 months. 

Additionally, the rs242941(CRHR1) polymorphism was associated with the level of response 

to treatment according to changes in disease control after 2 years of medication use (see 

Table 17). No such results have been reported previously. 
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In order to correct for potential confounding variables influencing these associations an 

adjusted model was applied according to parameters significantly correlating with response to 

treatment. The variables chosen as potential confounders (covariates) included: age, disease 

duration, atopy status, total IgE level, eosinophil count, neutrophil count, basophil count, 

hsCRP level, monocyte count, platelet count,  BMI percentile category, comorbidities- AR, 

AD, OSA, GERD (Table 16). Other lung function parameters (such as FVC, PEF or FEV1 for 

assessment of treatment response according to % change in MEF50 or FVC, PEF or MEF50 for 

assessment of treatment response according to relative changes in FEV1) were not taken into 

account for correction although they significantly correlated with the level of response to 

treatment since all these variables are functions of the same exhaled breath (lung air) volume 

and this correlation provides little information on biologically relevant associations (plausible 

underlying pathophysiologic mechanisms). Additionally, since the level of response to 

treatment according to changes in FENO and asthma control were also selected as outcomes 

(study endpoints), these correlations involving FENO and disease control variables were not 

taken into consideration for the adjusted model, especially because the level of disease 

control is a multifactorial parameters that partially encompasses measures of lung function 

and local (airway) inflammation. 

After the adjustment for potential confounders, the rs37973 polymorphism in the GLCCI1 

gene was significantly associated only with the level of response to treatment according to 

changes in FENO after 6 months (p= 0.005 and p= 0.012). Similarly, after correction for 

covariates, the rs242941 polymorphism in the CRHR1 gene was associated only with the 

level of response to treatment according to changes in FENO after 6 and 12 months of ICS 

use (p= 0.003 and p= 0.015, respectively). In the adjusted model, only rs9910408 in the 

TBX21 gene was associated with treatment outcomes assessed by changes in all parameters 

(lung function, airway inflammation level and asthma control): with the level of response 

according to % change in FEV1 after 6 months (p= 0.047), with the level of response to 

treatment according to changes in FENO after 6 months  (p= 0.002) as well as with the level 

of response to treatment with ICS according to changes in asthma control after 6 months (p= 

0.013), see Table 17. This is the first such association of the analyzed polymorphisms with 

response to treatment according to changes in FENO and asthma control reported. rs9910408 

in TBX21 has previously been associated with response to treatment with ICS assessed by % 

change in FEV1 in an adult asthma cohort (Lopert et al. 2013). 
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No significant associations of treatment outcomes assessed by changes in lung function (% 

change in FEV1 and MEF50), changes in FENO and asthma control were identified  in the 

adjusted model for rs1876828 (CRHR1) and rs17576 (MMP9). 

When treatment success was assessed by changes in FENO after 6 months, the frequency of 

the AA genotype in rs37973 (GLCCI1) was significantly higher in good responders (p= 

0.007), as well as moderate responders (p= 0.037) compared to the GG genotype (see Table 

20). Moreover, the frequency of the A allele was significantly higher in good responders (p= 

0.0129) and patients with moderate levels of response ot treatment (p= 0.008) compared to 

bad responders (see Table 22). Although this association of FENO related treatment success 

and the rs37973 polymorphism has not been previously reported, a large study involving 

more than 900 pediatric patients with asthma has demonstrated a similar genotype related 

effect on response to ICS according to % change in FEV1 predicted (Tantisira et al. 2011). 

For the rs9910408 polymorphism (TBX21 gene) the frequency of the G allele was 

significantly higher in good responders compared to moderate and bad responders, when 

treatment outcomes were assessed by changes in FEV1 and asthma control after 6 months of 

medication use (p= 0.0023 and p<0.0001, respectively). When treatment success was 

assessed by changes in FENO levels after 6 months, the frequency of the G allele was 

significantly higher in moderate responders compared to patients with bad and good response 

(p= 0.0009), see Table 22. Although these associations were not previously reported, a study 

involving patients from the Childhood Asthma Management Program (CAMP) observed a 

similar allelic effect on the level of response to treatment according to changes in airway 

hyperresponsiveness (Raby et al. 2006). Conversly, a study involving a Slovenian adult 

asthma cohort reported that the AA genotype was overrepresented in good responders 

according to changes in FEV1 and AHR (Lopert et al. 2013), but these were adult non-atopic 

participants, whereas our cohort involves children the majority of which had allergic asthma. 

For rs242941 in the CRHR1 gene the frequency of the C allele was significantly higher in 

good and moderate responders compared to patients with inadequate (bad) levels of response 

to treatment according to changes in FENO after 12  and 6 months of ICS use (p= 0.0024 and 

p< 0.0001, respectively), see Table 22. Although this association of response according to 

relative changes in FENO has not been reported so far, similar effects (association of the C 

allele) with positive treatment outcomes (improved lung function, % FEV1 change) was 

reported in a Korean adult COPD cohort (Kim et al. 2009). Interestingly, a study involving 
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CAMP participants demonstrated that the minor allele (A) was associated with poor reposnse 

to treatment with ICS assessed by % change in bronchodilatation reversibility- % FEV1 

change after administration of bronchodilatator (Rogers et al. 2009). 

There was no significant association of response to treatment with ICS alone with rs1042713 

(ADRB2), neither prior nor post adjustment for confounding variables, which was expected, 

since this polymorphism was previously associated with response to -agonists (Basu et al. 

2009). 

5.3.2. Association of genetic variants with treatment outcomes in patients using 

LTRA only 

38 patients were treated with leukotriene receptor antagonists continuously over the period of 

2 years. When success of treatment with LTRA alone was assessed by changes in FENO 

levels, only the rs17576 polymorphism (MMP9 gene) was significantly associated with the 

level of response to treatment after 6 months of medication use. This association, however, 

was not reproduced in the adjusted model (after correction for confounding variables). 

Instead, treatment outcome assessed by changes in asthma control after 6 months of LTRA 

use was significantly associated with rs17576 (p= 0.026), see Table 18. The frequency of the 

A allele was significantly higher in good responders compared to patients with moderate and 

bad response to treatment with LTRA assessed by changes in disease control after 6 months 

(p= 0.0446), see Table 23. This is the first such association of rs17576 with the level 

treatment response in asthma reported so far, but similar effects of disease control 

improvement after treatment were reported for other genetic variants in the MMP9 gene 

(Dragicevic et al. 2018). However, since the association with the level of response to 

treatment with LTRA accroding to changes in asthma control was rather weak and identified 

only post adjustment for confounders and, moreover, due to the small sample size (N= 38), 

there is a risk that this effect is random. Despite that,  genetic variants in the MMP9 gene 

(including the rs17576 polymorphism) may be promising new biomarkers in asthma 

pharmacogenetics and deserve further research attention. 

5.3.3. Association of genetic variants with treatment outcomes in patients using 

combination treatment 

106 patients were treated with combination treatment (ICS+LABA and/or LTRA) 

continuously over the period of 2 years. When success of treatment with ICS+LABA/LTRA 
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was assessed by changes in lung function parameters, the rs37973 polymorphism in the 

GLCCI1 gene was significantly associated with  the level of response to treatment according 

to % change in MEF50 predicted for certain age, gender and posture after 6 months. 

Additionally, rs37973 was associated with treatment outcomes according to changes in 

FENO levels and asthma control after 6 and 12 months of medication use. The rs9910408 

polymorphism (TBX21) was significantly associated with the level of response to 

combination treatment according to changes in lung function after 6 months and 1.5 years (% 

change in FEV1- after 6 months and 1.5 years and MEF50- after 6 months), as well as with 

treatment outcomes assessed by changes in FENO after 6 months of medication use. 

rs242941 in the CRHR1 gene was significantly associated with treatment success assessed by 

changes in lung function parameters after 6 months and 2 years (% change in MEF50- after 6 

months and FEV1- after 6 months and 2 years) of ICS+LABA/LTRA use. Additionally, 

rs242941 was associated with treatment outcomes according to changes in FENO levels after 

6 months, 1.5 years and 2 years of medication use, as well as with the level of response to 

treatment assessed by changes in asthma control after 2 years of medication use (see Table 

19). After adjustment for confounding variables, only treatment outcomes assessed by 

changes in FENO and asthma control were significantly associated with rs9910408 in TBX21 

(according to changes in FENO after 6 months) and rs242941 in the CRHR1 gene (according 

to changes in FENO level after 2 years of treatment use), see Table 19. No significant 

associations of treatment outcomes were identified in the adjusted model for rs37973. 

Although the afore mentioned associations have not been reported for combination treatment 

use so far, they are likely associated with the ICS component in combination regimes, and 

certain studies have shown an association of all of these genetic variants with response to 

treatment with inhaled corticosteroids, although mainly according to changes in FEV1 and 

airway hyperresponsiveness but not with changes in FENO or asthma control (see Section 

5.3.1). 

The rs1042713 polymorphism in the ADRB2 gene was significantly associated with treatment 

outcomes assessed by changes in FENO after 6 and 12 months as well as with response to 

treatment according to changes in asthma control after 6 months and 1.5 years of 

ICS+LABA/LTRA use (see Table 19). After adjustment for confounders, rs1042713 was 

only associated with treatment success assessed by changes in FENO levels after 6 months of 

medication use (see Table 19). This association has not been previously reported. 
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When treament success was assessed by changes in FENO levels after 6 months of 

ICS+LABA/LTRA use, the frequency of the AA genotype in rs9910408 (TBX21) was 

significantly higher in good responders compared to the GG genotype (p= 0.000), see Table 

21. Moreover, the frequency of the A allele was significantly higher in good responders 

compared to patients with moderate and bad response to treatment (p< 0.0001), see Table 24. 

Although this association with response to treatment according to changes in FENO was not 

previously reported for ICS+LABA/LTRA use, a study involving pediatric patients with 

asthma on ICS demonstrated a similar allelic effect on the level of response to treatment with 

assessed by changes in AHR (Raby et al. 2006), which is why this association is probably due 

to the ICS component of combination treatment. 

For rs242941 in the CRHR1 gene, when the level of response to treatment was assessed by 

changes in FENO after 2 years of treatment, the frequency of the CC genotype was 

significantly higher in good and moderate responders compared to the AA genotype (p= 

0.007), see Table 21. Additionally, the frequency of the C allele was significantly higher in 

good and moderate responders compared to children with poor (bad) response to treatment 

(p= 0.0013), see Table 24. Although this association of response to treatment according to 

changes in FENO has not been previously reported for rs242941 and the C allele with 

combination treatment, a study involving adult patients with asthma using ICS reported 

similar results (allelic effect) and an association of positive treatment outcomes (improved 

lung function) with the C allele (Kim et al. 2009). Additionally, a study involving pediatric 

patients with asthma on treatment regimes with ICS reported an association of poor treatment 

response (according to changes in FEV1 reversibility after bronchodilatator administration) 

with the A allele (Rogers et al.). This indicates that this association of rs242941 and treatment 

success is likely due to the ICS component in combination treatment. 

When treatment outcomes were assessed by changes in FENO levels after 6 months of 

ICS+LABA/LTRA use, the frequency of the AA genotype in the rs1042713 polymorphism 

(ADRB2) was significantly higher in good responders compared to the GG genotype (p= 

0.001). Moreover, the frequency of the A allele was significantly higher in good responders 

compared to patients with moderate and bad response to treatment (p= 0.0139). This 

association of FENO- related treatment outcomes with rs1042713 has not been reported so 

far. Conversly, the A allele (encoding the Arg16 residue) has been associated with 

diminished response to treatment with -agonists (both SABA and LABA)- reduced PEF 

compared to baseline and higher asthma exacerbation rates (Cho 2010).  
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There was no significant association of response to treatment with ICS+LABA/LTRA with 

rs17576 (MMP9), neither prior nor post adjustment for confounding variables. 

 

5.4.  Identifying clusters in response to treatment 

The results of this study indicate that there might be specific patterns in the level of response 

to treatment with ICS, LTRA or combination therapy (ICS+LABA/LTRA) assessed by 

changes in lung function parameters (% change in FEV1 and MEF50), FENO levels and 

asthma control, see Figure 14 and Table 25. By employing the Ward`s HCA on original 

response data (not PCA transformed, as using PCA did not affect cluster stability), 4 distinct 

response clusters were identified. Since the method itself is always prone to forming 2 

separate classes by splitting the decision tree until it reaches a perfect fit, by employing a 

limit of the Gini index of 0.2 and based on cluster stability (Average proportion of non-

overlap, APN= 0.4;  APN is a measure of the average number of observations not placed in 

the same cluster by clustering based on the full data and clustering based on the data with a 

single variable removed iteratively, Brock et al. 2008) as well as empirical clinical and 

biological knowledge we have successfully identified 4 specific response clusters: 

 Cluster 1- patients with overall good response to treatment according to level of 

asthma control, moderate response to treatment according to lung function parameters 

(relative changes in FEV1 and MEF50) and moderate or bad response to treatment 

according to changes in FENO (N= 58); 

 Cluster 2- patients with overall good response to treatment according to level of 

asthma control, good or moderate levels of response to treatment according to 

changes in FENO, moderate response to treatment according % change in FEV1 and 

bad or moderate levels of response to treatment according to changes in MEF50 (N= 

87); 

 Cluster 3- patients with overall good response to treatment according to changes in 

disease control, good levels of response to treatment according to changes in both 

FEV1 and MEF50, as well as good response to treatment according to changes in 

FENO levels (N= 138); 

 Cluster 4- patients with overall poor (moderate and bad) response to treatment 

according to changes in lung function, moderate levels of response according to 
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FENO changes and long-term poor (bad) response to treatment according to level of 

asthma control (N= 64). 

The main discriminant variable in the response clustering according to the decision tree 

algorhytm was the level of response to treatment according to changes in asthma control after 

1.5 years of treatment (long-term control), followed by response to treatment according to 

changes in FENO, FEV1 and MEF50 in shorter assessment periods (6 and 12 months), see 

Figure 15. 

To date, only one study has focused on long-term treatment outcomes in 3 independent 

cohorts (including pediatric patients) and have successfully replicated SARP (Severe Asthma 

Research Program) clusters identified by Moore and colleagues (Moore et al. 2010) in 

distinguishing each cluster according to age of onset of asthma (early onset vs late onset 

disease), lung function (normal vs impaired lung function) and comorbidity, such as obesity 

and eczema (Chang et al. 2014). However, certain clusters had small sample size, especially 

those refering to more severe disease forms which may affect cluster stability and 

reproducibility of these results in other cohorts. In general, very few studies have focused on 

disease control and severity as outcomes. A study involving a cohort of almost 2000 adult 

asthmatics has successfully replicated 4 clusters in female participants and 3 clusters in men 

of variable severity (mild to severe persistent asthma) and symptom control (controlled, 

partly controlled, uncontrolled), although these findings were based on questionnaire data 

(use of medication, other healthcare use and self-assessment) and there were no objective 

parameters (such as lung function) measured (Mäkikyrö et al. 2017). Additionally, these were 

adult patients with asthma and these results may not be applicable in children. 

