A non-hedgehog solution for the chiral bag

Horvat, Dubravko; Podobnik, Boris; Tadi¢, Dubravko

Source / Izvornik: Fizika B, 1995, 4, 71 - 79

Journal article, Published version
Rad u casopisu, Objavljena verzija rada (izdavacev PDF)

Permanent link / Trajna poveznica: https://um.nsk.hr/urn:nbn:hr:217:856037

Rights / Prava: In copyright /Zasti¢eno autorskim pravom.

Download date / Datum preuzimanja: 2024-05-07

LSTE U 2

»
< £,
S %
=) - , . ..
N % Repository / Repozitorij:
7;'_; ET: Repository of the Faculty of Science - University of
% & Zagreb
% K
< N
Oy, c*

|
Vo, MATEM K

DIGITALNI AKADEMSKI ARHIVI I REPOZITORILII


https://urn.nsk.hr/urn:nbn:hr:217:856037
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:6444
https://dabar.srce.hr/islandora/object/pmf:6444

ISSN'1330-0016
CODEN FIZBE7

A NON-HEDGEHOG SOLUTION FOR THE CHIRAL BAG
DUBRAVKO HORVAT*, BORIS PODOBNIK and DUBRAVKO TADIC

* Department of Physics, Faculty of Electrical Engineering, University of Zagreb, 41000
Zagreb, Croatia
Department of Physics, Faculty of Natural Sciences, University of Zagreb, 41000 Zagreb,
Croatia

Received 12 January 1995
UDC 539.12

PACS 12.39.Ba

The chiral sigma model, embedded in the chiral-bag environment, is solved by an
ansatz which conserves isospin and spin separably. This chiral ansatz is treated in
two ways: 1) as a set of operator equations of motion solved between quark states
and ii) the hamilton operator is averaged between suitable hadron states, and the
equations of motion are derived for these mean fields. The second approach is
completely analogous to the usual one which employs hedgehog quarks, which is
also reproduced here. It turns out that the energy minimum (i.e. hadron masses) can
be found with chiral quarks as well as with hedgehog quarks. Model predictions for
the axial-vector coupling constant and for the nucleon magnetic moment obtained
with chiral quarks are of the same quality, or better than those obtained using the
usual hedgehog-based approximation.

1. Introduction
Various successful semiempirical descriptions for hadrons have emerged from

some chiral-bag model (CBM) [1,2]. In such models, the physical space is divided
in two regions: the bag (inside) and the surroundings (the bag outside). The in-
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side quarks move freely and the quark-gluon interaction is considered to be satu-
rated with the first-order gluon exchange. Quarks interact with the surroundings
by means of the surface interaction with soliton objects which might carry quark
quantum operators [2,3]. Some of their spatial properties resemble the observable
mesons. By calculating currents, energy and masses, one is able to reproduce the
basic features of baryon and meson mass spectroscopy, as well as magnetic moments
and the axial-vector coupling constant.

The most common ansatz for the two phases, i.e. inside and outside, is the well-
known hedgehog form [1,4,5] which also leads to an energy minimum [6]. It was
applied both to the linear and to the non-linear (Skyrme) sigma models. Notwhit-
standing the practical success and the theoretical support for hedgehog forms, it
is a matter of some curiosity to find whether an alternative anséitze might work at
all and how good its predictions of static and semistatic (g4, magnetic moment)
nucleon properties are.

It turns out that using the linear sigma model and the simple product of the spin
and isospin parts of the quarks wave functions, x(spin) ® x/(isospin), one can find a

stable solution which conserves J and I’ independently. The bag boundary condition
then induces a sort of quantization for meson fields in which quark-operator pairs
appear. As shown in detail in Sect. 3 of this paper, this meson phase contains parts
which depend either on the product of quark-quark (antiquark) operators or on the
mixed product of quark-antiquark operators. The first part is the continuation of
the quark density, for example the current, outside the confinement (bag) region.
The second part is an analogon of the quantized boson field which appears in
the coherent-state description. All this follows quite naturally from the formalism
and was used previously in an (approximate) chiral-bag-model calculation of non-
leptonic decays [3]. An important difference with the more usual hedgehog version
of the model [1,4,5] is the presence of the s-wave component in the pion field. As
shown in Sect. 5 the s-wave components vanishes when the x(spin) ® x(isospin)
part of the quark wave function is replaced by the hedgehog combination.

In our ansatz the s-wave component is multiplied by the combination of particle-
antiparticle creation (annihilation) operators. This product has the same correct
parity as the p-wave component which is multiplied by two particle (antiparticle)
operators. Although the s-wave component does not contribute directly to the
baryon form factors (it would to mesons) its presence in the non-linear system
of equations changes its solutions and thus leads to a better agreement with the
experiment.

