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Dynamical properties and Wigner transitions of two-dimensional electron lattices
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(Received 25 March 1991)

The dynamical properties (phonon spectrum, sound velocities, vibrational energy) and phase transi-
tions of a two-dimensional Wigner lattice are discussed in a model that takes into account the perpendic-
ular delocalization of electron wave functions. The lattice Goats above the dielectric substrate (He, Ar),
with the dielectric constant determining the image force on the lattice. Those two effects, the perpendic-
ular electron delocalization and the dielectric image force, which are obviously correlated, were usually
neglected in the previous discussions of the Wigner-lattice dynamics. Here we show their inhuence on
the electron-electron interaction and consequently on the dynamical properties of the Wigner lattice.
We also suggest an experimental situation where those effects in the phase diagram could be eventually
studied and detected.

I. INTRODUCTION

Experimental evidence for a two-dimensional (2D)
Wigner lattice of electrons formed above a dielectric
(liquid-helium) surface has revived interest for the phys-
ics of a Wigner crystal in the past decade. In our previ-
ous article (hereafter referred to as I) we investigated
electronic wave functions and energies in the Hartree ap-
proximation in order to derive the Wigner-lattice
ground-state energy, which cannot be calculated satisfac-
torily in the model of a point-electron lattice on a dielec-
tric surface. However, the dynamical properties of the
lattice, such as dispersion relations, and sound velocities,
which are used for the calculation of phase transitions,
cannot be described properly in the Hartree approxima-
tion, which usually overestimates the electron energy.

In this article we take the results obtained in I as the
starting point in deriving the dynamical properties of the
Wigner lattice. Such calculations were already per-
formed for a Aat Wigner lattice on a dielectric surface
with the dielectric constant @=1. In our model we as-
sume that electrons have finite extension in the direction
perpendicular to the dielectric surface, while the dielec-
tric is described by a constant that differs from unity.
This leads to two closely related effects, because the
larger dielectric constant of the substrate produces larger
image force on the lattice electrons and therefore reduces
their perpendicular delocalization. The perpendicular
delocalization is also strongly correlated with the lateral
electron density.

In order to make our results more transparent, we shall
apply our considerations to two dielectric substrates:
helium with a low (static) dielectric constant (E=1.05S)
and argon with a relatively high dielectric constant
(e= l.660). In both cases the electrons feel strong atomic
repulsive potentials of the substrate due to the electronic

excitation gap, and therefore those substrates can be suit-
able for the formation of a 2D Wigner lattice.

In Sec. II we formulate the problem and derive the to-
tal energy of the system. The eigenfrequencies of the sys-
tem are obtained in Sec. III. They enable us to compare
in Sec. IV the ground-state energy of the lattice in the
present model with the results in I. In Sec. V we discuss
the electronic lattice phase transition and the conclusions
are given in Sec. VI.

II. MODEL HAMILTONIAN

The Hamiltonian that describes the electrons in a 20
Wigner lattice on a dielectric surface is

H=gK, +g W (z,. )+ —,
' g 8'"(p;~.;z;,z~) .

Here, K,. = —A 6,. /2m is the kinetic-energy operator and
8'™(z,. ) is the image potential of the electron i at a dis-
tance z; above the dielectric surface. The interaction be-
tween the electrons (i,j) at a lateral distance p;~. = ~p;

—
p1 ~

is described by W"(p;;z;,z ). The interaction between
images is also included in W", so the third term in Eq. (I)
gives the total electron-electron interaction of a Wigner
lattice (lattice potential).

In I we treated this Hamiltonian in the Hartree ap-
proximation. Here we shall make use of one important
result derived in I, namely that the wave function of an
electron in a Wigner lattice can be factorized into the la-
teral v(p) and perpendicular u (z) components:

g(p, z) = v (p)u (z)

and (p, z) denote the lateral and perpendicular coordi-
nates, respectively.

