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Extending the Hedin-Lundqvist approximation, originally developed for the three-dimensional elec-
tron gas, we derive the correlation energy E, for the two-dimensional electron gas as a function of elec-
tron density p. A simple two-parameter function E,(p) reproduces very well the first-principles numeri-
cal results in the whole density range. We also present a simple and accurate form of the correlation
part of the chemical potential, which can be used, e.g. , as a correlation part of the effective potential in

the local-density approximation for two-dimensional electron systems.

I. INTRODUCTION

E "(r, )=E "(r )+E "(r, )+E "~(r, ) .

The density parameter r, is defined as the average dis-

tance between electrons in units of the Bohr radius ao
1/2 1/3

(n =2), r, = 1 3

ao 4~p

1 1
r,, =

ao ~p
(n =3) .

The energies will be given in Ry. The first term in Eq. (1)
is the kinetic energy'

The ground-state energy E of interacting electrons in
three (3D) and two (2D) dimensions represents one of the
most extensively studied many-body problems. ' This
system, usually referred to as the electron gas, in spite of
its innumerable applications, still has not been solved in a
way to give a satisfactory functional dependence E on
the electron density p in the whole electron density range.

In the standard theoretical approaches the ground-
state energy (per one electron) of the n-dimensional elec-
tron gas (n =2, 3) is written in the form'

from the density-functional approach follows that E
and, therefore, E, can be obtained in principle as a solu-
tion of the one-particle Schrodinger equation with the
(unknown) effective exchange-correlation potential. In
both approaches even an approximate derivation of E,
for a certain density range becomes a very complicated
task.

On the other hand, one can easily determine E from
the chemical potential p (Ref. 1)

dE
p —Eg +p

dp

Let us decompose p in the same way as Es in Eq. (1)

P =Pk+P. +P,
Knowing Ek and E„we can determine E, from Eq. (5)
when p, is known. We shall do this in Sec. II, using the
Hedin-Lundqvist (HL) approach, based on the density-
functional theory. The discussion of the results and the
concluding remarks are given in Sec. III.

II. CORRELATION ENERGY

E(,n) n

k
S

a2=1, a3 =2.21, (3)
From Eq. (2) we find p-r, ", so Eq. (5) can be rewrit-

ten in terms of r, as

while the second term is the Hartree-Fock (or un-

screened) exchange energy.

b„
S =1.ZOO4 b =O.916.

r,
'

The Hartree term, i.e., average electron-electron interac-
tion, is exactly cancelled by the positive background,
making the system neutral.

The third term in Eq. (1) is the correlation energy and
all the relevant theories try to calculate this term. In the
diagrammatic expansion, E, contains contributions from
all diagrams with two or more Coulomb lines, ' while

r, dE
p(r, )=E (r, )

——
n dr,

The exchange part of the chemical potential follows from
Eqs. (4) and (7)

cn 1p'„"'(r, ) =—,c„= 1+—b„.

Notice that E and p depend upon r, in the same way
for both n =3 and n =2. Therefore, we shall apply the
HL approach, originally deve1oped for a 3D electron
gas, to find E, for 2D electrons.

We shall first determine p„starting with the definition
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p, (r,') =a(r,')p„(r,'} . (9)

d dPx
, (p„+p, )=y(r,')

dr,
' " '

dr,
' (10)

Here r,'=r, +c.', and the shift c' &&1 is introduced in or-
der to ensure the correct r, ~0 behavior of p, (r, ), as will

be discussed later. Equation (9) together with Eq. (8)
leads to

ticularly interested in the 2D electron gas, in which case
E,' '(r, ~0) is expected to be finite, i.e., to behave like:
a+O(r, lnr, ). The constant a then depends upon the
theoretical model, and is estimated to be roughly about
—0.4.

This argument leads us, therefore, to take c)0 for
n =2. However, we shall first discuss the c=O limit, in
which case Eq. (14) takes a siinple form

y(r,') =1+a(r,') r,'— E,' '= —C (1—x )ln 1+—+x ——1 1

X 2
(17)

y(r,') =1+B
1+y

1 1 c'
y= r'=x+c, x =—r, c=—.A' ' A" A

(12}

Here A and B are two parameters to be determined later,
and we assume that y takes this form for all electron den-
sities. Now we can integrate Eq. (11) to find a(r,'), which
together with Eqs. (8) and (9) gives

From Eq. (10}we expect y to be a smooth function of r, .
Following HL, who made this approximation for n =3,
we take for n =2

b„~b„—(I+/) +(1—g) (18)