The hedgehog version of the model is presented in Sect. 5. The hedgehog ansétze
[1,4,5] are described and the corresponding equations are derived. The meson phase
either can contain quark operators or can be quantized as an elementary boson field.
The second choice, which uses the coherent states [1,7], leads to the same results
as the first one. One hopes that the considerations given in Sect. 5 could facilitate
a comparison of the chiral-quark solution presented in this paper, with the well-
known methods and results.

Section 6 contains comments on the numerical procedure of integration of a
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non-linear system of ordinary differential equations containing mesonic degrees of
freedom.

Results and conclusions are presented in Sect. 7.

The linear g-model continues to be present in the literature where the colour
dielectric model is among the recent contributions [8]. The non-linear version of
the o-model is part of the Skyrme conjecture as well as part of other different
topological, non-topological, bag and quark models of hadrons [5]. The new ansétze
presented here might also lead to a corresponding treatment of the non-linear o-
model .

2. The linear sigma model and the bag formalism

The lagrangian containing the linear sigma model embedded in the bag envi-
ronment has the usual form [1,8]:

L =1Ly + Linds + [Lon — Ulo, 7)]O, (2.1)

where

Ly = SN 0uab(a) — Bud{a)y" () — B,

Line = Lip(a) (0(2) + i77 (2)y5) 0 (),

2
Low = 1(’9” 0 16“" 0,7 2.2
ow — 5 O'(.’I}) NU(‘T) + § 7T-(q’i) /1«77(‘,1")’ ( . )
S Ao ) 212 2
U(o,m) = Z(J () + 7 (x) — v*)* — famio(x)

and fr = 0.093 GeV. The O(z) equals zero for x < 0, i.e. Ly is different from zero
inside the bag (r < Rpeg). The surface -function g gives the surface quark—m (or
o) interaction, and © ensures that the potential U and the (o, ) kinetic-energy
terms exist (only) outside the bag. In the spherical bag, ©(z) and © become
0(Rpag — ) and 0(r — Rpagq), respectively. The self-interaction potential U contains
the symmetry-breaking (SB) term co(z) = — frm20(x). The values of other con-
stants are fixed by the creation of mass terms for the 7 and o fields, by the PCAC
and by the requirement U™ = (. Their values are given in Sect. 6. In the frame-
work of this particular model, m, and m, are not necessarily equal to the physical
sigma and pion mass, but play the role of model parameters.

In order to extract the physical content of the theory from the lagrangian given
by Eq. (2.1), one can use two basically different methods (the first of which is
further applied in two different ways):
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1) the chiral-quark approach (Sect. 3) where the quark fields contain the stan-
dard spinor-isospinor product (see Egs. (3.1) and (3.2) ). The meson fields are
given in terms of these quark fields by the ansétze which reflect their flavour
and space-time properties. In one version of this non-hedgehog method,

(a) the equations of motion are obtained from the lagrangian (2.1) using
the standard variational methods and the quantized ansétze (see Egs.
(3.1)—(3.4)) are used. The bosonic entities (3.3) and (3.4) are not the
elementary 7 or o fields but solitons possessing some meson-like trans-
formation properties and satisfying the boundary conditions (3.7) and
(3.9). This results in the operator equations of motion and the operator
boundary conditions. The required non-operator relations are then ”pro-
jected” by ”sandwiching” those relations between suitably chosen initial
and final quark states. The end results (non-linear coupled differential
equations) involve the classical profile functions. In the other version of
the same method,

(b) the classical profile functions are obtained by first "sandwiching” the
lagrangian (2.1) between the chosen hadron states.The fields in this la-
grangian are replaced by the quantized ansétze (3.1)—(3.4). The equa-
tions of motion are then obtained using the variational method. This is
analogous to the mean-field approximation (MFA) [1].

2) In the hedgehog-quark model, the lagrangian (hamiltonian) is expressed in
terms of (quantized) hedgehog quarks and the MFA, as in case (1.2) , is
employed to get the (classical) profile functions. The ”sandwiching” is ac-
complished by the hedgehog initial/final baryon states. The equations of mo-
tion for the classical fields (profile functions) are obtained using the standard
variational methods. The coherent states are also discussed.

3. The chiral quarks - The non-hedgehog method 1

The ansatz for the quark field is

ey N do Noppe o N (‘?f)ﬁ) ¢ gt
0101 = 7= (s J¥hs + 7 () Pl 03

Here ¢ is a quark colour and f is a quark flavour, whereas m is the spin projection.
by, and dj, ¢ are quark and antiquark annihilation operators, respectively. The

quantities jo 1(r) are spherical Bessel functions of the order (0,1) and x, is the
quark isospinor (¥f)-spinor (x,,) product

ng = >~<f * Xm- (3'2)
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The o-field ansétze are given by the s—wave component, and in terms of chiral-
quark operators together with the symmetry-breaking term (f):

U(r):Us(r)'(biﬁfbfn,f'i_di,fdfn,f)_fw- (3.3)
The pion field contains the s- and p-wave components
7 (r) = mo(r) (B 1 dil gt o b 1) - X T X ]
+ 1 (M) (B b o+ di &0 1) - X (GF) T Xom ). (3.4)