We assume that all electrons in the lattice are in their
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u(z)=+ u(z;), (3a)

and the one-electron (Hartree) wave functions
—az,.

u (z, )=2a ~ z, e (3b)

with the variational parameter a, which determines the
electron perpendicular width ( bz &

=&3/2a, are dis-
cussed in I. They are exact solutions of the Schrodinger
equation for an electron in the image potential:

W' (z)= — f dkPe "'=—P2 0 4z

with

and e is the static dielectric constant of the substrate.
With the wave function (3), the total image energy of K

electrons in the Wigner lattice becomes

"perpendicular ground state. " Grimes et al. have mea-
sured the perpendicular electron transitions to the excit-
ed (image potential) states for "free" 2D electrons on
liquid helium and found the energy of the first excited
state to be =126 GHz above the ground state. This cor-
responds to the temperature of =6.0 K. The electrons
that are localized in a Wigner lattice, and particularly if
they fioat on the substrate of a larger dielectric constant
(e.g. , argon), will obviously have larger binding energies.
The phase transitions are measured typically at T~2
K,' so we can assume that all electrons in the lattice will
be in their "perpendicular ground state. "

In the Wigner lattice the electron separation is typical-
ly larger than 100 A, and usually ~ 1000 A, ' ' so we can
neglect the overlap of electron densities. The (perpendic-
ular) ground-state wave function takes the form

The static part of this potential is due to the electrons in
their regular positions p, in the lattice:

W"=—'N(w"

(w" &=+ (W"(p;, )& . (7b)

Now we can write the Schrodinger equation for the la-
teral part of the wave function in the form

H„,u(p) =(E —Wo —E™)U(p),

where

(8a)

(8b)

and 8'I", represents the dynamical part of the total lattice
potential (6d). At low temperatures we can use the har-
monic approximation, which gives the standard form for
the oscillator energy of the Wigner lattice:

E„,= f dpu*(p)H„, v(p)

=g(ni,~+ —,
' )fico (k),

k,p

(9)

where co (k) are the eigenfrequencies of the longitudinal
(co+ ) and transverse (co ) lattice modes.

The same form (9) was obtained by Bonsell and Mara-
dudin, but they have neglected the perpendicular delo-
calization of the electron wave function (equivalent to
taking a~ oo) and the infiuence of the substrate (i.e.,
p=O). Here we wish to discuss specifically the influence
of these effects on the lattice eigenfrequencies and conse-
quently on the Wigner phase transition.

We shall denote the a~ ~,p=O limit as the classical
(CL) approximation and the a —woo limit as the point-
electron (PE) approximation.

Eim ~(Eim& (5a)
III. DISPERSION RELATIONS

where (E; & is the image energy of ith electron:

(E™
&
= f dz; u *(z; ) — + W' (z; ) u (z; )

zf

2 g 2

aoa —p a.
2 4

(Sb)

W"(p;z, z') = dk e'" "~W(k;z, z'),
(2'�)

b2 2
W(k. z z~) (2~' e

(
—k~z —z'~ P

—k~z+z'~)
2mk

Therefore the total lattice potential becomes

i j (wi)

(6a)

(6b)

(6c)

(6d)

Here, a0 is the Bohr radius.
The z-averaged lateral interaction between the two

electrons at their sites (p;,p ) is defined as

( W"(p; ) &
== f iu(z;)i iu(z )i W"(p;.;z;,z )dz; dz

The eigenfrequencies co (k) of the dynamical Wigner
lattice are obtained in our model with the assumption
that all the (lateral) collective modes have the same per-
pendicular delocalization. This procedure is justified be-
cause we have shown in I that a is almost independent of
the spread (cr) (and therefore of the frequency co) of the
lateral wave function U(p). Now we assume that a is in-
dependent of the electron frequency co~(k) in the whole
first Brillouin zone. Therefore, instead of the lateral vi-
brations of the fiat electron lattice, we dicuss the lateral
vibrations of the delocalized perpendicular electron
"strings. "

In deriving the eigenfrequencies co~(k) we shall follow
the procedure of Bonsell and Maradudin, i.e., we shaH
use the fast-convergent Ewald transformation to perform
the summation over aH electrons. However, as in I, we
have to extend this procedure in order to include our
more complicated type of potential. The calculations are
performed in Appendix A. The Appendix A in I is here
referred to as Appendix AI.