5.4.1. Identifying phenotypes underlying specific response to treatment 

outcomes 

The results of our study suggest specific patterns in the response to treatment assessed by 

changes in different parameters, including lung function, airway infammation (FENO) and 

asthma control. In order to identify possible disease features and phenotypes underlying such 

response patterns/outcomes, we have employed the same clustering method (Ward`s HCA on 

original data, not PCA transformed) on all relevant data from baseline (diagnosis, recruitment 

point), including:  baseline demographics (gender, age, duration of disease), atopy status, 

lung function (FEV1 and MEF50 predicted), FENO, sensitization and allergy data (distributed 

in categories, as discussed in Section 4.4), hematologic and biochemical blood test results, 
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comorbidity- GERD, OSAS, obesity/overweightness, AR, AD; treatment use and genetic data 

(rs37973, rs9910408, rs242941, rs1876828, rs1042713 and rs17576). These phenotyping 

results have identified 4 clusters (according to response ot treatment patterns): 

 Cluster 1- the smallest cluster (N= 58), older children (mean age ca. 12 years), with 

age of onset at about 6 years of age, lung function still in physiologic range (mean 

FEV1= 89% predicted and mean MEF50= 92% predicted for age, gender and posture), 

predominantly sensitized to house dust mite (strong sensitization, 68.97%) and with a 

dominant genotype (AA) and allelic effect (A allele) for rs37973 in the GLCCI1 gene; 

 Cluster 2 (N=87)- mean age ca. 10 years, with age of onset at about 5 years of age, 

normal lung function (mean FEV1= 96 % predicted and mean MEF50= 103% 

predicted), with ca 54% of participants exhibiting strong sensitization to house dust 

mite and predominantly heterozygotic for rs37973; 

 Cluster 3- the largest cluster (N= 138), mean age ca. 10 years with age of onset at 

about 6 years of age, impaired lung function (mean FEV1= 82% and mean MEF50= 

79% predicted), no significant association with strong sensitization to house dust mite 

(53% with strong sensitization, 47% negative) and predominantly heterozygotic for 

rs37973; 

 Cluster 4 (N= 64)- mostly younger children (mean age ca. 9.6 years) with age of onset 

at about 6 years of age, relatively normal FEV1 (mean= 88% predicted) but lower 

MEF50 (mean= 84% predicted), no significant association with strong sensitization to 

house dust mite (51.5% with strong sensitization, 48.5% negative) and predominantly 

heterozygotic for rs37973, see Table 26. 

The main discriminant variables in the phenotype clustering according to the decision tree 

algorhytm were MEF50 predicted at baseline, followed by use of reliever medication (SABA) 

which a parameter incorporated in asthma control assessment, use of combination treatment, 

hsCRP and neutrophil blood count (see Figure 16) which reflect type and level of 

inflammation, although some of these variables (ie. neutrophil count) were not significantly 

different between clusters in the cluster statistics. This may very well be an effect of different 

types of statistics applied in the decision tree algorhytm and cluster statistics (Kruskal- Wallis 

and 
2
 tests)- these two cannot be compared on the same scale of linearity. 

Our results indicate that clusters 1-3 have overall good long-term treatment outcomes 

assessed by changes in asthma control. Cluster 1 had  moderate levels of response to 
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treatment according to lung function parameters (both FEV1 and MEF50), which may 

explained by the fact that these patients didn`t have significantly impaired lung function at 

baseline. These patients also had relatively poor FENO-related response to treatment, which 

may be a consequence of strong sensitization to house dust mite, as the majority of these 

patients (almost 70%) had strong sensitization to house dust mite (class 4, sIgE > 17.51 

kU/L), see Table 25 and 26. A study involving a pediatic cohort in Korea has demonstrated 

that the levels of sIgE to house dust mite correlate with increases in FENO (Lee et al. 2015) 

and, moreover, a study involving asthmatic children from the Southern Mediterranean region 

suggests that in atopic children, sensitization to indoor inhaled allergens, including house dust 

mite, may increase airway inflammation levels (FENO) which leads to worsening of the 

pulmonary function (Ruggieri et al. 2017). Also, these patients were older and and had later 

onset of the disease (at about 6 years of age), which may also contribute to poorer response to 

treatment according to FENO and lung function parameters, as most studies indicate that late-

onset disease phenotypes imply more severe outcomes (Haldar et al. 2008, Siroux et al. 2011, 

Wu et al. 2014, Moore et al. 2010, Kim et al. 2013). House dust mite is an allergen with high 

allergenic potential (Calderon et al. 2016, D`Amato et al. 2007) and, moreover, sensitization 

to dust mite has been associated with poorer disease outcomes in children possibly indicating 

early remodeling as a consequence of  inflammation secondary to exposure to these allergens 

(Gaffin and Phipatanakul 2009). Cluster 1 also had the highest eosinophil count and the 

highest serum total IgE levels (see Table 26), although these associations were not 

statistically significant, but were major discriminants in the decision tree (see Figure 16). 

This may indicate a higher level of Th2 inflammation, but not significantly increased FENO 

levels which may be the reason for their poor FENO-related treatment effectiveness 

(Robinson et al. 2016). 

Cluster 2 was similar to cluster 1 in terms of response to treatment according to disease 

control and FEV1 parameters (moderate levels of response according to FEV1 and good 

according to asthma control), but they differed in FENO-related treatment outcomes. Cluster 

2 patients had good or moderate levels of response to treatment according to changes in 

FENO which is probably due to the fact that this cluster was not significantly associated with 

sensitization to house dust mite. These children had relatively earlier age of onset of disease 

(ca. 5 years of age). Additionally, cluster 2 differed from cluster 1 in the level of response to 

treatment according to changes in MEF50- these patients had poor (bad and moderate) MEF50- 

related response, although their baseline MEF50 measurements were not impaired, see Tables 
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25 and 26. This suggests that lung function in the distal airways deterriorates with time in 

these patients despite regular medication use which contributes to the importance of the small 

(distal airways) in children with asthma (Torrego Fernandez and Munoz Cano 2011). The 

peripheral (distal) airways are the predominant site of airway inflammation (Corren 2008) 

and may very well be a predominant site of airflow obstruction in asthmatics (Hamid and 

Tulic 2007). Additionally, there is evidence that the obstruction in the small (distal) airways 

may be involved in the pathophysiology and resistance to treatment with ICS in children, 

especially those with increased BMI (Ye et al. 2013) and that the impairment of the small 

airways disease may be present despite rare and mild asthma symptoms and normal 

spirometry in children (Singer et al. 2014). Also, cluster 2 had the highest levels of serum 

hsCRP (see Table 26), although this association was not statistically significant, but was a 

major discriminant in the decision tree algorythm (see Figure 16). This may indicate that 

these patients have higher levels of systemic inflammation and hence, poorer disease and 

treatment outcomes. Several studies have demonstrated that increased levels of hsCRP are 

associated with more severe asthma outcomes and may be an interesting novel biomarker in 

predicting asthma control and treatment response (Kilic et al. 2012, Monadi et al. 2016). 

Moreover, cluster 2 patients had a higher proportion of overweight and obese patients (36.78 

%) compared to other clusters, which is in concordance with other findings indicating that 

obesity in asthma is associated with poorer disease outcomes and poorer response to 

treatment with ICS according to changes in lung function parametres (Monahan et al. 2014) 

and moreover, that obese asthma could be a distinct and more severe asthma phenotype 

(Dixon et al. 2010, Teodorescu et al. 2013, Samson and Garber 2014). Additionally, since 

these patients had higher levels of serum hsCRP, this suggests that obesity in asthma 

promotes systemic inflammation which may reflect in the airways as well, which is in 

concordance with previous findings (Monahan et al. 2014). These patients also have higher 

levels of eosinophilic inflammation (eosinophil count) than clusters 3 and 4 but also higher 

neutrophil counts than clusters 1 and 3- although this was not statistically significant but 

major discriminants in the decision tree algorythm (see Table 26 and Figure 16), which 

supports recent findings that obesity in mice is associated with a mixed granulocytic 

inflammation and may contribute to a refractory therapeutic response as well as exacerbation 

of disease severity (Silva et al. 2017). 

Cluster 1 was also different from cluster 2 in exhibiting a dominant genotype (AA) and allelic 

(A allele) affect for the rs37973 polymorphism in the GLCCI1 gene, which has been 
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associated with positive treatment outcomes according to % change in lung function in 

patients using ICS  (Tantisira et al. 2011) and according to similar findings in this study. 

Cluster 3 was the largest of the four clusters and had overall good response to treatment 

according to all analyzed parameters (% change in FEV1, MEF50, FENO and asthma control). 

These patients were somewhat younger than patients in clusters 1 and 2 (mean age just under 

10 years) but still had a relatively later onset of disease (at about 6 years of age). 

Interestingly, these patients had the lowest values of FEV1 and MEF50 at baseline measured 

(see Tables 25 and 26), which indicates that they had the highest improvement in lung 

function in response to treatment. These patients also had a higher frequency of the A allele 

for rs37973, which may contribute to better responsiveness to the ICS component of their 

treatment regimes (Tantisira et al 2011) and is also in concordance with the findings of this 

study. Cluster 3 was also characterized by higher serum total IgE levels (as well as cluster 1), 

but not with significantly higher eosinophil or neutrophil count, which may indicate lower 

levels of airway inflammation in these patients contributing to positive treatment outcomes. 

Additionally, these patients also has the highest levels of FENO, although this association 

was not statistically significant but a major discriminant in the decision tree algorythm (see 

Table 26 and Figure 16), which may explain their better responsiveness to treatment with the 

ICS component (Price et al. 2018). 

Cluster 4 was the only one characterized by poor long-term control-related response. 

Additionally, these patients had poor (moderate and bad) levels of response to treatment 

according to lung function parameters (both FEV1 and MEF50), but positive treatment 

outcomes assessed by FENO changes. These patients were the youngest (mean age 9.6 years) 

but also had later onset of disease (ca. 6 years of age). They had somewhat lower FEV1 and 

MEF50 measurements at baseline, but still within acceptable physiologic range (see Tables 25 

and 26). Cluster 4 patients had a significantly higher proportion of patients with atopic 

dermatitis (AD), see Table 26, which is more common in severe asthma (Lee and Han 2018). 

This may be associated with an impairment of the epithelial barrier (skin) causing immune 

dysregulation, and lead to the atopic march- progression from AD to allergic rhinitis and 

asthma. Asthma and AD are known to aggravate each other (Celakovská and Bukac 2016). 

Additionally, cluster 4 patients had a higher proportion of more severe asthma forms 

(moderate and severe asthma) compared to other clusters, which contributes to their poorer 

responsiveness to treatment (GINA 2018), see Table 26. Although this association was not 

statistically significant, but a major discriminant in the decision tree algorythm, cluster 4 



102 
 

patients had the highest neutrophil count, which has been associated with more severe asthma 

outcomes and, moreover, with non-responsiveness to corticosteroids (Ray and Kolls 2017). 

Additionally, although this association was also not statistically significant, but a trend may 

be present, cluster 4 had lower platelet counts compared to other clusters (see Table 26). 

Platelets may actively be involved in the pathogenesis of allergic asthma via the regulation of  

Th2 inflammation mediated by active platelet-derived IL-33 protein activation and lower 

platelet count due to systemic inflammation is more prominent in children (Kowal et al. 2006, 

Ellaurie and Wang 2004). Platelets may also be involved in more extensive airway 

remodeling, as well as in the development of steroid-refractory asthma, since ICS do not 

affect platelet function (Takeda et al. 2017). 

Although this association was not statistically significant, clusters 2 and 4 had higher 

proportions of patients with food allergy, which is also likely why these patients had poorer 

response patterns since food allergy and asthma are known to aggravate each other and 

increase the risk for morbidity in each condition. Children with food allergy and asthma are 

more likely to have near-fatal or fatal allergic reactions to food allergens and are also more 

likely to have more severe forms of asthma (Wang and Liu 2011). 

In the past few years a number of studies have attempted to perform asthma phenotyping by 

employing novel bioinformatic tools (eg. cluster analysis and various techniques). Most of 

them have identified age of onset- early onset vs late onset disease presentation, usually in 

adults (Haldar et al. 2008, Siroux et al. 2011, Wu et al. 2014, Moore et al. 2010, Kim et al. 

2013); gender (Moore et al. 2010, Qiu et al. 2018); atopy status (Siroux et al. 2011, Howrylak 

et al. 2014), obesity (Haldar et al. 2008, Moore et al. 2010) and type of inflammation- 

eosinophil, neutrophil, mixed type, Th2 high/low (Wu et al. 2014, Loza et al. 2016, Qiu et al. 

2018, Su et al. 2018) as main discriminants distinguishing specific clusters (phenotypes)- 

usually 3 to 5 clusters. Certain studies have focused on disease control and severity 

(Mäkikyrö et al. 2017), airway obstruction and exacerbations (Howrylak et al. 2014), 

recurrent chest infections (Belgrave et al. 2017) and type and level of sensitization (Schoos et 

al. 2017). A literature overview of clustering studies focusing on identifying distinct asthma 

phenotypes and their main findings as well as limitations is presented in Supplement 5. 

Although phenotyping studies such as this one have performed unbiased statistically based 

analyses on larger cohorts of patients involving a wide range of clinical variables, they have 

been limited in the terms of clinical characteristics they have used to identify different 
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phenotypes in asthma and still do not provide much insight into the underlying disease 

mechanisms (Gauthier et al. 2015, Ray et al 2015). Additionally, different methods employed 

in these studies have been shown to yield different results in cluster assignments, especially 

in different populations (Prosperi et al. 2013). Our population, however, was very 

homogenous (all children, mostly milder disease forms, mostly atopic, ethnically 

homogenous), which was an advantage in identifying genetic traits associated with treatment 

response patterns, but a disadvantage in identifying clear disease phenotpyes. From all of this 

is is evident that further research and further classification involving larger numbers of 

patients, multi-centric, longitudinal and prospective studies and even more clinically relevant 

parameters are needed to adequately address the issues of the high levels of inter-patient 

variability in the level of response to treatment with common asthma medication.
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6. CONCLUSIONS AND FUTURE PROSPECTS 

 

The results of this study have confirmed that almost all of the selected genes and 

polymorphisms are likely candidate genes (genetic variants) in the pharmacogenetics of 

asthma. Although associations of treatment outcomes assessed by changes in FENO levels 

and asthma control have not been  reported so far for the genetic variants analyzed in this 

study, all of the polymorphisms with the exception of rs1876828 in the CRHR1 gene have 

been associated with either ICS, LTRA or combination treatment regimes, but this is most 

likely due to the fact that the frequency of the T allele and the TT genotype was very low 

(NTT= 7 in total, see Figure 13). The rs37973 polymorphism (GLCCI1) was significantly 

associated with positive treatment outcomes in children using inhaled corticosteroids (ICS) 

alone (the A alelle), while the rs9910408 genetic variant in the TBX21 gene (the A allele) as 

well as the rs242941 polymorphism in the CRHR1 gene (the C allele) were  associated with 

positive treatment outcomes in patients using both ICS alone and combination treatment 

regimes, which is in concordance with previous studies. This association of rs9910408 and 

rs242941 with good response to treatment with ICS+LABA/LTRA is most likely related to 

the ICS component of combination treatment regimes, since no such association with-

agonists or LTRA has been reported previously.  