The ansétze (3.1)—(3.4) are formally related to the perturbation treatment of a
quantum field theory in the Heisenberg picture [9]. Quark fields are solutions of a
complicated system of non-linear equations. One can start by expanding the quark
field operator ) :

Y= w(O) + 1/}(1) N (3.5)

In this expansion each term depends on various combinations of the quark field
operators b, d. In a more realistic situation, using full QCD, gluon operators should
also be included. In the model application, semiempirical features, such as bag and
mesonic phases, are introduced. Nevertheless, it is obvious that the ansétze (3.1,
3.2) correspond just to the term ¥(® in Eq. (3.5). In addition, in resolving a
complex non-linear theory, one (in principle) encounters the full set of all possible
Fock states. This is here approximated by the lowest (first) Fock state, built out of
valence quarks in keeping with the retention of ¥(9) from the expansion (3.5). The
ansétze (3.3) and (3.4) also have some relation to the solution presented in Ref. 10.
There they also introduce an isospin dependence which is a spatial constant, which
differs from the hedgehog ansétze (5.1)—(5.4) below.

The Euler-Lagrange (E-L) equation for the o field which stems from varying £
with respect to o is

0,0 (r) + Na(r)o(r)? + 7% — V2] + fam2 = 0. (3.6)

From the variation of the derivative terms one obtains the boundary conditions
imposed on the o field:

(9" ()nuds — s = 0. (3.7)

The E-L equation for the pion field reads
OO, (1) + N2m(r)[o(r)? + 7(r)? — v*] = 0. (3.8)
In the same way as for the o field, one obtains the boundary condition for 7%:

(07 (r))n, 05 — %a(r)wa%w(rws —0. (3.9)
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The ansétze (3.1)—(3.4) have been introduced into the above equations.

To extract the equations for the s- and p-wave components from the operator
equations of motion the equations (3.6)—(3.9) are "sandwiched” between the final

state (f| = (q%,] = (0[b%, and the initial state |i) = |gf,) = bfTu|0> This choice
yields the equation for o4(r) :

{dZ 2d

2ty dr] os(r) = N [os(r) = fx] [(0s(r) = fz)? + 3m,(r) — v?] + frm (3.10)

and for m,(r) :

et 2 2] = [0 - 4350 -] ()

The other choice, i.e. (f| = (0] and |i) = |qf @5 /) = df,T,u, bf:ru|0> , gives the pion
s-wave component
d? 2d
Lw Ty c‘lr} ma(r) = Mms(r) [f + 36w (r) — 7] (3.12)

It is now easy to specify the boundary conditions (3.8) and (3.9) using the
ansétze (3.1)—(3.4) and the same initial/final-states combinations:

0 N? 9o /s .2 )
505(70) =Ry, ) o (w) — ji (w)],
0 N? 9n/s ¢ .2 -2
5”5(7") reRpay T ir 9 ljo (w) + ji (w)],
0 N? 9r/p ;. .
I I (TR ) (3.13)

At spatial infinity the o and 7 "fields” (i.e. solitons) have to vanish:

os(r) =0. (3.14)

=00

=0 ms(T)
T—>00

=0 ()

r—00

Varying £ with respect to the fermion field and its derivative and collecting the
corresponding surface terms, one obtains the boundary condition

i(yr)i(r)

= igoo(r)(77)¢(r)

— =T (r)(Y7) 59 (7) (3.15)

T:Rbag T‘:Rbag T:Rbag

This boundary condition is ”sandwiched” between quark (Fock) states, as done
with the equations of motion. Between o — ¢ and between @ — v one inserts the
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complete set of states. Depending on the type of states, one obtains relations be-
tween the coupling constants and radial functions evaluated at r = Rp,q. This
is a straightforward but somewhat lengthy procedure. As an example, here are
some details: With the ansétze (3.1)—(3.4), the boundary condition (3.15) takes

the following form:
( Jo )X o4 ((ar)h)xf P
i(67)jr )™ m. f ijo mm, f

(7)jo d d
S G AN T CON AT

S| G R AR RN AL

| P ARSI AR

J 2. 2 1 2
—gﬂ/pwpm)(_. i )xfmd<r A @R

>~
3 ~
S

d T
_(7#) 4 anbml flbmzxfzbz”bf
(67)Jo
C
> 17f1d;in2,f2 m, f

i W,
o Jx <—(07“)J )Xm md

. i(d7)Jo d
+19005(R)( —J )anmel’fl b;j"27f2 d;j’f

(d7)Jjo d o -
_g”/SWS(R)< —ij; XhUoh g (T 7)) 5, b s
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(o7)Jo S o
gw/sﬂs(R)< —ij X{nd?nl,fl (T.T)bfnz,fg bfn,f