The dispersion relations co+( k ) for the hexagonal
Wigner lattice of electrons on helium and argon sub-
strates are shown in Fig. 1, along the boundaries of the ir-



DYNAMICAL PROPERTIES AND SIGNER TRANSITIONS OF. . . 11 467

0.52-
CL

0.50-

3
N 2

hJ

C3
Ld

0.48-
O

046-

Ar

0
I 0.2 0.4 J 0.2 X

(WAVE VECTOR)/go
0.2 0.4

0.42—
0 200 400 . 600

r. (A)
800

FIG. 1. Dispersion relations of the two vibrational ("pho-
non") modes for the 2D hexagonal lattice, on He and Ar. The

0
lattice parameter is ro =300 A and the o, values are taken from
I: 4aao =0.112 for He, 4aao =0.253 for Ar, and a—+ ~ for the
CL curve. The frequencies co+ are shown in the units
coo = (e /mr o )

' and the wave vectors k in units of the
reciprocal-lattice vector go = (4m. /"t/'3 )ro.

FIG. 2. The transverse vibrational velocities for the 2D hex-
agonal lattices on He and Ar substrates as functions of lattice
parameter ro, in units co =~oro =(e /mro)' . The appropriate
a(ro) values for He and Ar are taken from I. The CL curve and
the corresponding PE results are shown by dashed lines.

IV. A COMPARISON OF STATIC
AND DYNAMICAL HARTREE MODELS

reducible element of the first Brillouin zone. When com-
paring these results to the CL model, we find that the
electron vibrational frequencies are reduced, particularly
for argon. The main reason is the electron screening (im-
age potential), which reduces the effective electron-
electron repulsion.

The sound velocities of the transverse (c, ) and longitu-
dinal (ci ) acoustic photons are

cled+
c(t= lim

k oak (10)

and c& (the slope of the ro+ mode) diverges (see Appendix
A). The divergency of c& is the direct consequence of the
lattice instability, and it cannot be removed by making a
system neutral, e.g. , by adding a metallic substrate
infinitely far from the lattice. However, a metallic sub-
strate close enough to the Wigner lattice will stabilize it
by a strong image force exerted on its electrons, and as a
consequence c& becomes finite.

Figure 2 shows c, as a function of ro for He and Ar, to-
gether with the PE and CL approximations. In the
a~ m limit, the function f (x) [Eq. (A3b)] becomes a
constant (1—P) [(AI9)], which can be extracted from all
T terms in (816), giving

c,(a~ ~ )=0.513'/1 —Pco .

From Fig. 2, we see that the PE approximation gives
better results for c, at larger ro. Equation (11) becomes a

0
good approximation for Ar at ro &400 A and for He at

0

ro ~1000 A, because the perpendicular electron width,
and therefore the effect of perpendicular delocalization, is
much greater in the He case.

&ro &=- f ro (k)d kp (13)

and Sz is the surface of the first Brillouin zone.
Therefore the total ground-state energy of the lattice

(per one electron) in the dynamical model becomes

(14)

We evaluate &re & by integrating over the first Bril-
louin zone. This integration can be substituted by the
summation over some special points in the zone:

L
&ro &= g a;ro~(q, ),

i=a

where the weights a; and the special values of the wave

In the present model we have found the energy of a
Wigner lattice that takes into account the dynamical
properties of the lattice electrons. Therefore, we shall
call this a "dynamical Hartree model. " It is a phonon
model with the perpendicular "Hartree parameter" cx. In
I we found the ground-state energy of a lattice for the
"static" electrons, i.e., in the "static Hartree model, "and
here we compare these two models.

The expressions for the image energy and the static
part of the lattice potential are given by Eqs. (5) and (7),
respectively. The vibrational energy of a Wigner lattice
(9) (with the density parameter ro) in the ground state is

E„,( o)= —,'A'g g (k)= —,'XA'g &ro

p k p

where we have defined
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vectors q; are given in Ref. 7, for L =2 and 6. We have
taken L =6, which gives high enough accuracy for our
purpose.