We shall test the validity of Eq. (17) by comparing it with
the relevant numerical data obtained from the first-
principles calculations by Tanatar and Ceperley (TC),
Ref. 5. These data are very representative, because they
cover a large scale of 2D electron densities, from r, =1 to
r, =75, and also take into account the spin polarization
of 2D electrons, defined by the polarization parameter
g=(Nt Ni)/N. —We can similarly incorporate spin
dependence in our result (17) for E„i.e., we only need to
redefine the parameter b„, given by Eq. (4)

1 B
p (r )= —Cln 1+—,C=c —.

C S Pl (13)

Of course, the coefficients ( A, B,C) depend upon n

Now we can use Eq. (7) to connect p, and E,. After
integration, we obtain the correlation energy for
n =(2,3)

From Eq. (13) we see that this substitution will only
change the relation between the coefficients A, B, and C.
The TC data for E,(r, ) for unpolarized (/=0) and fully
polarized (g=kl ) electron gas, were originally approxi-
mated by the four-parameter Pade function. Fitting the
TC numerical results to our function (17} by using the
least-square procedure, we find the coefficients

E,'"'= —C n x" t „,ln 1+ 1

t + t+c (14)
(=0: A =13.48, C =0.096 73,
g=kl: A =46.87, C=0.01353 .

(19)

III. RESULTS AND DISCUSSION

Let us first discuss the asymptotic behavior of the
correlation energy (14)

(a} In the low-density limit (x »1)
T

E," = —C(n) n 1 1+0 1

Pl+1 x X
(15)

which has the expected 1 jr, behavior in the r, ~ oo limit,
and the leading term does not contain the "shifting pa-
rameter" c.

(b) In the high-density limit (x « 1),

1 1
ln ———+O(x), s =0

X 7l

1
ln 1+—+O(x), e&0 .

E

(16)

For a=0, E,'"' diverges as lnr, in the r, ~O limit. This ln
divergence is expected for a 3D electron gas, so one
should take c=0 for n =3. An explicit form of Eq. (14}
for a 3D electron gas was given by HL. Here we are par-

All the results for E,(r, ) are presented in Table I. The
coefficients for the Pade approximation are taken from
TC.

From Table I we can conclude that our simple result
(17), given as an analytic function with only two parame-
ters, gives at least as good a fit to E, as the four-
parameter Pade approximation. Moreover, we obtain
better results in the high-density region (1 & r, & 10) than
in the Pade approximation. This certainly comes as a
surprise because one expects that our approximation
should fail in this limit. In fact, Eq. (17) gives reasonable
values of E,(r, ) even for r, & 0.5.

Let us now take e & 0. In that case, Eq. (14) can also be
analytically integrated, but the result is rather cumber-
some. Following Eq. (17) we can obviously obtain the
same analytical behavior as from Eq. (14), if we simply in-
terchange x ~y =x +s in Eq. (17)

E,' = —C (1—y }ln 1+—+y ——1 1

2
(20}

It has the correct c=O limit, correct behavior for r, &) 1,
given by Eq. (15), and a finite value E,(y = a }at r, =0. In
order to determine the parameter c, we first notice that
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fitting the numerical data for E„obtained for r, ) 1, with
some fitting curve (e.g., Pade or ours) and then making an
analytic extrapolation to r, ~O, is a questionable pro-
cedure, because the result can strongly depend on the
curve used. Specifically, the two curves that agree very
well for r, ) 1 could give different results for E, ( r, =0 )

which vary between a small constant [Pade':
E, (0)= —0.357] and a logarithmic divergency (our result
for E =0). Therefore, we shall determine the parameter s
by fitting E,(r, =0) in Eq. (20) to the correct E, (0) value.
For an unpolarized electron gas ((=0) we take
E,(0)= —0.39. In that case the least-square procedure
gives the following coefficients:

(=0: A =11.75, C=0. 1094 . (21)

TABLE I. Correlation energy E, for a 2D electron gas. The
data from Tanatar-Ceperley (TC) numerical calculation (Ref. 5)
are fitted by the Pade approximation and by our (LS) [Eq. (17)]
and LS, [Eq. (20)] expressions. Some relevant theoretical data
are also given for comparison.

0.0
1.0
5.0

10.0
20.0
30.0
50.0

5.0
10.0
20.0
30.0
40.0
75.0

0.0
0.5
1.0
2.0
4.0
5.0
8.0

10.0
16.0
20.0
30.0
50.0

Unpolarized electron gas ((=0)
TC Pade LS

—0.356 8 00

—0.217 —0.220 2 —0.215 9
—0.095 5 —0.099 01 —0.096 57
—0.060 85 —0.060 90 —0.060 52
—0.035 16 —0.035 17 —0.035 28
—0.025 02 —0.024 96 —0.025 01
—0.015 90 —0.015 92 —0.015 84