Jn Fodt (== At et
~9nssTo ) (1(5%) Xinbis 5, (7 D, 1,

1 = d t
—Gr/sTs(R) <_i(&7ﬁ)j0>xfnd‘fnhf1 (7P, el . (3.16)
This boundary conditios can be sandwiched between the final anti-quark state
(fl = (@y .| and the initial vacuum state |i) = |0). It is easy to see by inspection

that many terms drop out, so that one ends up with very simple relations. On the
LHS one has

LHS = ((Ui;)jl) X (0lde &1 ]0). (3.17a)
0 :
On the RHS one has to insert the complete set of intermediate states |s)(s| :

RHS — ig,o.(R) (1((”;”0) L0l 1) (sl 0)
7 |

s (i(i)fo) Xh + 39xsmp(R) (_i (glf)j()) X1, (57). (3.17b)

Thus one obtains

+39pTp(R) ((‘2‘2 1) . (3.18)

Two equations follow from the above expression (here R = Ry, :)
Jo(R)go (fr — 0s(R)) — j1(R)(1 = 3¢x/pmp(R)) = 0,
Jo(B)(L + 39 /pmp(R)) — j1(R)go(fr — 0s(R)) = 0. (3.19)

These two equations constitute a homogeneous system for the (unknown) func-
tions jo,1, so the determinant of the system should vanish.

The other projection between the vacuum and the one-quark state |i) = |q5 )
gives a system similar to that above:

Jo(R) = j1(R)(go fr + 3gr/s7s(R)) = 0,
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Jo(R)(9o fx = 39x/sms(R)) — j1(R) = 0. (3.20)

The quark eigenenergy w will be determined from the compatibility of the boundary
conditions (3.13) and (3.15). In this case, instead of a common meson coupling con-
stant g (Eq. (2.2)) flavour- and angular-momentum dependent couplings g, /s, gr/s
and g/, appear. This reflects chiral symmetry breaking. As shown in (3.21) below,
this appears naturally when the non-linear system (2.2) is solved using the ansétze
(3.1)-(3.4). One can solve the system of equations (3.19) and (3.20). One solution
for gr/p = mp(R)/3 gives a trivial solution for g,, i.e. g, = 0. The other gives

J?+1
9o = 577

1=
9rn)s = GJWS(R)7

B J? -1
Inlv = 372 ¥ Dmp(R)

Jt—4J%+1
US(R) = fww,
J = j1(R)/jo(R). (3.21)

The problem is to find a set of solutions of the differential equations (3.6), (3.11) and
(3.12), {o(r),ms(r), mp(r)}, which satisfy the mathematical boundary conditions
(3.13) and (3.14). These solutions must be compatible with Eq. (3.21) which is
independent of r. Of course, J contains information on the system of differential
equations, so one has a strongly correlated algebraic system (3.19) and (3.20) and
the system of differential equations.

The parameters (A,v) which enter £ (2.2) are restricted by the symmetry-
breaking behaviour of the theory. Usually [1,11], the o particle is considered to be
a 1.2 GeV resonance, whereas the pion “mass” is a parameter which, for simplicity
(and lack of knowledge), is assigned the value of the physical pion mass (0.137
GeV). In the present application, these values have also been used, although m,,
and m, can, in principle, be considered as additional parameters.

The magnetic moment operator is

) = 3 (7 x Tone(). (3.22)

Here
G (1) = V(M) QY (r) + esi5mi(r)OFm; (r) (3.23a)
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and
1+ 1 1—m

2 3 2

2
Q=3 (3.23b)

The quark contribution to uy is

@ _2 I (w/2) — (3/8) sin 2w + (w/4) cos 2w
% 3wt f2(w)+ 5 (w) = 20 (w1 (w)/w (3.24)

The meson contribution is

160 11

ni'h === | AP, (3.25)
Rbag
The proton magnetic moment is given by
pp = @ 4 pfM. (3.26)

The axial-vector coupling constant g4 is the matrix element of the component
A3(7) of the isovector axial-vector current (2.3) sandwiched between nucleon states
and integrated over all space [1,12]. The quark contribution is

. 3
o = 1| [ SR Gl

1 Rw) + 53w)
373 @)+ 2(w) — 2jo(@)pr (@)@

(3.27)

For the proton one obtains the meson contribution:

=55 | arr2[(o(r) — o) ) + 220] ol (3:28)
Rpag
Finally:

() (M)

9% =g + g (3.29)

4. The chiral quarks - The non-hedgehog mean-field
method 2

This approach has numerous features analogous to the hedgehog ansétze pre-
sented in the next section. One retains only the p-wave component for the pion
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field and derives the equations of motion from the classical hamiltonian, which is
obtained by averaging the quantized hamiltonian over a baryon (proton, delta).
The baryon wave functions in terms of chiral quarks belong to the conventional 56
representations of SU(6).

The ansétze for the sigma and pion fields are
7(r) = mp(r) [x& 7(@)x¢] - L e,

o) = 75 i my v )~ /i (4.)

