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Dependence of the level-density fluctuations on the interaction strengths for the '°’Ag energy spec-
trum calculated in the interacting-boson-fermion-fermion model is investigated. Breaking of symmetry
is accompanied by a rapid transition from a nearly Poissonian distribution to the intermediate pattern
between Poisson and Gaussian-orthogonal-ensemble distributions. Fluctuation measures show sensitivi-
ty to details of nuclear dynamics. Possible connection with the degree of chaos is discussed.

PACS number(s): 05.45.+b, 24.60.Ky, 27.60.+j

Quantum chaos is a term used to denote quantal phe-
nomena which are characteristic of chaotic, nonlinear,
behavior in the corresponding classical system [1-3]. In-
vestigating fluctuations of the quantal energy levels in the
Sinai-billiard problem, Bohigas, Giannoni, and Schmit [4]
suggested that the Gaussian-orthogonal-ensemble (GOE)
type of spectral distribution may imply manifestation of
chaos in the classical system. In a semiclassical deriva-
tion of the spectral rigidity, Berry [5], concluded that the
energy levels of quantum systems which correspond to
classically regular and chaotic systems obey the Poisson
and GOE (Wigner) statistics, respectively, and proposed
the study of transitional cases between the two distribu-
tions [6—-11]. Zhang et al. [12-14] have concluded that
the existence of unbroken dynamical symmetry in a quan-
tal system implies integrability, whereas breaking of the
symmetry leads to nonintegrability and chaotic dynam-
ics. Investigations of the relationship between dynamical
symmetry, integrability, and quantum level statistics are
presently an active field of research [15-22].

In nuclear physics, the density fluctuations of the real-
istic nuclear-level sequences including the ground-state
region lie between the Poisson and GOE (Wigner) distri-
butions [23-27]. Applying the dynamical-symmetry con-
cept and mean-field theory [12~14] to nuclear many-body
systems, Zhang and Feng [3] concluded that such systems
are generally nonintegrable due to the complicated in-
herent interactions, but in certain regions of intrinsic pa-
rameters, where subdynamical symmetry, e.g., certain ex-
citation modes dominate, the corresponding dynamics is
regular.

In this paper we investigate possible manifestations of
chaos in the odd-odd nucleus '°°Ag. The basis of our pre-
sentation is a realistic calculation of the energy spectrum
and the electromagnetic properties within the framework
of the interacting-boson-fermion-fermion model (IBFFM)
[28-32], which satisfactorily reproduces the experimental
properties of 'Ag (Ref. [33]), and is characterized by the
underlying SU(6) symmetry. Since the model Hamiltoni-
an which will be given in Egs. (1)-(14) considerably
exceeds in complexity the examples which have been
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treated by the mean-field methods [3], we concentrate our
attention on the analysis of the level-density fluctuations.

In the IBFFM [28-32], the odd-odd nucleus is de-
scribed by the Hamiltonian

Hy=H{+HP+H™ . (1

The first term in (1) is the collective Hamiltonian in the

interacting-boson model (IBM) [33,34] expressed in terms

of creation and annihilation operators for quadrupole bo-
T .

sons, b, and b,,, respectively [36],

Hy=h,N+h,{(bIb])[(N—N)N—-N—1)]"*+H.c.}
+hy[(bI636,)(N—N)*+H.c.]

+ S hy[(b3b3),(Byby); o - 2
L=0,2,4
Here,
N= 3 blb,y, (3)

u=-2

is the number operator for quadrupole bosons and
by =(=)b, _, . 4)

This Hamiltonian is constructed from the quadrupole bo-
son generators of the SU(6) group, which are, expressed
in Hollstein-Primakoff representation [35,37],

by (N—N)'2 (N—N)""b,,, and b},b,, . (5)

Here N denotes the maximal number of quadrupole bo-
sons. The second term in (1),

HY =3 A,p,j, )cfp(p)cjp(p) ) (©)
Py

describes independent quasiparticles in the shell-model
configurations jpE(n,l,j)p, with p= and p=v denot-
ing quasiprotons and quasineutrons, respectively. Opera-
tors c}(p) and c;(p) are the creation and annihilation
operators of the corresponding quasiparticle. Also, here

we define
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values of parameters appearing in the terms (2) and
(10)-(13) are determined from the properties of the
neighboring even-even and odd-even nuclei.

We first diagonalize the Hamiltonian choosing the set
of parameters which was adopted to describe the realistic
1064 o spectrum [33]. In this special case the symmetry of
the collective core is the SU(5) limit of SU(6) [34]. The
resulting spectra of positive and negative parity are used
to calculate the level-density-fluctuation measures
[8,39-42]: the spectral rigidity A;, the number variance
32, and the nearest-neighbor-spacing distribution
(NNSD) with the corresponding fit to the Brody function
[39]. All of them give an intermediate distribution. The
values obtained for the Brody parameter range from
0.116 for 5% to 0.486 for 0" and from 0.071 for 4~ to
0.822 for 07, for positive and negative parity states, re-
spectively. To investigate the sensitivity of the level-
density fluctuations to the interaction parameters, we
chose the 27"-level sequences (containing 282 levels).
Typical results are plotted in Fig. 1. It shows the depen-
dence of A;(L) up to L =50 for the case where all the in-
teraction strengths except I',, of Eq. (10) are zero. Other
parameters are the same as in the realistic calculation.
Increased values of I, result in transition from the linear
shape (steeper than L /15, because of the symmetry in the
core [22]), with the typical saturation effect [5,8], to the
logarithmic shape characteristic of GOE. Figures 2(a),
2(b), and 2(c) show comparison between the NNSD calcu-
lations, number variance, and spectral rigidity, respec-
tively. For small I', all three measures chosen here, the
Brody parameter o, number variance 2%(1), and spectral
rigidity A;(10) [43], show a rapid transition from near-
Poissonian to the intermediate values. At some values of
I', discontinuities are noticed which can be traced to
some special configuration of the strength parameters.
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This is observed at I',=0.627 MeV, where the 2," and 2
states and nearly degenerate due to an avoided crossing,
accompanied with the exchange of the character of the
two states [44]. Figure 2(d) shows the variation of A;(10)
with the interaction parameter A, chosen so that all the
interaction parameters which differ from zero in the real-
istic calculation are varied proportionally and simultane-
ously. The transition from the over-Poissonian value to
the intermediate region near A=0 is even more rapid
than in the case where I', was varied.

In conclusion, calculations of level-density fluctuation
of the %Ag energy levels computed within the IBFFM
show that (i) when changing the interaction parameters
from zero to small values the level-density-fluctuation
measures change rapidly from near-Poissonian values to
the intermediate region between the Poisson and GOE
statistics, indicating a sudden phase-transition-like
change in the structure of the system; (ii) in the inter-
mediate region they show irregularly oscillating behavior
which indicates sensitivity to details of the nuclear struc-
ture. If the conjecture expressed in Refs. [4,5] is valid
for the present case, then the results (i) and (ii) imply that
changes in the interaction parameters induce first the
rapid transition from regular to nearly chaotic behavior
and then oscillations within the transitional region be-
tween regular and chaotic. Also, since the zero interac-
tion strengths represent the case with unbroken dynami-
cal symmetry, our results are in agreement with con-
clusions of Ref. [3] that breaking of dynamical symmetry
is accompanied by the rapid transition from regular to
chaotic regime, and that the degree of deviation from
complete chaoticity is governed by variations within the
set of interaction parameters, determining the complicat-
ed dynamics of the nuclear many-body problem.
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