The rs17576 polymorphism (MMP9) was associated with positive treatment outcomes in 

patients using leukotriene receptor antagonists alone (A allele). This is the first such 

association of rs17576 and treatment success in pediatric patients with asthma (and 

asthmatics in general) ever reported, but similar effects have been shown in a recent study 

focusing on other genetic variants in the MMP9 gene (Dragicevic et al. 2018). However, 

since the association with the level of response to treatment with LTRA and rs17576 was 

rather weak and identified only post adjustment for confounders and, moreover, due to the 

small sample size (N= 38), there is a risk that this effect is random. Despite that, genetic 

variants in the MMP9 gene (including the rs17576 polymorphism) may be promising new 

biomarkers in asthma pharmacogenetics and definitely deserve further research attention. 

The rs1042713 polymorphism in the ADRB2 gene was significantly associated with positive 

treatment outcomes in children using ICS+LABA/LTRA (A allele, encoding the Arg16 

residue). Although this association of FENO- related success of treatment with -agonists 
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with rs1042713 has not been reported so far, several studies have demonstrated an association 

of the A allele with poor response to treatment with SABA and LABA- reduced PEF 

compared to baseline and higher asthma exacerbation rates (Cho 2010, Basu et al. 2009). 

This may indicate that our results are random and the sample size is too small (N= 106) or the 

assessment period is too short (6 months in this study and in Basu et al. 2009), although 

candidate gene studies are not rare to give contradictory studies. For example, an association 

of the A allele in rs37973 in the GLCCI1 gene with good response to treatment with ICS has 

been reported by Tantisira and colleagues (Tantisira et al. 2011), while a recent study 

involving a Slovenian cohort of patients with asthma showed an association of positive 

treatment outcomes assessed by % change in FEV1 with the GG genotype (Rijavec et al. 

2018).  

In general, the results of this study have replicated genotype and allelic effects reported in  

other studies (larger and those involving adult and pediatric patients with asthma), with the 

exception of rs1042713 (ADRB2), although the sample size in specific treatment regime 

subsets (ICS alone, LTRA alone and ICS+LABA/LTRA) may be small (N= 158, N= 38 and 

N= 106, respectively). Although the assessment period was 2 years in total, the majority of 

genotype and allele-related effects were associated with shorter periods of time (6 months). 

This may reflect an actual and relatively immediate biological effect- genes being involved in 

the inflammatory response and asthma pathogenesis and their role in corticosteroid and -

agonist responsiveness, although there is a risk of the effect being confounded by other 

unrelated events such as poor response to treatment (impaired lung function and diminished 

disease control) due to a current respiratory infection or recent exposure to an allergen or 

elevated FENO levels due to poor adherence to treatment (Price et al. 2013). 

Additionally, the results of this study have failed to replicate the association of treatment 

outcomes assessed by changes in lung function (except for rs9910408 and ICS use) as most 

studies focused on % change in FEV1 as a primary endpoint. Instead, the majority of the 

associations in this study with specific genetic variants are related to treatment success 

according to changes in disease control and FENO levels. These results suggest that lung 

function may not be a preferred tool to be used to guide treatment in pediatric (as well as 

adult) patients with asthma, which is in absolute concordance with the latest GINA guidelines 

and the control-based management approach which focuses on achieving adequate control of 

symptoms and maintaining normal activity levels, as well as minimizing future risks of 

exacerbations (GINA 2018), see Supplement 2. Additionally, no previous studies have 
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investigated FENO as an outcome in pharmacogenetic research, although evidence suggests 

that FENO can also be used as a predictor of steroid responsiveness even more consistently 

than other parameters (Smith et al. 2005). FENO is a good biomarker of Th2- related allergic 

inflammatory response, as IL-13 promotes NO-synthase activity and NO production 

(Bagnasco et al. 2016). Hence, FENO may reflect corticosteroid effectiveness in reducing 

inflammation (which is the primary effect of ICS use) much better than other parameters such 

as lung function that encompasses a number of pathophysiologic mechanisms as well as 

structural changes in the airways. Moreover, the latest GINA guidelines suggest that 

treatment guided by FENO in children and young adults, is associated with a significant 

reduction in exacerbation rates and that it may be a good complementary approach 

compatible with control-based asthma management (GINA 2018).  

In conclusion, the results of this study indicate that all of the selected genes (GLCCI1, 

TBX21, CRHR1, ADRB2 and MMP9) are most likely candidate genetic variants in 

pharmacogenetics of asthma and may significantly contribute to the inter-individual 

variability  in the level of response to all classes of common asthma treatment. The results of 

this study also indicate that other biomarkers and approaches (other than lung function 

parameters and  airway hyperresponsiveness) may be more suitable in assessing treatment 

outcomes in pediatric patients and pharmacogenetic research, such as FENO and asthma 

control (symptom control and risk for exacerbations as well as exacerbation severity). Surely 

additional studies involving a larger number of patients, several (shorter and longer) 

treatment success assessment periods as well as functional studies to underpin possible 

pathophysiologic mechanisms underlying this treatment outcome heterogeneity are needed to 

confirm any of these results. 

We have also successfully identified 4 distinct response clusters varying in the level of 

response to treatment according to the afore mentioned parameters and duration of treatment 

(short-term vs long-term). Clusters 1 and 3 seemed to have a more positive pattern of 

treatment outcomes and were characterized by more prominent atopic markers (higher 

sensitization levels and strong sensitization to house dust mite for cluster 1, higher total IgE 

levels, higher eosinophilia for cluster 1, higher FENO, low neutrophilia) and a predominant 

allelic (A allele) effect for rs37973 in the GLCCI1 gene. Conversly, they had a relatively later 

onset of disease (6 years of age or more). Clusters 2 and 4 had poorer treatment success 

patterns and were characterized by higher levels of airway and systemic inflammation (higher 

hsCRP for cluster 4), multiple comorbidities (food allergy, atopic dermatitis for cluster 4 and 
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obesity for cluster 2, which is in concordance with the obese asthma phenotype), but varied in 

the type of inflammation (predominantly neutrophilic for cluster 4 and mixed-type for cluster 

2). Cluster 2 was the only one with relatively earlier onset of asthma (5 years of age), while 

cluster 4 had more severe forms of asthma and lower platelet counts associated with more 

extensive airway remodeling and poorer treatment effectiveness. 

The results of this study emphasize the issues in asthma treatment and management due to the 

overgeneralized approach to the disease, not taking into account specific disease phenotypes. 

This is the first study to identify treatment resposne patterns in children with asthma and 

plausible pathophysiologic and molecular mechanisms underlying such treatment outcomes. 

From the results of this study it is more than evident that in order to optimize medication 

selection and maximize treatment response in patients with asthma, especially children (since 

prevention and acting in a timely manner early in the disease presentation may prevent 

asthma progression later in life), further characterization of specific disease phenotypes is 

more than necessary. This may aid in developing complex prediction models which will 

stratify patients according to their specific disease traits and risk for treatment failure which 

will help in revisiting and recategorizing current treatment selection guidelines, aiming at 

establishing novel and better therapeutic options but surely further research and clinically 

based evidence is needed. A better understanding of individual variations in response to 

treatment, especially in children, will help clinicians in optimising asthma treatment and 

enable each patient to have full quality of life with minimal or no impediment from their 

asthma. 

 

 

 

 

 

 

 

 



108 
 

7. REFERENCES  

 

Agache I, Akdis C, Jutel M, Virchow JC (2012) Untangling asthma phenotypes and 

endotypes. Allergy 67: 835-846. 

American Thoracic Society, ATS (1987) Standardization of spirometry- 1987 update. 

Statement of the American Thoracic Society. Am Rev Respir Dis 136: 1285-1298. 

Anderson GP (2008) Endotyping asthma: new insights into key pathogenic mechanisms in a 

complex, heterogeneous disease. Lancet 372: 1107-1119. 

Anderson SD (2006) How does exercise cause asthma attacks? Curr Opin Allergy Clin 

Immunol 6: 37-42. 

Armaly M (1967) Inheritance of Dexamethasone Hypertension and Glaucoma. Arch 

Ophthalmol 77: 747-751. 

Asher MI, Keil U, Anderson HR, Beasley R, Crane J., Martinez F, et al. (1995) International 

study of asthma and allergies in childhood (ISAAC): rationale and methods. Eur Respir J 8: 

483-491. 

Baffi CW, Winnica DE, Holguin F (2015) Asthma and obesity: mechanisms and clinical 

implications. Asthma Research and Practice 1: 1. 

Bagnasco D, Ferrando M, Varricchi G, Passalacqua G, Canonica GW (2016) A Critical 

Evaluation of Anti-IL-13 and Anti-IL-4 Strategies in Severe Asthma. Int Arch Allergy 

Immunol 170: 122-131. 

Barnes PJ (1996) Pathophysiology of asthma. Br J Clin Pharmacol 42: 3-10. 

Barnes PJ (2009) Targeting the epigenome in the treatment of asthma and chronic obstructive 

pulmonary disease. Proc Am Thorac Soc 6: 693-696. 

Barnes PJ (2010) Inhaled corticosteroids. Pharmaceuticals (Basel) 3: 514-540. 

Barnes PJ (2016) Asthma-COPD Overlap. Chest 149: 45-52. 



109 
 

Barton SJ, Koppelman GH, Vonk JM, Browning CA, Nolte IM, Stewart CE, et al. (2009) 

PLAUR polymorphisms are associated with asthma, PLAUR levels, and lung function 

decline. J Allergy Clin Immunol 123: 1391-1400, e17. 

Basu K, Palmer CN, Tavendale R, Lipworth BJ, Mukhopadhyay S (2009) Adrenergic 

beta(2)-receptor genotype predisposes to exacerbations in steroid-treated asthmatic patients 

taking frequent albuterol or salmeterol. J Allergy Clin Immunol 124: 1188-94.e3. 

Baye TM, Abebe T, Wilke RA (2011) Genotype-environment interactions and their 

translational implications. Per Med 8: 59-70. 

Belgrave D, Cassidy R, Stamate D, Custovic A, Fleming L, Bush A, et al. (2018) Predictive 

Modelling Strategies to Understand Heterogeneous Manifestations of Asthma in Early Life. 

18th-21st December 2017, 16th IEEE International Conference on Machine Learning and 

Applications (ICMLA), Cancun, Mexico. 

Belgrave D, Cassidy R, Stamate D, Custovic A, Fleming L, Bush A, et al. (2017) Predictive 

Modelling Strategies to Understand Heterogeneous Manifestations of Asthma in Early Life. 

16th IEEE International Conference on Machine Learning and Applications (ICMLA), 

Cancun, 2017, pp. 68-75.doi: 10.1109/ICMLA.2017.0-176 

Belo VA, Souza-Costa DC, Luizon MR, Lanna CM, Carneiro PC, Izidoro-Toledo TC, et al. 

(2012) Matrix metalloproteinase-9 genetic variations affect MMP-9 levels in obese children. 

Int J Obes (Lond) 36:69-75. 

Benoist MR, Brouard JJ, Rufin P, Delacourt C, Waernessyckle S, Scheinmann P (1994) 

Ability of new lung function tests to assess methacholine-induced airway obstruction in 

infants. Pediatr Pulmonol 18: 308-316. 

Berair R, Saunders R, Brightling CE (2013) Origins of increased airway smooth muscle mass 

ina asthma. BMC Med 11:145. 

Bergeron C, Al-Ramli W, Hamid Q (2009) Remodeling in asthma. Proc Am Thorac Soc 6: 

301-305. 

Berry M, Morgan A, Shaw DE, Parker D, Green R, Brightling C, et al. (2007) Pathological 

features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. 

Thorax 62: 1043-1049. 



110 
 

Beuther DA, Sutherland  ER (2007) Overweight, obesity, and incident asthma: a meta-

analysis of prospective epidemiologic studies. Am J Respir Crit Care Med 175: 661-666. 

Beydon N, Davis SD, Lombardi E, Allen JL, Arets HGM, Aurora P, et al. (2007) An Official 

American Thoracic Society/European Respiratory Society Statement: Pulmonary Function 

Testing in Preschool Children. Am J Respir Crit Care Med 175: 1304-1345. 

Bhakta NR, Woodruff PG (2011) Human asthma phenotypes: from the clinic, to cytokines, 

and back again. Immunol Rev 242: 220-232. 

Bickel S, Popler J, Lesnick B, Eid N (2014) Impulse oscillometry: Interpretation and practical 

applications. Chest 146: 841-847. 

Bisset LR, Schmid-Grendelmeier P (2005) Chemokines and their receptors in the 

pathogenesis of allergic asthma: progress and perspective. Curr Opin Pulm Med 11: 35-42. 

Bonini M, Usmani OS (2016) drugs for airway disease. Medicine 44: 271-280. 

Boskabady M, Rezaeitalab F, Rahimi N, Dehnavi D (2008) Improvement in symptoms and 

pulmonary function of asthmatic patients due to their treatment according to the Global 

Strategy for Asthma Management (GINA). BMC Pulm Med 8: 26. 

Brannan JD, Lougheed MD (2012) Airway hyperresponsiveness in asthma: Mechanisms, 

clinical Significance, and treatment. Front Physiol 3:460. 

Breton CV, Vora H, Salam MT, Islam T, Wenten M, Gauderman WJ, et al. (2009) Variation 

in the GST mu locus and tobacco smoke exposure as determinants of childhood lung 

function. Am J Respir Crit Care Med 179: 601-607. 

Brewster CE, Howarth PH, Djukanović R, Wilson J, Holgate ST, Riche WR (1990) 

Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3: 

507-511. 

British Thoracic Society (BTS) Scottish Intercollegiate Guidelines Network (SIGN) (2014) 

British guideline on the management of asthma: A national clinical guideline, revised 2014. 

Accessed: https://www.brit-thoracic.org.uk/document-library/clinical-

information/asthma/btssign-asthma-guideline-2014/ on 8
th

 August 2016. 

https://www.brit-thoracic.org.uk/document-library/clinical-information/asthma/btssign-asthma-guideline-2014/
https://www.brit-thoracic.org.uk/document-library/clinical-information/asthma/btssign-asthma-guideline-2014/


111 
 

Brock G, Pilhur V, Datta S, Datta S (2008) clValid: An R Package for Cluster Validation. J 

Stat Softw 25: 1-22. 

Brown HM (1961) Asthma, allergy and steroids. Br J Clin Practice 15: 1001-1017. 

Brugha R, Mushtaq N, McCarthy NE, Stagg AJ, Grigg J (2015) Respiratory tract dendritic 

cells in paediatric asthma. Clin Exp Allergy 45: 624-631. 

Brussee JE, Smith HA, Kerkhof M, Koopman LP, Wijga AH, Postma DS, et al. (2005) 

Exhaled nitric oxide in 4-year-old children: relationship with asthma and atopy. Eur Respir J 

25: 455-461. 

Buchvald F, Eiberg H, Bisgaard H (2003) Heterogeneity of FeNO response to inhaled steroid 

in asthmatic children. Clin Exp Allergy 33: 1735-1740. 

Bush A, Menzies-Gow A (2009) Phenotypic differences between pediatric and adult asthma. 

Proc Am Thorac Soc 6: 712-719. 