The hamiltonian is
S - 1 -
H= / Br{Pt[—id0 + g7° (0 + ivs77)]Y + (00)? + 5(aﬁa)? +U(o,®)}. (4.2)

For the proton, the expectation value of H has the following form:

_ _ 2 (U;)Q 1 Ep 9 QWZ
<p|H‘p>*Hp—47T/d7’7’{ 5? 7Tp+r72
R

+

2
+f77m727(0's_f7r)+Z |:(O.S_f77)2+7r22p _V2:| } (43)

For A , one finds

e —ar [ a2 f @ LS (2T 2 _
(AIH|A) 7’}-[A747r/drr {G-+5 2+ =2 ) + fomi(o - )
R
A2 ) 2o
+Z {(as — fa)? + 7712,?&‘ - 1/2} + Zﬂ'f) : 16}. (4.4)

Here ¥, A are the matrix elements of the spin-isospin operators averaged over
spinor-isospinor part of the p/A wave function [2]; for example,

%y = (pl(oi7;)(0i7;)[p)- (4.5)
The equations of motion (corresponding to the proton) are

b
P2 2|

2
U;/+;U;:/\2(Os_fﬂ) (Us_fW)Q"'? P
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2 2 by 48
T, + ;w}, 2= N, |:(O'5 — )+ ?pwg — 2| + Azﬂgg. (4.6)
The boundary conditions for the meson profile functions are
0 3N% g . .
505(7“) r—Ry = —15[33(@ — i ()l;

) 3NZ ,

77" m. —ﬂgbo(w) Jiw)], (4.7)
and
os(r =0, (1) =0. (4.8)
7—00 7—00

Using the same method as in the preceding section one obtains the consistency
condition for the quark eigenenergies from

Jo gl = 0u(B) + (1 = gmy(R)) =0,
11

Jo(1+ 3

g7p(R)) — j19(fr — 0s(R)) = 0. (4.9)

Thus the expression for the coupling constant g is (see Eq. (3.21))

1
1= Jo® 12+ ()9)mR)

(4.10)

Here the number 11 arises from the matrix element ¥ (4.5). The other equation
analogous to Eq. (3.21) is

1 1-9-(11/9) - m(R) _1-(Xa/9) m(R)/3
J 9(fx —0s(R) 9(fr —o(R))

(4.11)

The electromagnetic properties are calculated taking into account the electro-
magnetic current, [12] Egs. (3.23 a, b) .

The quark contribution to the magnetic moment retains the form (3.24) but
with the w determined from (4.9).
For the proton, one finds that uz(,lu) again has the form (3.25).

The axial-vector coupling constant g4 has the quark contribution (3.27) and the
meson contribution (3.28). As already mentioned, the w value and all parameter
values corresponds to the model defined by (4.3)—(4.11).
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5. The hedgehog ansdtze

This section is intended to provide a detailed comparison between the ansétze
used in the precceding section and the hedgehog ansitze.

At the classical level there is not much difference between the results obtained in
this section and the results presented in Sect. 4. The equations of motion are similar
and their (classical) solutions are almost identical (see Sect. 6). There is a slight
difference in the quantization procedure. Usually [1,8], one quantizes (hedgehog)
quarks and (hedgehog) mesons as elementary fermion and boson fields. Coherent
states are used [1,7,8] to provide a quantum representation of the boson fields.

In the example provided here the bosonic phase is quantized in the same way
as used in the ansétze (4.1). The end result, see Eq. (5.14) below, is the same as
that obtained using coherent states.

The baryons are given in the form of hedgehog
|hy = bib§bij0);  (hlh) =1. (5.1)
The pion state is a p-wave and it assumes a hedgehog form as well,
7a(7) = Far(r) - b b; (5.2)
and o is given by the scalar component and the symmetry-breaking term
o(F) = o(r) - bl by — fr. (5.3)

The hedgehog baryon is neither a nucleon nor a A, and it has to be projected
into a spin-isospin eigenstate [1,11].

The hedgehog form (5.2) is closely related to the ansétze (4.1). If the isospinor-
spinor combination x;, in Eq. (4.1) is replaced by the hedgehog combination, i.e.

of

:X Nf

Xt Xm = —= (X" Xme—172 = X7 Xomz1/2) = o, (5.4a)

Sl -

then one finds

X4 ()T xn = 7. (5.4b)

Thus the mapping (5.4) transforms the ansétze (4.1) into the corresponding ones
(5.2) and (5.3). It is not surprising that the (classical) equations of motion barely
change. The change comes from the fact that with the hedgehog ansétze there is
only one universal baryon |h) (5.1), whereas the chiral ansétze distinguishes N and
A baryons. However the s-wave components (3.4) do vanish when the replacement
(5.4a) is effected. One obtains

XLT"X}I = 0. (5.4¢)
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The solution presented in this section differs in an essentied way from the one
discussed in Sect. 3. The method (1.1) leads to better g4 values than the methods
(1.2) and (2).