The results for E„,(rp) are shown in Fig. 3 for He and
Ar, together with the PE result:

0-0

E„,= —,I%A'X4. 28&1 —Pcop .

Although Figs. 2 and 3 look surprisingly similar, we
should note that c, and &co & have very difFerent depen-—1/2dence on ro at large ro: we And ct co r o and
&co & co rp

In the static model, the Hartree energy of an electron
1s

E = «&„»+«E™»+« ~"» .

The double angular brackets denote that in the static ap-
proximation we have to average over both perpendicular
and lateral directions. Obviously, &&E™»has the same
form (5) as &E' & because the image potential is z depen-
dent only, and the lateral kinetic energy is

-0.6
200 400 . 600

I; (A)
800 1000

FIG. 4. The total ground-state energy per one electron for
2D hexagonal lattices on He and Ar substrates, as functions of
lattice parameter rp. Dynamical model, solid lines; static mod-
el, dashed lines.

E,=E —
—,'« w" » (19)

because we have to eliminate the double counting in the
lattice potential «w" ». Notice that &w" & is equal to
« w" » with o. =0, so both these terms were already cal-
culated in I.

In Fig. 4 we show our results for both dynamical and

4.3-

O
LLl

O
O

LLI

where u(p) is the harmonic-oscillator ground-state wave
function.

The average energy per one electron, which should be
compared with Eq. (14), is

V. THE PHASE TRANSITION:
MELTING OF THE SIGNER LATTICE

It is widely accepted that the phase transition of a
Wigner crystal can be described by the Kosterlitz and

10 11Thouless ' and Halperin and Nelson and Young
(KTHNY) theory. According to this theory the melting
temperature T of the Wigner lattice is defined by'

2
'

2
e 1

k~T~ =
2rp 27T+3 cp cI

(20)

With the bare Coulomb potential V~ =e /r„where r,2

is the average electron distance [r, = ( v 3/2~) r p for1/2

the hexagonal lattice], one can write Eq. (20) in the form

k~TI--'= ' =Io'r,
~o

where

(21)

static Hartree models. The result is obvious: the dynam-
ical model gives lower energy because it takes into ac-
count the formation of the Wigner lattice properly. How-
ever, the static Hartree model also gives surprisingly
good results, particularly for He.

l p= [(2m. ) &3]' /(c, p/cp)

I' = (1 c, /c& )c, /c, p, —
(22)

(23)

200 400 . 600
4 (A)

800 1000

FICx. 3. The vibrational energies E „of2D hexagonal lat-
tices on He and Ar substrates, as functions of lattice parameter
rp and in units of Ep= 2NAcop. The CL curve and the corre-
sponding PE results are shown by dashed lines.

and c,p=0. 513cp is the CL transverse sound velocity (11).
Using this result, Thouless obtained I o=79, while9

Grimes and Adams concluded from experiment that
I o=137.' This discrepancy was explained theoretically
as a result of the temperature dependence of the sound
velocity' ' and the anharmonic effects in the electron
lattice. ' Obviously, all those effects should be included
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when studying the inAuence of electron delocalization,
and we shall take them into account semiempirically by
assuming that they change the bare value of I 0, Eq. (22),
to its renormalized value I p

= 137. Therefore, the
difference between the CL and our theory is contained in
the function F, Eq. (22b). Notice that in Sec. III we have
found c&= Do, which gives F=(c,/c, o), and the ratio2

c, /co =0.513c,/c, o is shown in Fig. 2.
Following Ref. 6 we shall define the characteristic tern-

perature Tp and concentration no in terms of parameter
r, :

0.15

0.10-

O

0.05-

4 1 e 2np= ~, ka Tp=
(a01 O) ao I 0

(24)

In these units the melting temperature (21) takes a simple
form

tlat

Tp np

I /2

(25)

W expect the KTHNY theory to be applicable in the
classical regime T & Tz, where the Fermi temperature
for the 2D electron gas is given by'