Busse WW (2010) The relationship of airway hyperresponsiveness and airway inflammation: 

Airway hyperresponsiveness in ssthma: Its measurement and clinical significance. Chest 138: 

4S-10S. 

Calderón MA, Linneberg A, Kleine-Tebbe J, De Blay F, Hernandez Fernandez de Rojas D, 

Virchow JC, et al. (2015) Respiratory allergy caused by house dust mites: What do we really 

know? J Allergy Clin Immunol 136: 38-48. 

Castro-Rodriguez JA, Holberg CJ, Wright AL, Martinez FD (2000) A clinical index to define 

risk of asthma in young children with recurrent wheezing. Am J Respir Crit Care Med 162(4 

Pt 1): 1403-1406. 

Celakovská J, Bukac J (2016) The severity of atopic dermatitis evaluated with the SCORAD 

index and the occurrence of bronchial asthma and rhinitis, and the duration of atopic 

dermatitis. Allergy Rhinol (Providence) 7: 8-13. 

Celedon JC, Kolls JK (2014) An innate link between obesity and asthma. Nat Med 20: 19-20. 

Chan EY, Dundas I, Bridge PD, Healy MJ, McKenzie SA (2005) Skin-prick testing as a 

diagnostic aid for childhood asthma. Pediatr Pulmonol 39: 558-562. 



112 
 

Chang TS, Lemanske RF Jr, Mauger DT, Fitzpatrick AM, Sorkness CA, Szefler SJ, et al. 

(2014) Childhood asthma clusters and response to therapy in clinical trials. J Allergy Clin 

Immunol 133: 363-369. 

Chiba S, Nakamura Y, Mizuno T, Abe K, Horii Y, Nagashima H, et al. (2018) Impact of the 

genetic variants of GLCCI1 on clinical features of asthmatic patients. Clin Respir J 12: 1166-

1173. 

Cho SH (2010) Pharmacogenomic Approaches to Asthma Treatment. Allergy Asthma 

Immunol Res 2: 177-182. 

Chung KF, Adcock IM (2015) Clinical phenotypes of asthma should link up with disease 

mechanisms. Curr Opin Allergy Clin Immunol 15: 56-62. 

Chung KF, Barnes PJ (1999) Cytokines in asthma. Thorax 54: 825-857. 

Cookson W, Moffat M, Strachan DP (2011) Genetic risks and childhood-onset asthma. J 

Allergy Clin Immunol. 128 :266-270. 

Corren J (2008) Small airways disease in asthma. Curr Allergy Asthma Rep 8: 533-539. 

Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F (2011) Th17 cells: new players in 

asthma pathogenesis. Allergy 66: 989-998. 

Court MH (2012) Court's (2005–2008) online calculator. Accessed: 

http://emerald.tufts.edu/~mcourt01/Documents/Court%20lab%20-%20HW%20calculator.xls 

on 3
rd

 August 2016. 

Covar RA, Spahn JD, Martin RJ, Silkoff PE, Sundstrom DA, Murphy J, et al. (2004) Safety 

and application of induced sputum analysis in childhood asthma. J Allergy Clin Immunol 

114: 575-582. 

Criee CP, Sorichter S, Smith HJ, Kardos P, Merget R, Heise D, et al. (2011) Body 

plethysmography- Its principles and clinical use. Respir Med 105: 957-958. 

Criee CP, Sorichter S, Smith HJ, Kardos P, Merget R, Heise D, et al. (2011) Body 

plethysmography: Its principles and clinical use. Respir Med 105: 959-971. 

D`Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, et al. (2007) 

Allergenic pollen and pollen allergy in Europe. Allergy 62: 976-990. 

http://emerald.tufts.edu/~mcourt01/Documents/Court%20lab%20-%20HW%20calculator.xls


113 
 

Dames KK, Lopes AJ, de Melo PL (2014) Airflow pattern complexity during resting 

breathing in patients with COPD: Effect of airway obstruction. Respir Physiol Neurobiol 192: 

39-47. 

De Jongste JC (2005) Yes to NO: the first studies on exhaled nitric oxide-driven asthma 

treatment. Eur Respir J 26: 379–381. 

Deliu M, Yavuz TS, Sperrin M, Belgrave D, Sahiner UM, Sackesen C, et al. (2018) Features 

of asthma which provide meaningful insights for understanding the disease heterogeneity. 

Clin Exp Allergy 48: 39-47. 

Desai D, Newby C, Symon FA, Haldar P, Shah S, Gupta S, et al. (2013) Elevated sputum 

interleukin-5 and submucosal eosinophilia in obese individuals with severe asthma. Am J 

Respir Crit Care Med 188: 657-663. 

DeWan AT, Egan KB, Hellenbrand K, Sorrentino K, Pizzoferrato N, Walsh KM, et al. (2012) 

Whole-exome sequencing of a pedigree segregating asthma. BMC Med Genet 13: 95. 

Dijkstra A, Postma DS, Bruinenberg M, van Diemen CC, Boezen H, Koppelman G, et al. 

(2011) SERPINE1 2675 4G/5G polymorphism is associated with asthma severity and inhaled 

corticosteroid response. Eur Respir J 38: 1036-1043. 

Ding Y, Lu M, Dong X, Jiang Z, Wu B, Gu H, et al. (2017) Research on relationship between 

GLCCI1 polymorphism and effect of inhaled corticosteroids in children with asthma. Chin J 

Clin Pharm 26: 6. 

Dixon AE (2009) Adipokines and asthma. Chest 135: 255-256. 

Dixon AE, Holguin F, Sood A, Salome CM, Pratley RE, Beuther DA, et al. (2010) An 

official American Thoracic Society Workshop report: obesity and asthma. Proc Am Thorac 

Soc 7: 325-335. 

Dodig S, Richter D, Benko B, Zivcic J, Raos M, Nogalo B, et al. (2006) Cut-off values for 

total serum immunoglobulin E between non-atopic and atopic children in north-west Croatia. 

Clin Chem Lab Med 44: 639-647. 

Downie SR, Salome CM, Verbanck S, Thompson B, Berend N, King GG (2007) Ventilation 

heterogeneity is a major determinant of airway hyperresponsiveness in asthma, independent 

of airway inflammation. Thorax 62: 684-689. 



114 
 

Dragicevic S, Kosnik M, Divac Rankov A, Rijavec M, Milosevic K, Korosec P, et al. (2018) 

The Variants in the 3' Untranslated Region of the Matrix Metalloproteinase 9 Gene as 

Modulators of Treatment Outcome in Children with Asthma. Lung 196: 297-303. 

Drazen J, Silverman E, Lee T. (2000) Heterogeneity of therapeutic responses in asthma. Br 

Med Bull 56: 1054-1070. 

Duong-Thi-Ly H, Nguyen-Thi-Thu H, Nguyen-Hoang L, Nguyen-Thi-Bich H, Craig TJ, 

Duong-Quy S (2017) Effects of genetic factors to inhaled corticosteroid response in children 

with asthma: a literature review. J Int Med Res 45: 1818-1830. 

Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. (2011) An 

official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) 

for clinical applications. Am J Respir Crit Care Med 184: 602-615. 

Elias J, Lee C, Zheng T, Ma B, Homer R, Zhu Z (2003) New insights into the pathogenesis of 

asthma. J Clin Invest. 111: 291-297. 

Ellaurie M, Wang G (2004) Platelet abnormalities in asthma and allergy. J Allergy Clin 

Immunol 113: S161. 

European Environmental Agrency- EEA (2009): Report of the Workshop on Environment 

and Health: Evaluating European Air Quality Research and Translating Priorities into 

Actions, 19-20 January 2009. 

European Medicines Agency (EMA) Committee for medicinal products for human use- 

CHMP (2009) Guideline on the Clinical Development of Medicinal Products for the 

Treatment of Cystic Fibrosis. London, 22
nd

 October 2009. 

European Respiratory Society- ERS (2003): White Book of the European Respiratory 

Society. 

Evans CM, Kim K, Tuvim MJ, Dickey BF (2009) Mucus Hypersecretion: causes and effects. 

Curr Opin Pulm Med 15: 4-11. 

Fal AM, Rosiek-Biegus M (2012) Pharmacogenetics of Asthma, Clinical Applications of 

Pharmacogenetics. In: Sanoudou D (ed) Clinical Applications of Pharmacogenetics. Rijeka, 

INTECH Ltd, 183-200. 



115 
 

Finotto S, Neurath MF, Glickman JN, Qin S, Lehr HA, Green FH, et al. (2002) Development 

of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 

295: 336-338. 

Gaffin JM, Phipatanakul W (2009) The role of indoor allergens in the development of 

asthma. Curr Opin Allergy Clin Immunol 9: 128-135. 

Gagro A (2011) Asthma in children. Acta Med Croatica 65: 169-172. [Article in Croatian]. 

Gauthier M, Ray A, Wenzel SE (2015) Evolving concepts of asthma. Am J Respir Crit Care 

Med 192: 660-668. 

Gibson PG, Simpson JL, Saltos N (2001) Heterogeneity of airway inflammation in persistent 

asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest 

199: 1329-1336. 

Gjergja Juraški R, Sabol Z, Turkalj M, Nenadić N, Marušić I, Kučić D, Miloš M, Vlašić V 

(2013)  Sleep disorders in children wih cerebral palsy. Pediatr Croat 57: 115-122. 

Global Initiative for Asthma- GINA (2015) Pocket Guide for Asthma Management and 

Prevention (for Adults and Children Older than 5 Years), updated  2015. Accessed: 

http://ginasthma.org/wp-content/uploads/2016/01/GINA_Pocket_2015.pdf on 8
th

 August 

2016. 

Global Initiative for Asthma- GINA (2015) Pocket Guide for Asthma Management and 

Prevention (for Children 5 Years and Younger), updated 2015. Accessed: 

http://ginasthma.org/pocket-guide-for-asthma-management-and-prevention-in-children-5-

years-and-younger/ on 8
th

 August 2016. 

Global Initiative for Asthma- GINA (2018) Global Strategy for Asthma Management and 

Prevention (2018 update). Accessed: www.ginasthma.org on 23
rd

 October 2018. 

Goleva E, Hauk PJ, Boguniewicz J, Martin RJ, Leung DYM (2007) Airway remodeling and 

lack of bronchodilator response in steroid-resistant asthma. J Allergy Clin Immunol 

120:1065-1072. 

Green RH, Brightling CE, Woltmann G, Parker D, Wardlaw AJ, Pavod ID (2002) Analysis of 

induced sputum in adults with asthma: identification of subgroup with isolated sputum 

neutrophilia and poor response to inhaled cotricosteroids. Thorax 57: 875-879. 

http://ginasthma.org/wp-content/uploads/2016/01/GINA_Pocket_2015.pdf
http://ginasthma.org/pocket-guide-for-asthma-management-and-prevention-in-children-5-years-and-younger/
http://ginasthma.org/pocket-guide-for-asthma-management-and-prevention-in-children-5-years-and-younger/
http://www.ginasthma.org/


116 
 

Green SA, Rathz DA, Schuster AJ, Liggett SB (2001) The Ile164 beta(2)-adrenoceptor 

polymorphism alters salmeterol exosite binding and conventional agonist coupling to G(s). 

Eur J Pharmacol 421:141-147. 

Grzela K, Litwiniuk M, Zagorska W, Grzela T (2016) Airway Remodeling in Chronic 

Obstructive Pulmonary Disease and Asthma: the Role of Matrix Metalloproteinase-9. Arch 

Immunol Ther Exp 64:47-55. 

Grzela K, Zagorska W, Krejner A, Banaszkiewicz A, Litwiniuk M, Kulus M, et al. (2016) 

Inhaled corticosteroids do not reduce initial high activity of matrix metalloproteinase (MMP)-

9 in exhaled breath condensates of children with asthma exacerbation: a proof of concept 

study. Cent Eur J Immunol 41:221-227. 

Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. (2008) Cluster 

analysis and clinical asthma phenotypes. Am J Respir Crit Care Med 178: 218-224. 

Hamid Q, Tulic MK (2007) New insights into the pathophysiology of the small airways in 

asthma. Ann Thorac Med 2: 28-33. 

Harkness LM, Kanabar V, Sharma HS, Westergren-Thorsson G, Larsson-Callerfelt AK 

(2014) Pulmonary vascular changes in asthma and COPD. Pulm Pharmacol Ther 29: 144-

155. 

Henderson AJ (2014) Childhood asthma phenotypes in the twenty-first century. Breathe 10: 

100-108. 

Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, et al. 

(2009) Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. 

Am J Hum Genet 84: 581-593. 

Hoffman R, Benz EJ Jr, Silberstein LE, Heslop HE, Weitz, JI, eds (2012) Haematology: 

Basic Principles and Practice. 6th edn. Saunders Elsevier, Philadelphia, Pa. 

Holgate ST (2008) Pathogenesis of asthma. Clin Exp Allergy 38: 872-897. 

Holgate ST, Polosa R (2008) Treatment strategies for allergy and asthma. Nat Rev Immunol 

8: 218-230. 



117 
 

Holguin F, Rojas M, Brown LA, Fitzpatrick AM (2011) Airway and plasma leptin and 

adiponectin in lean and obese asthmatics and controls. J Asthma 48: 217-223. 

Holloway JW, Yang IA, Holgate ST (2010) Genetics of allergic disease. J Allergy Clin 

Immunol 126: S81-S94. 

Howrylak JA, Fuhlbrigge AL, Strunk RC, Zeiger RS, Weiss ST, Raby BA, et al. (2014) 

Classification of childhood asthma phenotypes and long-term clinical responses to inhaled 

anti-inflammatory medications. J Allergy Clin Immunol 133: 1289-1300, 1300.e1-12. 

In‘t Veen JC, Beekman AJ, Bel EH, Sterk PJ (2000) Recurrent exacerbations in severe 

asthma are associated with enhanced airway closure during stable episodes. Am J Respir Crit 

Care Med 161: 1902-1906. 

Inglis GC, Ingram MC, Holloway CD, Swan L, Birnie D, Hillis WS, et al. (1999) Familial 

pattern of corticosteroids and their metabolism in adult human subjects- the Scottish adult 

twin study. J Clin Endocrinol Metab 84: 4132-4137. 

International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee 

(1998) Worldwide variations in the prevalence of asthma symptoms: the International Study 

of Asthma and Allergies in Childhood (ISAAC). Eur Respir J 12: 315–335. 

Irani J, Pise N, Phatak M (2016) Clustering Techniques and the Similarity Measures used in 

Clustering: A Survey. Int J Comput Appl 134: 7. 

James AL (2002) Peripheral airways in asthma. Curr Allergy Asthma Rep 2: 166-174. 

James AL, Elliot JG, Jones RL, Carroll ML, Mauad T, Bai TR, et al. (2012) Airway smooth 

muscle hypertrophy and hyperplasia in asthma. Am J Respir Crit Care Med 185: 1058-1064. 

Janssen-Heininger YMW, Irvin CG, Scheller EV, Brown AL, Kolls JK, Alcorn JF (2012) 

Airway Hyperresponsiveness and Inflammation: Causation, Correlation or No Relation? J 

Aller Ther S1: 008. doi: 10.4172/2155-6121.S1-008. 