The expectation value of the normal-order hamiltonian (4.2) is

(h[H|h) = Hn

T 1|/00\? or\> 2
21 [ (99 on 22
+47T/drr 5 [(87") + ((%) +r2ﬂ"|
R

2

A
—|—Z (0% +7° — V2)2 + fam2o. (5.5)

The Euler-Lagrange equations are given in terms of mean fields approximated
by the static expectation values.

Instead of Eq. (4.6) one finds

and

The boundary condition for o(r) is

4o _ 39 N2 - W), (5.8)

dr 8«7

where g is calculated from the fields at the boundary

1
V(0 (Rbag))? + (7(Ryag))?
For the pion phase one gets
d7T o 379 27 - .
o= N @)@l (5.10)

The eletromagnetic properties are calculated using Egs. (3.22) and (3.23a, b).
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The quark contribution to the proton magnetic moment retains the form (3.24).
Also, u%Q) = —%,u](gQ). With the hedgehog ansétze for meson fields one finds [1]

oo

pM = 4% / r2 dr[r(r))?. (5.11)
Rbag

The quark contribution to the nucleon axial-vector coupling constant g4 retains
the form (3.27).

The meson part of the axial-vector constant is [1]

(0(r) = fr)m(r)

- (5.12)

g%“=%f/#mr@dm—ﬁmﬂm—www%ﬂ+2

The difference in constant factors between Egs. (3.25), (3.28) and (5.11), (5.12),
respectively, can be traced to averaging over Eq. (5.1) rather than over the proton
wave function, as done in Sect. 4.

The quantum properties (5.2) and (5.3) of boson solitons follow from the hedge-
hog version of the boundary condition (3.15). Thus our baryon (5.1) differs from the
usual form [1] which uses the coherent states. However, with the hedgehog ansétze,
both methods lead to an identical expression for the energy H, (4.3).

Using the trial wave function of Ref. 1
|heon) = exp(A7) exp(A)|h) (5.13)

one easily finds
<hcoh ‘H ‘ hcoh>

Hp = 5.14
h <hcoh|hcoh> ( )
Here A} contains the elementary sigma-field operator aé (k), i.e.
~ 2 o~
A+ — 3 M F + _ / 3 1krF 1
f= [ @R o) = g [ERFER, (519

and analogously for AZ.

Variation with respect to v(r),7(r) and o(r) leads to the above equations of
motion.

A possible generalization of the coherent state for the chiral-quark ansétze (3.1)
is considerably more complicated than (5.13) [1, 7]. Even the one pion approxima-
tion [13], which includes the coherent sigma-field state, is quite involved. It seems
that the ansétze (3.3) and (3.4) lead to a simpler procedure that is analogous to
the hedgehog approach (5.3) and (5.4) used here.
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6. The numerical procedure

Numerics will be illustrated here for a non-linear system of coupled ordinary
differential equations which have been derived in Sect. 3. The other two approaches,
chiral quarks with hadron averaging and hedgehog quarks, lead to very similar
systems which differ only in some superficial details.

A sequence of approximations led to a still quite complicated system. First, the
very complex QCD field-theory dynamics was modelled by the chiral bag. Then,
this model field theory, non-linear and complex, was approximated by the leading
terms in the expansion in free-field operators.

This resulted in a system which determined fermion and boson radial functions
appearing in the ansétze, for example in (3.1), (3.2), (3.3) and (3.4).

The boson radial functions had to satify Egs. (3.10), (3.11) and (3.12).

These equations were supplemented by the boundary conditions given by Eqgs.
(3.13) and (3.14).

The conditions (3.14) were dictated by the (physical) requirement that the (mas-
sive) field solitons should vanish at infinity.

In Eq. (3.13) the normalization constant N can be expressed in terms of Bessel
functions and quark eigenfrequencies w:

N = i) + () - 2R (6.1

The radial parts of the quark wave functions appearing in Eq. (3.1) are Bessel
functions j¢(wr/R) for any spherical bag with radius R. At the bag boundary,
where r = R, these functions have to satisfy the relations (3.19) and (3.20) which
combine the quark frequency w with the coupling constants g,, g, fr etc. The
algebraic relations among the coupling constants stem from the requirement that
the homogeneous system of linear equations should have the vanishing determinant.
Therefore, the coupling constants have to satisfy the consistency conditions given
by Eq. (3.21)

The linear o-model parameters satisfy the following relations derived from the
symmetry breaking pattern (see Sect. 2) [1,8,12]:

2 2 2 2 2
o Mg —my o 4o My _1 9 9 2m5 — 3m;
A= 2f2 Vit A2’ 4= if”m” m2 —m2 (62)

Here the value of d is determined by the requirement that U(c,7) should have
zero minima. The o meson is expected to have a mass of about 1 GeV [11]. Thus
the parameter masses m, and m, are selected to be 1.2 GeV and 0.139 GeV,
respectively.