Fully polarized electron gas ((=+1)
TC Pade

—0.026 3 —0.025 30
—0.018 3 —0.018 50
—0.012 3 —0.012 38
—0.009 42 —0.009 418
—0.007 653 —0.007 639
—0.004 652 —0.004 656

Theoretical values ((=0)
Ref. 6 Ref. 10 Ref. 11

—0.39
—0.29
—0.25
—0.18

—0.250
—0.211
—0.155
—0.108

—0.218
—0.165

—0.0998
—0.066

—0.0618
—0.038

—0.0354
—0.0187
—0.0151

LS,
—0.3900
—0.213 4
—0.097 56
—0.060 89
—0.035 28
—0.024 93
—0.015 74

LS
—0.025 97
—0.018 57
—0.012 37
—0.009 410
—0.007 632
—0.004 635

Ref. 12
—0.39
—0.28
—0.22
—0.16
—0.11

—0.064

—0.037

The corresponding results for E,(r, ), which are also
given in Table I, are roughly the same as in the case of
the Pade approximation. Notice that, although the
"shift" s (here s =0.0178) gives the correct E,(0 ) value,
with c.=O we still obtain a slightly better fit to the

E,(r, ) 1) TC values.
The chemical potential p, should now be computed

from Eqs. (7) and (20)

1 1
p, = —C (1—Ey)ln 1+— +E

y 2g
(22)

In the r, ~O limit it has a finite value p, (0)=E,(0) and it
exhibits a correct 1/r, behavior at r, ))1.

All this allows us to draw the following conclusions:
(1) The correlation energy E„Eq. (17), agrees very well

with the TC data, calculated numerically from the first
principles, so one can take Eq. (17) with confidence to de-
scribe E, in the region 1(r, 75.

In that sense we also propose our simple form of
p„,=p„+p, [Eqs. (8) and (13)], as the efFective
exchange-correlation potential, for the Kohn-Sham
equation in the case of 2D electrons. Notice that, for
v=0, Eqs. (13) and (22) give the same result for p„with
the coefficients (19). For E) 0, one can use Eq. (22) for
p„with coefficients (21). However, if one prefers to take
for c )0 the simpler expression (13) for p„one has to op-
timize E, given by Eq. (14) to the TC data and to E,(0).
In that case, one finds (for (=0) A =11.48, C=0. 1119,
8=0.0316. The corresponding data for E, (r, )are practi-.
cally the same as the LS, data in Table I.

(2) A 2D electron gas provides an excellent testing
ground for many-body theory and many authors have
treated this problem. ' Standard techniques such as
random-phase approximation or Hubbard approximation
are not particularly successful and even for high electron
densities they are less satisfactory for 2D than for a 3D
electron gas. Some simple approaches, based, e.g. , on the
ring approximation or on the analytical continuation to
the low-density regime, give a correct r, ~O limit, but
rather poor results for E,(r, ) at finite densities. As we
have noticed, the benchmark against which other results
are valued is the numerical, fixed-node Green's function
Monte Carlo calculation of E,(r, ). A similar calcula-
tion, based on the variational Monte Carlo method, was
performed earlier by Ceperley. The authors of Ref. 5
claimed that the new calculation is more rigorous and in
fact it gives only slightly lower E, than Ref. 9.

In Table I, we also show relevant theoretical results for
E, (r, ) for unpolariz. ed 2D electrons, obtained by Jonson,
with the self-consistent STLS approximation, by Taka-
da' who used the method of efFective-potential expansion
in the two-body approximation, by Nagano, Singwi, and
Ohniski" who summed exactly ladder diagrams, and by
Freeman' who performed coupled-cluster and ladder ap-
proximations. Although the results diff'er by only a few
percent, more precise knowledge of E, (r, ) is necessary if
one wishes to derive unambiguously the ground state of a
2D electron gas. Namely, the unpolarized (paramagnet-
ic) state, the fully polarized (ferromagnetic) state and the
signer (crystal) state are very close in energy. In some
earlier works, the paramagnetic to ferromagnetic transi-
tion was predicted, ' but a more precise calculation of
Ref. 5 or the ground-state calculation performed by Sim,
Tao, and %'u, ' who used a correlated-basis-function ap-
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proach, assumes a paramagnetic ground state for all elec-
tron densities below the Wigner transition. The Wigner
crystal is expected to have lower energy for r, )37+5, '

but as pointed out in Ref. 5, all phases have approximate-
ly equal energies at r, =40.

In conclusion, we have derived a simple analytic result
for the correlation energy of a 2D electron gas, which is

in excellent agreement with other existing calculations in
a wide region of densities between r, = 1 and the onset of
the Wigner lattice. The great precision in the determina-
tion of E,(r, ) is needed in order to obtain correct
ground-state energy of the 2D electron gas, so we expect
that our simple but accurate form can be successfully
used in further applications.
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