Jocken JWE, Blaak EE, Schiffelers S, Arner P, van Blaak MA, Saris WHM (2007) 

Association of a beta-2 adrenoceptor (ADRB2) gene variant with a blunted in vivo lipolysis 

and fat oxidation. Int J Obes 31:813-819. 



118 
 

Kabesch M, Schedel M, Carr D, Woitsch B, Fritzsch C, Weiland SK, et al. (2006) IL-4/IL-13 

pathway genetics strongly influence serum IgE levels and childhood asthma. J Allergy Clin 

Immunol 117: 269-274. 

Kilic H, Karalezli A, Hasanoglu HC, Erel O, Ates C (2012) The relationship between hs-CRP 

and asthma control test in asthmatic patients. Allergol Immunopathol (Madr) 40: 362-367. 

Kim TB, Jang AS, Kwon HS, Park JS, Chang YS, Cho SH, et al. (2013) Identification of 

asthma clusters in two independent Korean adult asthma cohorts. Eur Respir J 41: 1308-1314. 

Kim WJ, Sheen SS, Kim TH, Huh JW, Lee JH, Kim EK, et al. (2009) Association between 

CRHR1 polymorphism and improved lung function in response to inhaled corticosteroid in 

patients with COPD. Respirology 14: 260-263. 

Koppelman GH, Meyers DA, Howard TD, Zheng SL, Hawkins GA, Ampleford EJ, et al. 

(2009) Identification of PCDH1 as a novel susceptibility gene for bronchial 

hyperresponsiveness. Am J Respir Crit Care Med 180: 929-935. 

Kowal K, Pampuch A, Kowal-Bielecka O, DuBuske LM, Bodzenta-Łukaszyk A (2006) 

Platelet activation in allergic asthma patients during allergen challenge with 

Dermatophagoides pteronyssinus. Clin Exp Allergy 36: 426-432. 

Kraft M, Martin RJ, Wilson S, Djukanovic R, Holgate ST (1999) Lymphocyte and eosinophil 

influx into alveolar tissue in NA (Nocturnal asthma). Am J Respir Crit Care Med 159: 228-

234. 

Lai CK, Beasley R, Crane J, Foliaki S, Shah J, Weiland S (2009) Global variation in the 

prevalence and severity of asthma symptoms: phase three of the International Study of 

Asthma and Allergies in Childhood (ISAAC). Thorax 4: 476–483. 

Lee JK, Han D (2018) Atopic dermatitis is an important comorbidity in severe asthma. Ann 

Allergy Asthma Immunol 120: 661-662. 

Lee YK, Yang S, Park J, Kim H, Hahn YS (2015) House dust mite-specific immunoglobulin 

E and longitudinal exhaled nitric oxide measurements in children with atopic asthma. Korean 

J Pediatr 58: 89-95. 

Lemanske RF Jr, Busse WW (2010) Asthma: Clinical expression and molecular mechanisms. 

J Allergy Clin Immunol 125: S95–S102 



119 
 

Lerman SE, Eskin E, Flower DJ, George EC, Gerson B, Hartenbaum N, et al. (2012) Fatigue 

risk management in the workplace. J Occup Environ Med 54: 231-258. 

Lex C, Payne DN, Zacharaslewicz A, Li AM, Wilson NM, Hansel TT, et al.(2005) Sputum 

induction in children with difficult asthma: safety, feasibility, and inflammatory cell pattern. 

Pediatr Pulmonol 39: 318-324. 

Li J, Wang H, Chen Y, Zheng J, Wong GW, Zhong N (2013) House dust mite sensitization is 

the main risk factor for the increase in prevalence of wheeze in 13- to 14-year-old 

schoolchildren in Guangzhou city, China. Clin Exp Allergy 43: 1171-1179. 

Lima JJ, Blake KV, Tantisira KG, Weiss ST (2009) Pharmacogenetics of asthma. Curr Opin 

Pulm Med 15:57-62. 

Lips KS, Volk C, Schmitt BM, Pfeil U, Arndt P, Miska D, et al. (2005) Polyspecific cation 

transporters mediate luminal release of acetylcholine from bronchial epithelium. Am J Respir 

Cell Mol Biol 33: 79-88. 

Litonjua AA, Gong L, Duan QL, Shin J, Moore MJ, Weiss ST, et al. (2010) Very important 

pharmacogene summary ADRB2. Pharmacogenet Genomics 20: 64-69. 

Lødrup CK, Magnus P, Carlsen KH  (1994) Lung function by tidal breathing in awake 

healthy newborn infants. Eur Respir J 7: 1660-1668. 

Lombardi C, Savi E, Ridolo E, Passalacqua G, Canonica GW (2017) Is allergic sensitization 

relevant in severe asthma? Which allergens may be culprit? World Allergy Organ J 10: 2. 

Lopert A, Rijavec M, Zavbi M, Korosec P, Flezar M (2013) Asthma treatment outcome in 

adults is associated with rs9910408 in TBX21 gene. Sci Rep 3:2915. 

Los H, Postmus PE, Boomsma DI (2001) Asthma genetics and intermediate phenotypes: a 

review from twin studies. Twin Res 4: 81-93. 

Lötvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. (2011) Asthma 

endotypes: a new approach to classification of disease entities within the asthma syndrome. J 

Allergy Clin Immunol 127: 355-360. 

Loxham M, Davies DE, Blume C (2014) Epithelial function and dysfunction in asthma. Clin 

Exp Allergy 44: 1299-1313. 



120 
 

Loza MJ, Djukanovic R, Chung KF, Horowitz D, Ma K, Braningan P, et al. (2016) Validated 

and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study. 

Respir Res 17: 165. 

Lugogo NL, Hollingsworth JW, Howell DL, Que LG, Francisco D, Church TD, et al. (2012) 

Alveolar macrophages from overweight/obese subjects with asthma demonstrate a 

proinflammatory phenotype. Am J Respir Crit Care Med 186: 404-411. 

Maitland-van der Zee AH, Daly AK (2012) Pharmacogenetics and individualized therapy. 1st 

edn. WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 

Mäkikyrö EM, Jaakkola MS, Jaakkola JJ (2017) Subtypes of asthma based on asthma control 

and severity: a latent class analysis. Respir Res 18: 24. 

Malmberg LP, Petays T, Haahtela T, Laatikainen T, Jousilahti P, Vartlainen E, et al. (2006) 

Exhaled nitric oxide in healthy nonatopic school-age children: Determinants and height-

adjusted referece values. Pediatr Pulmonol 41: 635-642. 

Malmberg LP, Turpelnen H, Rytila P, Sarna S, Haahtela T (2005) Determinants of increased 

exhaled nitric oxide in patients with suspected asthma. Allergy 60: 464-468. 

Masoli M, Fabian D, Holt S, Beasley R, GINA Program (2004) The global burden of asthma: 

executive summary of the GINA Dissemination Committee report. Allergy 59: 469-478. 

McDougall CM, Helms PJ (2006) Neutrophil airway inflammation in childhood asthma. 

Thorax 61: 739-741. 

McGeachie MJ, Wu AC, Chang H-H, Lima JJ, Peters SP, Tantisira KG (2013) Predicting 

Inhaled Corticosteroid Response in Asthma with Two Associated SNPs. Pharmacogenomics 

J 13: 306-311. 

McGeachie MJ, Wu AC, Chang HH, Lima JJ, Peters SP, Tantisira KG (2013) Predicting 

Inhaled Corticosteroid Response in Asthma with Two Associated SNPs. Pharmacogenomics 

J 13: 306–311. 

Michel S, Liang L, Depner M, Klopp N, Ruether A, Kumar A, et al. (2010) Unifying 

candidate gene and GWAS Approaches in Asthma. PLoS One 5: e13894. 



121 
 

Moffatt MF, Gut ID, Demenais F, Strachan DP, Bouzigon E, Heath S, et al. (2010): A Large-

Scale, Consortium-Based Genomewide Association Study of Asthma. N Engl J Med 363: 

1211-1221. 

Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. (2007) Genetic 

variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 

448: 470-473. 

Mohanan S, Tapp H, McWilliams A, Dulin M (2014) Obesity and asthma: pathophysiology 

and implications for diagnosis and management in primary care. Exp Biol Med (Maywood) 

239: 1531-1540. 

Monadi M, Firouzjahi A, Hosseini A, Javadian Y, Sharbatdaran M, Heidari B (2016) Serum 

C-reactive protein in asthma and its ability in predicting asthma control, a case-control study. 

Caspian J Intern Med 7: 37-42. 

Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. (2010) Identification of 

Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. Am J 

Respir Crit Care 181: 315-323. 

Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SMJ (2004) 

Decreased arginine bioavailability and increased serum arginase activity in asthma. Am J 

Respir Crit Care Med 170: 148-153. 

Morrow TJ (2007) Implications of Pharmacogenomics in the Current and Future Treatment 

of Asthma. J Manag Care Pharm 13:497-505. 

MZOS (2010): Nacionalna strategija razvoja zdravstva 2012.-2020., NN 116/2012, 

22.10.2012., 24-31. 

Naik SP, P A M, B S J, Madhunapantula SV, Jahromi SR, Yadav MK (2017) Evaluation of 

inflammatory markers interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in 

asthma. J Asthma 54:584-593. 

National Heart, Lung and Blood Institute (NHLBI) Expert Panel Report 3- EPR-3 (2007) 

Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy 

Clin Immunol. 120(5 Suppl): S94-S138. 



122 
 

Navratil M, Plavec D, Dodig S, Jelcic Z, Nogalo B, Erceg D, et al. (2009) Markers of 

systemic and lung inflammation in childhood asthma. J Asthma 46: 822-828. 

Ngoc L, Gold DR, Tzianabos AO, Weiss ST, Celedon JC (2005) Cytokines, allergy, and 

asthma. Curr Opin Allergy Clin Immunol 5: 161-166. 

Niewoehner DE, Collins D, Erbland ML (2000) Relation of FEV1 to Clinical Outcomes 

during Exacerbations of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 

161: 1201-1205. 

Ober C, Abney M, McPeek M (2001) The genetic dissection of complex traits in a founder 

population. Am J Hum Genet 69: 1068-1079. 

Ober C, Yao TC (2011) The genetics of asthma and allergic disease: a 21st century 

perspective. Immunol Rev 242: 10-30. 

Oei SM, Thien FC, Schattner RL, Sulaiman ND, Birch K, Simpson P, et al. (2011) Effect of 

spirometry and medical review on asthma control in patients in general practice: a 

randomized controlled trial. Respirology 16: 803-810. 

Ohbayashi H, Shimokata K (2005) Matrix metalloproteinase-9 and airway remodeling in 

asthma. Curr Drug Targets Inflamm Allergy 4: 177-181. 

Olin JT, Wechsler ME (2014) Asthma: pathogenesis and novel drugs for treatment. BMJ 349: 

g5517. 

Palomo I, Contreras A, Alarcon LM, Leiva E, Guzman L, Mujica V, et al. (2011) Elevated 

concentration of asymmetric dimethylarginine (ADMA) in individuals with metabolic 

syndrome. Nitric Oxide. 24: 224-228. 

Park TJ , Kim JH , Bae JS , Park BL , Cheong HS , Chun JY (2011) Possible association of 

SLC22A2 polymorphisms with aspirin-intolerant asthma. Int Arch Allergy Immuno 155: 

395-402. 

Pavord ID, Brightling CE, Woltmann G, Wardlaw AJ (1999) Non-eosinophilic corticosteroid 

unresponsive asthma. Lancet 353: 2213-2214. 

Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. (2005) 

Interpretative strategies for lung function tests. Eur Respir J 26: 948-968. 



123 
 

Peters-Golden M (2004) The alveolar macrophage: the forgotten cell in asthma. Am J Respir 

Cell Mol Biol 31: 3-7. 

Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM (2006) Influence of 

body mass index on the response to asthma controller agents. Eur Respir J 27: 495-503. 

Pinto LA, Depner M, Klopp N, Illig T, Vogelberg C, von Mutius E, et al. (2010) MMP-9 

gene variants increase the risk for non-atopic asthma in children. Respir Res 11: 23. 

Prado CM, Martins MA, Tibério IFLC (2011) Nitric Oxide in Asthma Physiopathology ISRN 

Allergy 2011: doi:10.5402/2011/832560. 

Price D, Ryan D, Burden A, Von Ziegenweidt J, Gould S, Freeman D, et al. (2013) Using 

fractional exhaled nitric oxide (FeNO) to diagnose steroid-responsive disease and guide 

asthma management in routine care. Clin Transl Allergy 3: 37. 

Price DB, Buhl R, Chan A, Freeman D, Gardener E, Godley C, et al. (2018) Fractional 

exhaled nitric oxide as a predictor of response to inhaled corticosteroids in patients with non-

specific respiratory symptoms and insignificant bronchodilator reversibility: a randomised 

controlled trial. Lancet Respir Med 6: 29-39. 

Prosperi MC, Sahiner UM, Belgrave D, Sackesen C, Buchan IE, Simpson A, et al. (2013) 

Challenges in identifying asthma subgroups using unsupervised statistical learning 

techniques. Am J Respir Crit Care Med 188: 1303-1312. 

Puranik S, Forno E, Bush A, Celedon JC (2017) Predicting Severe Asthma Exacerbations in 

Children. Am J Respir Crit Care 195:854-859. 

Pykäläinen M, Kinos R, Valkonen S, Rydman P, Kilpeläinen M, Laitinen LA, et al. (2005) 

Association analysis of common variants of STAT6, GATA3, and STAT4 to asthma and high 

serum IgE phenotypes. J Allergy Clin Immunol 115: 80-87. 

Qiu R, Xie J, Chung KF, Li N, Yang Z, He M, et al. (2018) Asthma Phenotypes Defined 

From Parameters Obtained During Recovery From a Hospital-Treated Exacerbation. In press. 

Raby BA, Hwang ES, Van Steen K, Tantisira K, Peng S, Litonjua A, et al. (2006) T-Bet 

Polymorphisms Are Associated with Asthma and Airway Hyperresponsiveness. Am J Respir 

Crit Care Med 173:64-70. 



124 
 

Rackermann FM (1947) Intrinsic asthma. Bull N Y Acad Med 23: 302-306. 

Rastogi D, Canfield SM, Andrade A, Isasi CR, Hall CB, Rubinstein A, et al. (2012) Obesity-

associated asthma in children: a distinct entity. Chest 141: 895-905. 

Ray A, Kolls JK (2017) Neutrophilic Inflammation in Asthma and Association with Disease 

Severity. Trends Immunol 38: 942-954. 

Ray A, Oriss TB, Wenzel SE (2015) Emerging molecular phenotypes of asthma. Am J 

Physiol Lung Cell Mol Physiol 308: L130-L140. 

Rebordosa C, Kogevinas M, Guerra S, Castro-Giner F, Jarvis D, Cazzoletti L, et al. (2011) 

ADRB2 Gly16Arg polymorphism, asthma control and lung function decline. Eur Respir J 38: 

1029-1035. 

Reddel HK, Taylor DR, Bateman ED, Boulet LP, Boushey HA, Busse WW, et al. (2009) An 

official American Thoracic Society/European Respiratory Society statement: asthma control 

and exacerbations: standardizing endpoints for clinical asthma trials and clinical practice. Am 

J Respir Crit Care Med 180: 59-99. 