One has to solve simultaneously the system containing non-linear differential
equations (3.10),(3.11) and (3.12), Egs. (3.13) and (3.14) and the algebraic relations
(3.21) and (6.2). This determines the meson functions o(r), ms(r) and m,(r), the
quark frequency w and various coupling (g, g,, etc.).
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This complex system has been solved using the code COLSYS, the collocation
system solver, developed by U. Asher, J. Christiansen and R.D. Russel from the
University of British Columbia and Simon Fraser University, Canada [14]. The
boundary conditions are set at [Rp.q, R], where R is set to be so large that the
fields can be approximated by zero at R. The initial guesses have been supplied.
From the asymptotic behaviour and some earlier experience the input was rather
simple and convergence has been achieved quickly.

The problem turns out to be rather sensitive to the derivative boundary condi-
tions which in all cases involve the coupling constant(s). Although the asymptotic
behaviour of the solutions can be inferred from the system itself (see also Ref. 15),
the COLSYS is able to handle rather general initial (guess) solutions.

Upon return the routine gives error estimates for components and its deriva-
tives. The problem parameters can be gradually changed (increased) by using a
continuation method in COLSYS which is left to choose the initial mesh points,
and in the continuation procedure it refines and redistributes the (former) mesh.

There are additional chiral-bag-model parameters, the same as those used in
the MIT bag, i.e. B, Zy and as [1-4,10,11]. They are connected with the bag
properties (B, Zp) and with the effective gluon exchange («) which removes the
nucleon (NN)-resonance (A) mass degeneracy. Some earlier experience (see Ref.
3) suggested that these parameters would remain within typical chiral-bag-model
values. Here these parameters are used to fix the N and A masses within 1%
accuracy. The numerical values depend on the particular ansatze used. Thus for
example for solution described in Sect. 3 (see Table 1, below) one finds: R = 6.0,
w =180, Zy = 0.12, Bi = 0.14 and a; = 0.12 or R = 5.0, w = 2.10, Z, = 0.3,
Bi =0.15 and a, = 0.25.

The solutions are compared against the consistency conditions (3.21) and the
iterative procedure is continued until the matching is obtained. The iteration con-
sists in performing a self-consistent calculation: the coupling constants for the chiral
quarks—non-hedgehog method are set to be the same at the beginning (their value
is set to be equal to 10.00) and after every iteration new coupling constants are
calculated from Eq. (3.21). These new values are replaced in the boundary condi-
tions to calculate new solutions. The procedure converges rather rapidly. When the
matching is achieved, the magnetic moment and the axial constant are calculated
from the obtained solutions, i.e from either {o(r), ws(r), 7, (r)} for the chiral quarks
or {o(r),m(r)} for the hedgehog quarks.

7. Results, comments and conclusion

The non-hedgehog method 1 (Sect. 3) leads to the results which depend strongly
on the quark eigenfrequency w, as shown in Table 1. There are several sets of the
coupling constants g; which satisfy the consistency condition (3.21), thus producing
several sets of g4 and p values. One should, possibly, achieve some fine tuning by
playing with other parameters, such as A, v, m, ...
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TABLE 1.
The results for the chiral-quark non-hedgehog variant (1.1) of the model (Sect. 3).
The bag radius is in GeV~! units.

R w magnetic moment axial constant  ga
BQ P Prot | 9a/q  ga/M  ga/tot
4.5 1.70 1.58 1.09 2.67 | 1.26 0.12 1.38
5.0 1.88 1.84 0.52 2.36 1.17 0.15 1.32
5.5 1.89 2.03 0.50 2.53 | 1.16 0.16 1.32
6.0 1.88 2.21 0.54 2.75 | 1.17 0.18 1.35
6.5 1.89 2.40 0.53 293 | 1.17 0.19 1.36
7.0 1.90 2.59 0.48 3.07 | 1.16 0.20 1.36
7.5 191 2.78 0.44 3.22 | 1.16 0.20 1.36
The parameters
A =9.062 me = 1.2 GeV Hexp = 2.79 mP = 0.139 GeV
v =0.092 fr=10.093 GeV  ga/exp=1.26 m, =0.140 GeV

However, one is more interested here in comparison of methods. As shown in
Table 2, the non-hedgehog mean-field method (1.2) gives consistently too large ga
values and somewhat better p values. All predictions obtained using the method
1.2 are very similar to those found using the hedgehog mean-field method 2 (Sect.
5).

TABLE 2.
The chiral-quark-bag-model calculation - the non-hedgehog mean-field method
has been used to project the physical states. The bag radius is in GeV~! units.
The bag parameters are explained in the main text.