0.1 0.2 0.3

VI. CONCLUSION

T/T,

FIG. 5. Phase diagrams for the Wigner crystallization on He
and Ar substrates, compared with the CL result. The straight
line represents the T= T~ condition. We use =137 which
gives TO=33.6 K and no=2. 42X10' cm

TF n=2
Tp np

(26)

Some authors ' extrapolated the KTHNY theory to
the quantum regime T) TF by simply substituting
k~ T —+K, where E is the kinetic energy of the 2D
electron gas at the melting temperature. However, t is
step is theoretically questionable and it would be very im-
portant to find its experimental confirmation (or refuta-
tion), which is still lacking. The main experimental prob-
lem is in achieving the Wigner lattice of high enough
electron concentration, for the quantum regime T)Tz.

One could further interchange the bare Coulomb po-
tential Vo in Eq. (21) with the total potential Vfelt by an
electron in a Wigner lattice, ' ' thus transforming Eq.
(21) into Lindeman's melting criterion' K /V=
However, since the parameter I =I o/F also depends
upon the total potential V through the sound velocity c„
we believe that the substitution Vp —+ V amounts to "dou-
ble counting, "as was pointed out in Ref. 19.

Figure 5 shows the phase diagrams of the Wigner lat-
tices on He and Ar substrates, together with the CL re-
sult. Notice that the experimental values of Grimes and
Adams' for T fall in the low-temperature region
T 0.03To=1 K, which is enlarged in the inset. From
those values, Grimes and Adams obtained I =137
within the CL theory, so, because in this region the He
curve is very close to the CL curve, we should take the
same value for I p to recover the experimental data. We
have taken the same value for I p for argon, because we
have assumed that the inhuence of the substrate is taken
into account through the function I. The argon curve
differs appreciably from the CL curve due mainly to the
higher image attraction of the argon substrate.

We have calculated the dynamical properties of a
Wigner lattice by taking into account the image screening
due to the dielectric properties of the substrate, and the
finite size of electron wave functions in the direction per-
pendicular to the dielectric surface. The first effect is not
apprecia ereciable for helium with the dielectric constant close
to 1, but becomes very important for substrates with a
larger dielectric constant, such as argon. The second,
finite-size effect becomes important at higher electron
densities (ro (1000 A). As we have shown in I, the elec-
tron delocalization, given by Az, increases wit rp, but
the relative size b,z/ro decreases, so at very low densities
the electrons still behave as point particles. The region of
higher electron concentrations, which should be easier to

bt in on a dielectric with a larger dielectric constant or
6 ~

1on a dielectric with a metallic substrate, is particular y
interesting when discussing phase transitions of a Wigner
lattice.

We have shown a significant difference between the
melting temperatures of a Wigner lattice on helium and
argon substrates as a consequence of different vibrational
properties. The eventual experimental confirmation of
the melting curve, e.g. , for the argon substrate on Fig. 5,
would give further strong support that the KTHNY
mechanism is responsible for the melting of the Wigner
crystal.

Finally we want to summarize the simple physical mes-
sage of this paper and Ref. 1. For a 2D electron lattice
we have found by an explicit calculation (i) the reduction
of the 2D phonon energy as compared to the 2D Hartree
energy, and (ii) the reduction of energy of the 2D lattice
with extended electron densities in comparison with the
strictly planar 2D lattice. We believe that these results
and ideas should be fruitful and lead to relevant implica-
tions in discussing other properties of 2D lattices.
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APPENDIX A: CALCULATION
OF VIBRATIONAL FRKQUKNCIKS

S
—y [(G+k);,y, ((G+k)2/471')
g Q

G G, P in—«'/4'')] .