Ribatti D, Puxeddu I, Crivellato E, Nico B, Vacca A, Levi-Schaffer F (2009) Angiogenesis in 

asthma. Clin Exp Allergy 39: 1815–1821 

Ricciardolo FL, Sterk PJ, Gaston B, Folkerts G (2004) Nitric oxide in health and disease of 

the respiratory system. Physiol Rev 84: 731-765. 

Rifai N, Tracy RP, Ridker PM (1999) Clinical efficacy of an automated high-sensitivity C-

reactive protein assay. Clin Chem 45: 2136-2141. 

Rijavec M, Zavbi M, Lopert A, Flezar M, Korosec P (2018) GLCCI1 Polymorphism rs37973 

and Response to Treatment of Asthma With Inhaled Corticosteroids. J Investig Allergol Clin 

Immunol 28: 165-171. 

Robinson D, Humbert  M, Buhl  R, Cruz AA, Inoue H,  Korom S (2016) Revisiting Type 2‐

high and Type 2‐low airway inflammation in asthma: current knowledge and therapeutic 

implications. Clin Exp Allergy 47: 161-175. 



125 
 

Rogers AJ, Tantisira KG, Fuhlbrigge AL, Litonjua AA, Lasky-Su JA, Szefler SJ, et al. (2009) 

Predictors of poor response during asthma therapy differ with definition of outcome. 

Pharmacogenomics 10: 1231-1242. 

Rogers DF (2004) Airway mucus hypersecretion in asthma: an undervalued pathology? Curr 

Opin Pharmacol 4: 241-250. 

Romieu I, Moreno-Macias H, London SJ (2009) Gene by Environment Interaction and 

Ambient Air Pollution. Proc Am Thorac Soc 7: 116-122. 

Ruggieri S, Drago G, Longo V, Colombo P, Balzan M, Bilocca D, et al. (2017) Sensitization 

to dust mite defines different phenotypes of asthma: A multicenter study. Pediatr Allergy 

Immunol 28: 675-682. 

Rytila P, Pelkonen AS, Metso T, Niklander K, Haahtela T, Turpelnen M (2004) Induced 

sputum in children with newly diagnosed mild asthma: the effect of 6 months of treatment 

with budesonide or disodium crommoglycate. Allergy 59: 839-844. 

Saliba LF, Reis RS, Brownson RC, Hino AA, Tureck LV, Valko C, et al. (2014) Obesity-

related gene ADRB2, ADRB3 and GHRL polymorphisms and the response to a weight loss 

diet intervention in adult women. Genet Mol Biol 37: 15-22. 

Salles C, Terse-Ramos R, Souza-Machado A, Cruz AA (2013) Obstructive sleep apnea and 

asthma. J Bras Pneumol 39: 604-612. 

Salome CM, King GG, Berend N (1985) Physiology of obesity and effects on lung function. J 

Appl Physiol. 2010;108: 206-211. 

Samson SL, Garber AJ (2014) Metabolic syndrome. Endocrinol Metab Clin North Am 43: 1-

23. 

Sandini U, Kukkonen AK, Poussa T, Sandini L, Savilahti E, Kuitunen M (2011) Protective 

and risk factors for allergic diseases in high-risk children at the ages of two and five years. Int 

Arch Allergy Immunol 156: 339-348. 

Schoos AM, Chawes BL, Melén E, Bergström A, Kull I, Wickman M, et al. (2017) 

Sensitization trajectories in childhood revealed by using a cluster analysis. J Allergy Clin 

Immunol 140: 1693-1699. 



126 
 

Schwartz J, Reuling F, Feinleib M, Garrison R, Collie D (1972) Twin heritability study of the 

effect of corticosteroids on intraocular pressure. J Med Genet 9: 137-143. 

Scott HA, Wood LG, Gibson PG (2017) Role of Obesity in Asthma: Mechanisms and 

Management Strategies. Curr Allergy Asthma Rep 17: 53. 

Shale DJ, Ionescu AA (2004) Mucus hypersecretion: a common symptom, a common 

mechanism? Eur Respir J 23: 797-798. 

Sheehan WJ, Phipatanakul W (2016) Indoor allergen exposure and asthma outcomes. Curr 

Opin Pediatr 28: 772-777. 

Sideleva O, Suratt BT, Black KE, Tharp WG, Pratley RE, Forgione P, et al. (2012) Obesity 

and asthma: an inflammatory disease of adipose tissue not the airway. Am J Respir Crit Care 

Med 186: 598-605. 

Silva FMC, Oliveira EE, Gouveia ACC, Brugiolo ASS, Alves CC, Correa JOA (2017) 

Obesity promotes prolonged ovalbumin-induced airway inflammation modulating T helper 

type 1 (Th1), Th2 and Th17 immune responses in BALB/c mice. Clin Exp Immunol 189: 47-

59. 

Simon D, Simon HU (2007) Eosinophilic disorders. J Allergy Clin Immunol 119: 1291-1300. 

Simpson A, Soderstrom L, Ahlstedt S, Murray CS, Woodcock A, Custovic A (2005) IgE 

antibody quantification and the probability of wheeze in preschool children. J Allergy Clin 

Immunol 16: 744-749. 

Simpson JL, Scott R, Boyle MJ, Gibson PG (2006) Inflammatory subtypes in asthma: 

assessment and identification using induced sputum. Respirology 11: 54-61. 

Singer F, Abbas C, Yammine S, Casaulta C, Frey U, Latzin P (2014) Abnormal Small 

Airways Function in Children With Mild Asthma. Chest 3: 492-499. 

Siroux V, Basagana X, Boudier A, Pin I, Garcia-Aymerich J, Vesin R, et al. (2011) 

Identifying adult asthma phenotypes using a clustering approach. Eur Respir J 38: 310-317. 

Smith AD, Cowan JO, Brassett KP, Filsell S, McLachlan C, Monti-Sheehan G, et al. (2005) 

Exhaled nitric oxide: a predictor of steroid response. Am J Respir Crit Care Med 172: 453-

459. 



127 
 

Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR (2005) Use of exhaled nitric 

oxide measurements to guide treatment in chronic asthma. N Engl J Med 352: 2163-2173. 

Söderhäll C, Marenholz I, Kerscher T, Rüschendorf F, Esparza-Gordillo J, Worm M, et al. 

(2007) Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic 

dermatitis. PLoS Biol 5: e242. 

Sood A, Cui X, Qualls C, Beckett WS, Gross MD, Steffes MW, et al. (2008) Association 

between asthma and serum adiponectin concentration in women. Thorax 63: 877-882. 

Stanojevic S, Wade A, Stocks J, Hankinson J,  Coates AL, Pan H, et al. (2008) Reference 

ranges for spirometry across all ages: A new approach. Am J Respir Crit Care Med 177: 253-

260. 

Steptoe A, van Jaarsveld C, Semmler C, Plomin R, Wardle J (2009) Heritability of daytime 

cortisol levels and cortisol reactivity in children. Psychoneuroendocrinology 34: 273-280. 

Streets CG, DeMeester TR (2003) Ambulatory 24-hour esophageal pH monitoring: Why, 

when, and what to do. J Clin Gastroenterol 37: 14-22. 

Su MW, Lin WC, Tsai HC, Chiang BL, Yang YH, Wang LC, et al. 2018) Childhood asthma 

clusters reveal neutrophil‐predominant phenotype with distinct gene expression. Allergy, doi: 

10.1111/all.13439. [Epub ahead of print] 

Sutherland ER, Goleva E, Jackson LP, Stevens AD, Leung DYM (2010) Vitamin D levels, 

lung function, and steroid response in adult asthma. Am J Respir Crit Care Med 181: 699-

704. 

Suttner K, Rosenstiel P, Depner M, Schedel M, Pinto LA, Ruether A, et al. (2009) TBX21 

gene variants increase childhood asthma risk in combination with HLX1 variants. J. Allergy 

Clin Immunol 123: 1062-1068, 1068.e1–8. 

Szczepankiewicz A, Bręborowicz A, Sobkowiak P, Kramer L, Popiel A (2009) Role of 

ADRB2 gene polymorphism in asthma and response to β 2 -agonists in Polish children. J 

Appl Genetics 50:275-281. 

Szefler SJ, Martin RJ, King TS, Boushey HA, Cherniack RM, Chinchilli VM, et al. (2002) 

Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy 

Clin Immunol 109: 410-418. 



128 
 

Szefler SJ, Phillips BR, Martinez FD, Chinchilli VM, Lemanske RF, Strunk RC, et al. (2005) 

Characterization of within-subject responses to fluticasone and montelukast in childhood 

asthma. J Allergy Clin Immunol 115: 233-242. 

Takeda T, Morita H, Saito H, Matsumoto K, Matsuda A (2017) Recent advances in 

understanding the roles of blood platelets in the pathogenesis of allergic inflammation and 

bronchial asthma. Allergol Int 67: 326-333. 

Takemura M, Matsumoto H, Niimi A, Ueda T, Matsuoka H, Yamaguchi M, et al. (2006) 

High sensitivity C-reactive protein in asthma. Eur Respir J 27: 908-912. 

Tantisira KG, Hwang ES, Raby BA, Silverman ES, Lake SL, Richter BG, et al. (2004) 

TBX21: A functional variant predicts improvement in asthma with the use of inhaled 

corticosteroids. Proc Natl Acad Sci U S A 101:18099-18104. 

Tantisira KG, Lake S, Silverman ES, Palmer LJ, Lazarus R, Silverman EK, et al. (2004) 

Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved 

lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet 13:1353-

1359. 

Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE, et al. (2011) 

Genome wide association between GLCCI1 and response to glucocorticoid therapy in 

asthma. N Engl J Med 365:1173-1183. 

Telenga E, van der Berge M, ten Hacken N, Riemersma R, van der Molen T, Postma D 

(2013) Small airways in asthma: their independent contribution to the severity of 

hyperresponsiveness. Eur Respir J 41: 752-753. 

Telenga ED, Tideman SW, Kerstjens HA, Hacken NH, Timens W, Postma DS, et al. (2012) 

Obesity in asthma: more neutrophilic inflammation as a possible explanation for a reduced 

treatment response. Allergy 67: 1060-1068. 

Telenga ED, van der Berge M, ten Hacken NHT, Riemersma RA, van der Molen T, Postma 

DS (2013) Small airways in asthma: their independent contribution to the severity of 

hyperresponsiveness. Eur Respir J 41: 752-754. 



129 
 

Teodorescu M, Polomis DA, Gangnon RE, Fedie JE, Consens FB, Chervin RD, et al. (2013) 

Asthma control and its relationship with obstructive sleep apnea (OSA) in older adults. Sleep 

Disord. 2013: 251567. 

Theoharides TC, Singh LK, Boucher W, Pang,X, Letourneau R, Webster E et al. (1998) 

Corticotropin-releasing hormone induces skin mast cell degranulation and increased vascular 

permeability, a possible explanation for its proinflammatory effects. Endocrinology 139:403-

413. 

Thomsen M, Dahl M, Tybjærg-Hansen A, Nordestgaard BG (2012) 2-Adrenergic Receptor 

Thr164Ile Polymorphism, Obesity, and Diabetes: Comparison with FTO, MC4R, and 

TMEM18 Polymorphisms in More Than 64,000 Individuals. J Clin Endocrinol Metab 97: 

E1074-E1079. 

Togerson DF, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, et al. 

(2011) Meta-analysis of genome-wide association studies of asthma in ethnically diverse 

North American populations. Nat Gen 43: 887-892. 

Torrego Fernandez A, Munoz Cano RM (2011) Clinical relevance of distal airway 

involvement in asthma. Arch Bronconeumol 47 Suppl 2: 17-19 [Article in Spanish]. 

Towns SJ, van Asperen PP (2009) Diagnosis and management of asthma in adolescents. Clin 

Respir J 3: 69–76 

Tse SM, Tantisira K, Weiss ST (2011) The pharmacogenetics and pharmacogenomics of 

asthma therapy. Pharmacogenomics J 11: 383-392. 

Usmani OS (2014) Small airways dysfunction in asthma: Evaluation and management to 

improve asthma control. Allergy Asthma Immunol Res 6: 376-388. 

Van Der Cammen-van Zijp MH, van den Berg-Emons RJ, Willemsen SP, Stam HJ, Tibboel 

D, IJsselstijn H (2010) Exercise capacity in Dutch children: new reference values for the 

Bruce treadmill protocol. Scand J Med Sci Sports 20:e130-136. 

Van der Gugten AC, Uiterwaal CSPM, van Putte-Katier N, Koopman M, Verheij TJM, van 

der Ent CK (2013) Reduced neonatal lung function and wheezing illnesses during the first 5 

years of life. Eur Respir J 42: 107-115. 



130 
 

van der Wiel E, ten Hacken NH, Postma DS, van den Berge M (2013) Small-airways 

dysfunction associates with respiratory symptoms and clinical features of asthma: a 

systematic review. J Allergy Clin Immunol 131: 646-657. 

Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J, et al. (2002) 

Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 

418: 426-430. 

Vijverberg SJ, Hilvering B, Raaijmakers JA, Lammers JW, Maitland-van der Zee AH, 

Koenderman L (2013) Clinical utility of asthma biomarkers: from bench to bedside. 

Biologics 7: 199-210. 

Vijverberg SJH, Farzan N, Slob EMA, Neerincx AH, Maitland-van der Zee AH (2018) 

Treatment response heterogeneity in asthma: the role of genetic variation. Expert Rev Respir 

Med 12:55-65. 

Wang J, Liu AH (2011) Food allergies and asthma. Curr Opin Allergy Clin Immunol 11: 

249-254. 

Weidinger S, Willis-Owen SA, Kamatani Y, Baurecht H, Morar N, Liang L, et al. (2013) A 

genome-wide association study of atopic dermatitis identifies loci with overlapping effects on 

asthma and psoriasis. Hum Mol Genet 22:4841-4856. 

Weiss ST, Litonjua AA, Lange C, Lazarus R, Liggett SB, Bleecker ER et al. (2006) 

Overview of the pharmacogenetics of asthma treatment. Pharmacogenomics J 6: 311-326. 

Wenzel SE (2012) Asthma: Phenotypes: the evolution from clinical to molecular approaches. 

Nat Med 18: 716-725. 

Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. (1999) 

Evidence that severe asthma can be divided innto two inflammatory subtypes with distinct 

physiologic and clinical characteristics. Am J Respir Crit Care Med 160: 1001-1008. 

Wesolowska-Andersen A, Seibold MA (2015) Airway molecular endotypes of asthma: 

dissecting the heterogeneity. Curr Opin Allergy Clin Immunol 15: 163-168. 

WHO. Fact sheet No. 307: Asthma: World Health Organization; 2013. 307. Accessed: 

http://www.who.int/mediacentre/factsheets/fs307/en/ on 21
st
 October 2018. 

http://www.who.int/mediacentre/factsheets/fs307/en/


131 
 

WHO: bronchial asthma, Fact sheet no. 206. Accessed: 

http://www.who.int/mediacentre/factsheets/fs206/en/ on 21
st
 October 2013. 

Wilson SR, Strub P, Buist AS, Knowless SB, Lavori PW, Lapidus J, et al. (2010) Shared 

treatment decision making improves adherence and outcomes in poorly controlled asthma. 

Am J Respir Crit Care Med 181: 566-577. 

Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, et al. (2009) 

Initial community evenness favours functionality under selective stress. Nature 458: 623-626. 

Wu W, Bleecker E, Moore W, Busse WW, Castro M, Chung KF, et al. (2014) Unsupervised 

phenotyping of Severe Asthma Research Program participants using expanded lung data. J 

Allergy Clin Immunol 133: 1280-1288. 

Yanai M, Sekizawa K, Ohrui T, Sasaki H, Takishima T (1992) Site of airway obstruction in 

pulmonary disease: Direct measurement of intrabronchial pressure. J Appl Physiol 72: 1016-

1023. 

Yang IA, Savarimuthu S, Kim ST, Holloway JW, Bell SC, Fong KM (2007) Gene-

environmental interaction in asthma. Curr Opin Allergy Clin Immunol 7: 75-82. 

Ye ZH, Huang Y, Wang Y, Wang DJ (2013) Association between body mass index and lung 

function in children with asthma after corticosteroids inhalation. CJCP 15: 983-986 [Article 

in Chinese]. 

Zanini A, Chetta A, Imperatori AS, Spanevello A, Olivieri D (2010) The role of the bronchial 

microvasculature in the airway remodeling in asthma and COPD. Respir Res 11:132. 

Zhu J, Jankovic D, Oler AJ, Wei G, Sharma A, Hu G, et al. (2012) The transcription factor T-

bet is induced by multiple pathways and prevents an endogenous T helper-2 program during 

T helper-1 responses. Immunity 37: 660-673. 

Zuberbier T, Lötvall J, Simoens S, Subramanian SV, Church MK (2014) Economic burden of 

inadequate management of allergic diseases in the European Union: a GA2LEN review. 

Allergy 69: 1275-1279. 

 

 

http://www.who.int/mediacentre/factsheets/fs206/en/


132 
 

8. CURRICULUM VITAE 

Ivana Banić was born on 15
th

 March 1987 in Banja Luka, BIH. She obtained her BSc degree 

in 2008 and MSc degree in 2010 at the Faculty of Science, University of Zagreb. 

She worked as a Junior CRA at NovoNordisk Croatia Ltd., Zagreb, as a researcher/marketing 

associate at the Glycobiology Laboratory at Genos Ltd, Zagreb where she studied the changes 

in IgG glycosilation in the pathogenesis of allergy. She has been working at the Srebrnjak 

Children`s Hospital, Zagreb since 2012. 

Her research focus is in molecular and pathophysiological mechanisms of asthma, allergy and 

other chronic conditions in children, such as primary immunodeficiencies (PID). She is 

involved in several research projects studying differential methylation in allergy, 

pharmacogenetics of asthma, small non-coding RNAs in severe asthma, changes in 

microbiome in specific asthma phenotypes, genetics and immunophenotyping in PID etc. She 

has been involved in several EU and national research projects. She has co-authored 3 

scientific publications and 20+ conference abstracts. She did a part of her doctoral research at 

the University Clinic for Respiratory Diseases and Allergy Golnik, Slovenia and performed 

her ERS STRTF research project in severe asthma at the University of Southampton and 

University Hospital of Southampton, UK. 

She has received several honors/prizes:  student of the generation at both elementary and high 

school, fellowship of the Croatian MSE for exceptional students, ranked in the top 5% of 

students graduated from the study of Molecular biology at the Faculty of Science in 2010, 

travel grant and best presentation award at the EAACI PAAM Congress in Berlin in 2015, 

best poster award at the CYTO Congress in Glasgow in 2015, recipient of the ERS Short-

term research and training fellowship in 2016. 

 

 

 

 

 



133 
 

9. SUPPLEMENTS 

9.1. Supplement 1. Asthma Control Test for children between the age of 4 

and 11 years 
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Figure 17. Asthma Control Test (ACT) for children (ages 4 to 11 years). 

 

9.2. Supplement 2. Summary of the current guidelines in the management 

and treatment of asthma 

The long-term goals of asthma management are: 

 To achieve good control of symptoms and maintain normal activity levels, 

 To minimize future risks of exacerbations, fixed airflow limitation and side-effects. 
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In control-based asthma management, pharmacological and non-pharmacological treatment is 

adjusted in a continuous cycle that involves assessment, treatment and review (Figure 5). For 

many patients, symptom control is a good guide to a reduced risk of exacerbations. However, 

with add-on asthma therapies (including ICS/LABA) or different treatment regimes (eg. 

ICS/LABA maintenance and reliever therapy) and in patients with severe asthma or difficult-

to-treat or brittle asthma, they may be a discordance in responses for symptom control and 

exacerbations. In these cases, stepping up ICS doses may raise issues on side-effects of long-

term use. 

 

Figure 5. The control-based asthma management cycle and its main components. In children, especially those 

under the age of 5 years, parents or caregivers have a very important role in asthma management, which is wy 

their preferences and satisfaction is cruicial in the management process. Modified from (source): GINA 2018, 

GINA Pediatric 2015. 

Some alternative strategies have been evaluated for adjusting asthma treatment, such as: 

 Treatment guided by sputum eosinophil count: this approach is associated with a 

reduced risk of exacerbations and similar levels of symptom control and lung 

function; 

 Treatment guided by fractional concentration of exhaled nitric oxide (FENO): in 

children anad young adults, this approach is associated with a significant reduction in 

the number of patients with 1 or more exacerbations and in exacerbation rate, there 

are no differences in symptom control or ICS medication use in this approach in 

comparison with others. 

For each treatment step, a „preferred“ controller medication is recommended with the optimal 

benefit to risk ratio for both symptom control and exacerbation risk reduction, based on 

efficacy studies, safety dana and cost-effectiveness, on a population level. Any patient 
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characteristics that may predict a clinically important difference in their response to treatment 

compared to the „generalized model“, should be taken into account. 

As there is still no real cure to asthma (due to the overwhelming complexity of this disease), 

today, common asthma treatment is actually symptomatic treatment, with short-term 

medications that are mostly used to relieve current symptoms (reliever medication) and 

long-term medication is used in case of persistent symptoms to control the underlying 

inflammation and prevent exacerbations (controller medication). 

In general, the goal of asthma management is establishing good disease control with a 

tendency to stepping down treatment regimes if adequate control is achieved. 

At present, Step 1 is no controller medication and as-needed SABA (reliever medication). 

However, there is more and more evidence that chronic inflammation is present even in 

patients infrequetn and recent-onset symptoms and that regulat daily low dose ICS is highly 

effective in reducing symptoms, risk of exacerbations, hospitalization and asthma-related 

death. 

In case of persistent symptoms and/or exacerbations despite low dose ICS, consider stepping 

up but first check for common problems (inhaler technique, adherence, comorbidity etc.). 

Consider stepping down once good asthma control has been achieved and maintained for 

about 3 months, to find the patient`s lowest treatment that controls both symptoms and 

exacerbations (Figure 6). 



137 
 

 

Figure 6. A schematic representation of the stepwise approach in asthma management. *For children aged 4 to 

11 years, the use of theophyline is not recommended as controller treatment and the preferred option in Step 3 is 

medium dose ICS, whereas for adults and adolescents the preferred option in step 3 is ICS/LABA. In step 5, 

some patients may benefit from low dose OCS, but long-term systemic side-effects may occur. For children 

under the age of 5 years, step 1 treatment is as needed SABA, step 2 is daily or intermittent low dose ICS 

or LTRA, step 3 is „double low dose ICS“ and add-on option is LTRA, while step 4 is increasing the dose 

of ICS and add-on regular LTRA, with further expert advice, investigation and reconsidering diagnosis 

highly recommended. Source: GINA 2018, GINA Pediatric 2015. 

Recommended options  for INITIAL controller treatment in adults and adolescents are 

presented in Table 27. 

Table 27. Recommended options for initial controlled treamtent according to presenting symptoms, with levels 

of evidence. 

Presenting symptoms Preferred initial controller 

Asthma symptoms or need for bronchodilatator 

(SABA) < 2 times a month; no nighttime waking 

during the past month and no risk for 

exacerbations (including no exacerbations in the last 

year) 

No controller (Evidence D) 

Infrequent symptoms, but the patient has one or 

more risk factors for exacerbations- low lung 

function, history of exacerbations requiring OCS (oral 

corticosteroids) in the last year, or lifetime history of 

Low dose ICS (Evidence D) 
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hospitalization in intensive care for asthma 

Symptoms or need for SABA ≥ 2 times a  month 

and ≤ 2 times a week or nighttime awakening due 

to asthma ≥ 1 time a month 

Low dose ICS (Evidence B) 

Symptoms or need for SABA > 2 times a week Low dose ICS (Evidence A); other (but less effective) 

options include LTRA and theophyline  

Troublesome symptoms most days or nighttime 

awakenings ≥ 1 time a week, especially if risk factors 

for exacerbations exist 

Medium/high dose ICS (Evidence A) or low dose 

ICS/LABA (Evidence A) 

Initial asthma presentation with severly 

uncontrolled asthma or with an acute exacerbation 

Short course of oral corticosteroids (OCS) AND 

regular controller medication (high dose ICS- 

Evidence A or moderate dose iCS/LABA- Evidence 

D) 

Review patient`s response after 2-3 months, or earlier depending on clinical urgency  

Step down treatment once good control has been achieved and maintained for 3 months 

 

The stepwise approach to control symptoms and minimize future risk for exacerbations is 

presented in Table 28. 

Table 28. Stepwise approach to asthma management with levels of evidence. 

 Medication Symptoms/exacerbations 

Step 

1 

As-needed reliever inhaler (SABA) Occasional daytime symptoms (< 2 times 

a month) of short duration (few hours), 

NO nighttime awakening, normal lung 

function (≥ 80% of predicted or personal 

best) 

Other options- low dose ICS (recommended- Evidence B) 

or inhaled anticholinergics, oral SABA or short-acting 

theophyline- only in adults, slower onset of action and 

higher risk for side-effects (Evidence A) 

Presence of any risk for exacerbation, 

such as FEV1 < 80% predicted or 

personal best, a history of exacerbation in 

the past 12 months (Evidence B) 

Step 

2 

Low dose controller plus as-needed reliever (preferred 

option- low dose ICS plus as-needed SABA- Evidence A) 

Step up if symptoms are not controlled 

well, if there is a history of exacerbations 

or risk for exacerbation (including lung 

function) 

Other options- LTRA (less effective than ICS), appropriate 

for patients with AR (Evidence B)¸for adults and 

adolescents, low dose ICS/LABA may be more effective in 

reducing symptoms and improving lung function, but does 

not further reduce risk for exacerbation compared to ICS 

alone (Evidence A) 

Step One or two controller medications plus as-needed reliever 

Table 27. continued 
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3 (preferred option for adults and adolescents- low dose 

ICS/LABA plus as-needed SABA or low dose ICS/LABA 

as both maintenance and reliever; preferred option for 

children 6-11 yrs is moderate dose ICS plus as-needed 

SABA; for children ≤5 yrs preferred option is double low 

dose ICS and consider LTRA as add-on)- Evidence A 

Other options- medium dose ICS, low dose ICS plus LTRA 

or sustained-release theophyline (less effective)- Evidence 

A/B 

Step 

4 

Two or more controllers plus as-needed reliever- preferred 

option for adults and adolescnets is low dose ICS/LABA as 

both maintenance and reliever or medium ICS/LABA plus 

asneeded SABA; for children 6-11 yrs if moderate dose 

ICS plus as-needed SABA does not achieve adequate 

control, refer to expert advice; for children ≤5 yrs, increase 

iCS dose and add-on LTRA- Evidence A 

Other options- tiotropium or  theophyline or high dose 

ICS/LABA-only in adults and in case good control is not 

achieved with medium dose ICS/LABA plus a third 

controller (LTRA, theophyline) on a trial basis- Evidence 

A/B 

Step 

5 

High level care and add-on treatment, such as tiotropium, 

anti-IgE (omalizumab), anti-IL5 (reslizumab), sputum-

guided treatment approach, low dose oral corticosteroids 

(OCS) 

Refer to expert advice 

 

Categories of ICS treatment according to ICS dose are presented in Table 29. 

Table 29. Low, medium and high doses of inhaled corticosteroids. 

Adults and adolescents (12 yrs and older) 

Drug Low daily dose (mcg) Medium daily dose 

(mcg) 

High daily dose (mcg) 

Budesonide (dry powder 

inhaler, DPI) 

200-400 >400-800 >800 

Ciclesonide 

(hydrofluoroalkane 

propellant, HFA) 

80-160 >160-320 >320 

Fluticasone propionate 100-250 >250-500 >500 

Table 28. continued 
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(DPI)   

Children 6-11 yrs 

Drug Low daily dose (mcg) Medium daily dose 

(mcg) 

High daily dose (mcg) 

Budesonide (dry powder 

inhaler, DPI) 

100-200 >200-400 >400 

Ciclesonide 

(hydrofluoroalkane 

propellant, HFA) 

80 >80-160 >160 

Fluticasone propionate 

(DPI) 

100-200 >200-400 >400 

 

 

9.3. Supplement 3. List of all inahled, food and other allergens used in 

standard SPT in participants. 

Table 30. List of all inahled, food and other allergens used in standard SPT in participants. 

Type of allergen Allergen species Binomial nomenclature 

 

 

House dust 

 

House dust mite 

Dermatophagoides farinae 

Dermatophagoides pteronyssinus 

House dust mix- mite, cockroach and animal dander 

 

Animal dander 

Cat dander Felis domesticus 

Dog dander Canis familiaris 

Rabbit epithelium Oryctolagus cuniculus 

 

 

 

Grass pollen 

Cocksfoot Dactylis glomerata 

Timothy grass Phleum pratense 

Cultivated rye Secale cereale 

5 grasses mix- cocksfoot, sweet 

vernal-grass, rye-grass, meadow 

grass, and timothy 

Dactylis glomerata, Anthoxanthum 

odoratum, Lolium perenne, Poa 

pratensis and Phleum pratense 

 

Weed pollen 

Common ragweed Ambrosia elatior 

Mugwort Artemisia vulgaris 

 

 

 

Tree pollen 

Common silver birch Betula verrucosa 

Hazel Corylus avellana 

Olive Olea europaea 

Pine Pinus radiata 

Trees mix- maple, horse-chestnut, Acer pseudoplatanus, Aesculus 

Table 29. continued 
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plane tree and lime tree hippocastanum, Platanus acerifolia 

and Tilia x europaea 

Shrub pollen Mimosa Mimosa pudica 

 

Molds 

Alternaria Alternaria alternata 

Cladosporium Cladosporium herbarum or spp. 

 

 

 

 

 

 

 

 

 

 

Food allergens 

Egg white Gallus spp. 

Egg yolk Gallus spp. 

Cow`s milk Boss spp. 

Wheat Triticum aestivum 

Corn/maize Zea mays 

Soy Glycine max (Soja hispida) 

Rye Secale cereale 

Peanut Arachis hypogaea 

Sesame Sesamum indicum 

Tuna (yellowfin) Thunnus albacares 

Hake Merluccius merluccius 

Trout Oncorhynchus mykiss 

Kiwi Actinidia deliciosa 

Hazelnut Corylus avellana 

Walnut Juglans spp. 