The functions (I}„' are the generalized Misra functions
(AI14):

The eigenfrequencies of the lattice are solutions of the
standard two-dimensional eigenequation:

D(k)e (k) =I co (k)e (k), (A1)

where e (k) are the polarization eigenvectors for the two
(longitudinal and transverse) acoustic modes, and D (k) is
the dynamical matrix of the system in a 20 k space:

P„(z)=f dt t"e "f(re t ),
PG(z)= f dt t"e "f(q/Vt ),

1

and the parameter rt is chosen to be (AI15)

rt =(g() /2r() )'i

(A6a)

(A6b)

(A7)

D; (k)= lim [Si(k)—S; (0)],
polyp

S,,(k)= —y (II "(p„)»' "
J

l~o Bpo; apoJ

(A2a)

(A2b)

and ( 8'"(poi ) ) is defined by Eq. (6).
To evaluate the dynamical matrix (A2), we transform

( W"(poi ) ) as in Appendix AI in I:

co~(k) =ci)ok (T++QT +4T() )'
2QO

2rp
T+ =

2 2 (D»+Dvv) '
e k

2rp
~p=

2 2D:.
e k

(A8)

(A9a)

(A9b)

From Eq. (Al), the frequencies of the two modes are

( )2~2
( W(poi)) =e — —f dx e ' ' f (x),v'2r o

f(x)= —,
' f dy (y +3y+3)—P—,', y

(A3a) Let us determine the co+(k) in the long-wavelength
(k~O) limit. Following Eq. (A5) we first divide the
terms T~ (j =+,—,0) into the short-range T and long-
range T contributions:

x (A3b) TJ(k)=T (k)+TG+ (k)+T = (k) (A10)

Here we need only the 0' =0 limit of Eq. (AI10).
We use the extended Ewald transformation to trans-

form the direct lattice sum over p& into a sum over
reciprocal-lattice vectors G'.

(pp p) ) x ik pi 1 2l i (G+K) po (Q+il)2/4+2e e =— e e
i S ~

(A4)

Here, S is the average area per electron.
We divide the dynamical matrix (A2) into two parts:

the long-range (x (21) contribution D;i, where we per-
form the transformation (A4), and the short-range
(x ) 2)) contribution D, :

Here we have extracted the G =0 term from T:J

2&2rro
T,

= (k)= a, (lp„)p, (k'/421'),
'9

a+ (l)() )
a (c(o) = . cos(2q&i, ), yi, =4(k, x axis).

sin( 2lp„/2 )

In the k~O limit

T (k-+0= —21ro
4

X X Yr«.Pi)'[ —Pin(Yi»J, +
IAO

(Al 1)

D; (k) =D; (k)+D; (k),

D;.(k) = —e2 4
&II

X ""'(.'k pi)[&;,4 (rt'p-')
l&0

(A5a)

T. (k~O) =
J

+ Ytaj(cpl )Pion( Yi)], (A12a)

2&7rro

qS
X g [aj(yk)0 —in( YG) —bi YG~&n( G)

GAO

2PiPi43v2(ri pi )],
(A5b)

+aj(q)G)(k G) YGl|3n(YG)] .

(A12b)
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Here a caret denotes unit vectors,

Yl =(gpi), YG =(G/2g)

the angles are

pl Q(p(, x axis, g7G —Q ( G, x axis )

4(k G) +1
+

b ~=, 4(k.G) cos(y„+go)+cos(2yG)
bo 2(k G) sin(q&k+yo)+sin(2yG)/2

The terms T"(k—&0) and Tz (k~O) remain finite.
The T/ (k~O) terms (Al 1) contain the P &&&(0) func-
tion, which can be written as

From Eqs. (AS), (A12), and (A14) we find

co+(k~O)-&k, co (k~O)-k, (A15)

which gives for the sound velocities (10) an infinite value
for c& and a finite value for c, :

ro
c, =coo [T'+ (k =0)—cos(2y~) T' (k =0)' a,

As discussed in Appendix AI, the integral in (A13)
diverges for P(1. The divergent (k~O) terms in Eq.
(AS) are canceled for the combination of T's with the
negative sign in the small parentheses while for the other
combination one obtains

lim[T++(T +4TO)'~ ]-p,&2(k~0)-l/k . (A14)
k~o

~—&/2(0)= f dt —f (rI/v't )=2q f dx f (x)/x2 .
0

(A13)

—2sin(2yz)TO(k =0)]'~

Here T'—= T +TG~O
J J J

(A16)
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