Almond Amygdalus communis 

Rice Oryza sativa 

Strawberry Fragaria vesca 

Apple Malus x domestica 

Orange Citrus sinensis 

Peach Prunus persica 

Potato Solanum tuberosum 

Tomato Lycopersicon esculatum 

Parsley Petroselinum crispum 

Drugs 

 

Penicilloyl G 

Amoxicilloyl 

 

Insect venom 

Common wasp (Yellow jacket) Vespula spp. 

European hornet Vespa crabro 
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9.4. Supplement 4. Definition of response to treatment abbreviations 

Resp_FEV1_diagn to 1
st
 control- response to treatment according to changes in FEV1 after 

6 months (recruitment to 1
st
 control) 

Resp_FENO_diagn to 1
st
 control- response to treatment according to changes in FENO 

after 6 months (recruitment to 1
st
 control) 

Resp_CTRL_diagn to 1
st
 control- response to treatment according to changes in asthma 

control after 6 months (recruitment to 1
st
 control) 

Resp_MEF50_diagn to 1
st
 control- response to treatment according to changes in MEF50 

after 6 months (recruitment to 1
st 

control) 

Resp_FEV1_1
st
  to 2

nd
 control- response to treatment according to changes in FEV1 after 6 

months (1
st
 to 2

nd
 control) 

Resp_FENO_1
st
  to 2

nd
 control- response to treatment according to changes in FENO after 6 

months (1
st
 to 2

nd
 control) 

Resp_CTRL_ 1
st
  to 2

nd
 control- response to treatment according to changes in asthma 

control after 6 months (1
st
 to 2

nd
 control) 

Resp_MEF50_1
st 

to 2
nd

 control- response to treatment according to changes in MEF50 after 6 

months (1
st
 to 2

nd
 control) 

Resp_FEV1_2
nd

 to 3
rd

 control- response to treatment according to changes in FEV1 after 6 

months (2
nd

 to 3
rd

 control) 

Resp_FENO_2
nd

  to 3
rd

 control- response to treatment according to changes in FENO after 

6 months (2
nd

 to 3
rd

 control) 

Resp_CTRL_ 2
nd 

to 3
rd

 control- response to treatment according to changes in asthma 

control after 6 months (2
nd

 to 3
rd

 control) 

Resp_MEF50_2
nd

 to 3
rd

 control- response to treatment according to changes in MEF50 after 

6 months (2
nd

 to 3
rd

 control) 

Resp_FEV1_3
rd

 to 4
th

 control- response to treatment according to changes in FEV1 after 6 

months (3
rd

 to 4
th

 control) 
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Resp_FENO_3
rd

  to 4
th

 control- response to treatment according to changes in FENO after 6 

months (3
rd

 to 4
th

 control) 

Resp_CTRL_ 3
rd

 to 4
th

 control- response to treatment according to changes in asthma 

control after 6 months (3
rd

 to 4
th

 control) 

Resp_MEF50_3
rd 

to 4
th

 control- response to treatment according to changes in MEF50 after 6 

months (3
rd

 to 4
th

 control) 

Resp_FEV1_diagn to 2
nd

 control- response to treatment according to changes in FEV1 after 

12 months (recruitment to 2
nd

 control) 

Resp_FENO_diagn to 2
nd

 control- response to treatment according to changes in FENO 

after 12 months (recruitment to 2
nd

 control) 

Resp_CTRL_diagn to 2
nd

 control- response to treatment according to changes in asthma 

control after 12 months (recruitment to 2
nd

 control) 

Resp_MEF50_diagn to 2
nd

 control- response to treatment according to changes in MEF50 

after 12 months (recruitment to 2
nd 

control) 

Resp_FEV1_diagn to 3
rd

 control- response to treatment according to changes in FEV1 after 

18 months (recruitment to 3
rd

 control) 

Resp_FENO_diagn to 3
rd

 control- response to treatment according to changes in FENO 

after 18 months (recruitment to 3
rd

 control) 

Resp_CTRL_diagn to 3
rd

 control- response to treatment according to changes in asthma 

control after 18 months (recruitment to 3
rd

 control) 

Resp_MEF50_diagn to 3
rd

 control- response to treatment according to changes in MEF50 

after 18 months (recruitment to 3
rd 

control) 

Resp_FEV1_diagn to 4
th

 control- response to treatment according to changes in FEV1 after 

24 months (recruitment to 4
th

 control) 

Resp_FENO_diagn to 4
th

 control- response to treatment according to changes in FENO 

after 24 months (recruitment to 4
th

 control) 
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Resp_CTRL_diagn to 4
th

 control- response to treatment according to changes in asthma 

control after 24 months (recruitment to 4
th

 control) 

Resp_MEF50_diagn to 4
th

 control- response to treatment according to changes in MEF50 

after 24 months (recruitment to 4
th 

control) 
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9.5. Supplement 5. An overview of clustering studies attempting to identify specific asthma phenotypes 

Table 31. A summary of clustering studies focusing on asthma phenotyping so far. 

Study method Major findings Limitations of the study 

k-means clustering in 3 independent asthma cohorts: 

N=184, N=187 and N=68 (Haldar et al. 2008) 

Identified 5 distinct asthma clusters: (i) early onset 

atopic, (ii) obese non-eosinphilic, (iii) benign, (iv) early 

symptom predominant and (v) inflammation predominant 

Did not include physiological measures of airway 

obstruction (eg. FEV1) in the analysis 

Latent class analysis (LCA) on 2 large study cohorts: 

N=641 and N=1895 (Siroux et al. 2011) 

Identified 4 distinct asthma phenotypes: (i) active treated 

allergic childhood-onset asthma, (ii) active treated adult-

onset asthma, (iii) and (iv) inactive or mild asthma, with 

differences in atopy status and age of onset 

Included more limited clinical information in the analysis 

than the previously described study 

Machine learning and k-means clustering analysis on a 

large number of clinical variables (N=112) in a large 

cohort of patients (N=378), including healthy controls 

(Wu et al. 2014) 

Identified 6 distinct asthma clusters: (i) to (ii) primarily 

healthy and mild asthmatics, (iii) to (vi) patients with 

severe asthma: (iv) early-onset allergic with low lung 

function and eosinophilia, (v) later-onset, mostly severe 

asthma with nasal polyps and eosinophilia, and (vi) 

persistent inflammation and exacerbations despite high 

systemic corticosteroid use. 

Used a large number of clinical variables (N=112), which 

may not always be feasible in a clinical setting. Findings 

need to be replicated and confirmed in larger independent 

cohorts. 

Ward’s minimum-variance hierarchical clustering 

method- bottom-up and Ward`s linkage approach (Moore 

et al. 2010) in the SARP cohort (severe asthma, mostly 

adults, N=726) 

Identified 5 distinct clusters: (i) early onset atopic asthma 

with normal lung function treated with two or fewer 

controller medications and minimal health care utilization 

(HCU), (ii) early-onset atopic asthma and preserved lung 

function but increased medication requirements and 

HCU, (iii) mostly older obese women with late-onset 

nonatopic asthma, moderate reductions in FEV1, and 

frequent oral corticosteroid use to manage exacerbations, 

Biomarkers such as bronchial challenge test (PC20 

metacholine), FeNO, total IgE, blood eosinophils and 

sputum eosinophils and neutrophils were collected in a 

smaller subset of participants (100 or less) does not give 

much insight into the pathophysiological mechanisms of 

specific phenotypes 
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(iv) and (v) severe airflow obstruction with 

bronchodilator responsiveness but differ in to their ability 

to attain normal lung function, age of asthma onset, 

atopic status, and use of oral corticosteroids 

Hierarchical cluster analysis by Ward's method, followed 

by κ-means cluster analysis on 2 independent adult 

cohorts- COREA, N=724 and SCH, N=1843 (Kim et al. 

2013) 

Indicated 4 asthma subtypes: (i) smoking asthma, (ii) 

severe obstructive asthma, (iii) early-onset atopic asthma, 

(iv) late-onset mild asthma 

Appropriateness of the variables used needs to be 

verified, did not use patterns of airway inflammatory 

cells as variables for cluster analysis, did not consider 

quality of life as a variable 

Fuzzy partition-around-medoid for initial clustering of 

the ADEPT and U-BIOPRED data, for validation of 

identified phenotypes, the GLMnet-classification model 

of ADEPT-asthma baseline clinical clusters was applied 

to classify the ADEPT-asthma subjects using data from 

baseline and 3, 6, and 12 month follow-up visits and 

baseline data of U-BIOPRED participants (Loza et al. 

2016)- both cohorts were adults (N=156, N=82, 

longitudinal data N=397) 

Identified 4 independent clusters: (i) mild, good lung 

function, early onset, low-inflammatory, predominantly 

Type-2, phenotype, (ii) moderate, hyper-responsive, 

eosinophilic phenotype, moderate asthma control, mild 

airflow obstruction and predominant Type-2 

inflammation, (iii) mixed severity, predominantly fixed 

obstructive, non-eosinophilic and neutrophilic” 

phenotype, moderate asthma control and low Type-2 

inflammation, (iv) severe uncontrolled, severe reversible 

obstruction, mixed granulocytic phenotype, moderate 

Type-2 inflammation.  

May not represent actual real-life situtation since 

participants were not randomly recruited from the general 

asthma population. Did not include smokers and 

obese/morbidly obese participants. 

 

Hierarchical clustering and PCA in a pediatric cohort- 

N=613 (Deliu et al. 2018) 

Identified 5 clusters: (i) difficult asthma,  (ii) early-onset 

mild atopic, (iii) early-onset mild non-atopic, (iv) late-

onset,  and (v) exacerbation-prone asthma 

Reproducibility and stability of certain models was poor 

Ward`s hierarchical clustering on an adults cohort 

recovering from an exacerbation- N=320 (Qiu et al. 

2018) 

Identified 4 clusters: (i) predominnatly female with 

sputum neutrophilia and a small degree of airflow 

obstruction and early-onset asthma, (ii) predominantly 

female, nonsmoking, high sputum eosinophilia, poor lung 

Reflects differences in recovery from exacerbations, not 

in pathophysiological or clinical features of the 

underlying disease. Still, it is very informative when it 

comes to predicting exacerbations 

Table 31. continued 
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function and pO2 in arterial blood on admission, (iii) 

predominnatly female with sputum neutrophilia and a 

reduction in FEV1, (iv) exclusively male smoking 

subjects, high sputum eosinophilia and severe airflow 

obstruction. 

k-means clustering in a pediatric asthma cohort 

(Taiwanese Consortium of Childhood Asthma Study- 

TCCAS), N=351 (Su et al. 2018) 

Identified five distinct phenotypes of childhood asthma 

characterized by either eosinophil‐predominant or 

neutrophil‐predominant inflammatory characteristics. The 

gene expression profile analysis, noted significant 

differences for neutrophil‐predominant asthma. 

Additionally, in an independent inhaled corticosteroid 

(ICS) response cohort, neutrophil‐predominant asthma 

may be associated with corticosteroid nonresponsiveness. 

Clustering was performed only on 12 objective laboratory 

tests, possibly omitting relevant clinical data 

Unsupervised statistical learning techniques- exploratory 

factor analysis (EFA) and hierarchical clustering (HC) in 

a cohort of 383 children with asthma (Prosperi et al. 

2013) 

Different methods yielded different results in cluster 

assignments (particularly daa encoding and 

transformation), slightly favouring EFA 

Aggregation bias caused by the discretization of skewed 

variables, the use of mixed data types, didn`t perform a 

discrimination analysis of the original variables with 

respect to each clustering 

LCA on a cohort of adult asthmatics- Northern Finnish 

Asthma Study- NoFAS, N=1995 (Makikyro et al. 2017) 

Identified 4 clusters according to severity in women: 

controlled, mild asthma; partly controlled, moderate 

asthma; uncontrolled asthma, unknown severity, and 

uncontrolled, severe asthma, as well as 3 clusters in men: 

controlled, mild asthma; poorly controlled asthma, 

unknown severity, and partly controlled, severe asthma. 

Used questionnaire data only, no objective measurements 

Supervised learning algorithms including feed-forward 

neural networks (NN), support vector machines (SVM), 

andrandom forests (RF) on a cohort of pre-school 

Identified 3 different classes (Wheeze, Wheeze +, Other), 

with recurrent chest infections as the strongest feature in 

the models with dependent outcome 

A large proprtion of missing data (25% per patient on 

average) 

Table 31. continued 
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children with wheezing- PSW cohort, N=150, mean 

age=33,66 months (Belgrave et al. 2017) 

Linear discriminant analysis (LDA) and quadratic 

discriminant analysis (QDA) on 3 cohort in the CARE 

Network trial- Pediatric Asthma Controller Trial (PACT), 

N=285; Characterizing Response to Leukotriene 

Receptor Antagonist and Inhaled Corticosteroid (CLIC), 

N=144; Best ADd-on Therapy Giving Effective 

Response (BADGER), N=182 replicating SARP clusters 

refering to treatment response (Chang et al. 2014) 

For all 3 cohorts 4 SARP clusters were replicated: (i) 

late- onset, normal lung, (ii) early- onset, normal lung, 

(iii) early onset/comorbidity and (iv) early- onset, severe 

lung.  

Smaller number of participants assigned to the early-

onset/comorbidity and early-onset/severe-lung clusters; 

the retrospective nature of the study limited the 

analyzable characteristics 

Spectral clustering in the pediatric Childhood Asthma 

Management Program (CAMP), N=1041, longitudinal 

follow-up for 48 months (Howrylak et al. 2014) 

Identified 5 reproducible clusters on the basis of 3 groups 

of features: atopic burden, degree of airway obstruction, 

and history of exacerbation. Cluster grouping predicted 

long-term asthma control (measured by the need for oral 

corticosteroids, OCS) or additional controller 

medications, as well as longitudinal differences in 

pulmonary function 

Evaluated only children and since pediatric and adult 

asthma might represent 2 different disease states with 

different pathogenic mechanisms and natural histories, 

clusters may not apply to adult asthmatics; didn`t inlcude 

children with severe asthma; clinical outcomes in the 

clusters are somewhat limited because of their small 

sample size and modest differences; retrospective nature 

of the study 
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Unsupervised cluster analysis for 3-dimensional data 

(nonnegative sparse parallel factor analysis) in a birth 

cohort Copenhagen Prospective Studies on Asthma in 

Childhood 2000 (COPSAC 2000), N=398 (Schoos et al. 

2017) 

Identified 7 snesitization trajectories: age- and allergen-

specific patterns in the COPSAC 2000 birth cohort data: 

(i) dog/cat/horse, (ii) timothy grass/birch, (iii) molds, (iv) 

house dust mites, (v) peanut/wheat flour/mugwort, (vi) 

peanut/soybean, and (vii) egg/milk/wheat flour. Asthma 

was solely associated with pattern 1. All 7 patterns were 

verified in an independent birth cohort BAMSE 

(Scandinavian birth cohort, Children, Allergy, Milieu, 

Stockholm, Epidemiology, N=3051) 

The at-risk nature of the COPSAC 2000 participants 

(children born to mothers with asthma) because this 

population can differ from unselected populations with 

regard to allergen exposures; differences in study design 

between BAMSE and COPSAC 2000 , including age of 

assessment of and age of assessment and diagnosis of 

clinical outcomes 
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