R w g magnetic moment axial constant ga
[7%e) m Htot ga/q ga/M ga/tot
497 1.0238  9.299 1.20 0.83 2.02 1.51 0.39 1.90
5.00 0.979 9.311 1.155 1.377 2.531 1.53 0.53 2.06
6.00 1.285 9.799 1.741 1.116 2.857 1.42 0.51 1.93
7.00 1.78 10.799 2.52 0.09 2.61 1.22 0.29 1.50
The parameters
A =9.062 me = 1.2 GeV texp = 2.79
v = 0.092 fr= =0.093 GeV ga/exp = 1.26

The hedgehog-based [1] results are displayed in Table 3. Here they were obtained
by using parameters comparable with those used in Tables 1 and 2 , which facilitates
the comparison. It is not suprising that the values in Tables 2 and 3 are similar.
Egs. (4.6), (5.6) and (5.7) are not very different. The same goes for the theoretical
expressions for g4 and p . The values of p in Table 2 look somewhat better than
those in Table 3. However, this could be just an accidental effect of a particular
parametrisation.
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TABLE 3.
The chiral-bag-model calculation — the hedgehog mean-field method has been
used to project the physical states. The bag radius is in GeV ™! units.

R w g magnetic moment axial constant ga
1o Pm ot ga/q ga/M _ ga/tot
5.00 1.280 11.250 1.45 0.27 1.72 1.43 0.42 1.85
6.00 1.637 10.878 2.060 0.144 2.204 1.28 0.33 1.61
7.00 1.783 10.799 2.519 0.092 2.610 1.22 0.29 1.504
The parameters
A =9.062 mes = 1.2 GeV fexp = 2.79
v = 0.092 f= =0.093 GeV ga/exp = 1.26

In Table 1 the g4 values are generally better. In the method (1.1) the quark—
and meson—phase equation of motion are treated as operator equations, which are
approximatively solved. The meson-soliton solutions (i.e. classical profile functions)
display all the required characteristics. The m,(r), ms(r) and o4(r) are smoothly
decreasing with distance, as required by the boundary conditions. The large u
values in Table 1 are always associated with smaller g4 values, thus both being
simultaneously closer to the experimental date. In Table 1 one can see that such
behaviour is caused by the meson-phase contributions. They are proportionally
much larger in the case of y, as it should be.

It is interesting that one can find non-hedgehog ansatze which solve the CBM
based on the linear sigma model. However, except for g4 values in Table 1, it is
difficult to give strong preference to any of the used methods. The results are also
comparable with the Skyrme model [5], where, typically, u = 2.48, g4 = 0.61, or
with the Nambu-Jona-Lasinio-model [12], where 1 = 2.76 and g4 = 1.86.

Acknowledgement

One of us (D.H.) wishes to thank Andrew Kurn (Simon Fraser University - Com-
puting Department) and Nenad Grgi¢ (University of Zagreb) for their assistance in
the software application. D. T. would like to thank for the hospitality of the Theory
Group (professor L. Fonda), University of Trieste, Italy.

This work was supported by the Ministry of Science and Technology of the Republic
of Croatia, under the contract numbers 1-03-142 and 1-03-233.

References

1) M. C. Birse and M. K. Banerjee, Phys. Lett. 136B (1984) 284; Phys. Rev. D 31 (1985)
118; M.C. Birse, Phys. Rev D 33 (1986) 1934;

2) A. W. Thomas, Adv. Nucl. Physics 13, 1, edited by J. W. Negele and E. Vogt (Plenum,
1984); G. E. Brown and M. Rho, Phys. Lett. 82B (1979) 177; G. E. Brown, M. Rho
and V. Vento, Phys. Lett. 84B (1979) 383; H. Hggaasen and F. Myhrer, Z. Phys. C —
Particles and Fields 21 (1983) 73; Xue-Qian Li and Zhen Qi, Commun. Theor. Phys.
18 (1992) 213; G. E. Brown and M. Rho, Comments on Nucl. Part. Phys. 18 (1988) 1;

FIZIKA B 4 (1995) 1, 71-91 89



11)

12)

13)
14)

15)

90

HORVAT, PODOBNIK AND TADIC: A NON-HEDGEHOG SOLUTION . ..

F. Myhrer, in Quarks and Nuclei, Int. Rev. Nucl. Phys. 1 (1984), edited by W. Weise
(World Scientific, Singapore, 1984);

D. Horvat and D. Tadié, Z. Phys. C - Particles and Fields 31 (1986) 311; 35 (1987)
231; D. Horvat, Z. Naranci¢ and D. Tadié, Z. Phys. C - Particles and Fields 38 (1988)
431; D. Horvat, B. Podobnik and D. Tadié, Fizika B 2 (1993) 49;

A. Chodos and B. C. Thorn, Phys. Rev D 12 (1975) 2733;

T. H. R. Skyrme, Proc. Roy. Soc. London, 260 (1961) 127; 262, 237 (1961); Nucl.

Phys. 31 (1962) 550; G.S. Adkins, C. R. Nappi and E. Witten, Nucl. Phys. B 228
(1983) 552, B 233 (1984) 109; L. Zahed and G. E. Brown, Phys. Rep. 142 (1986) 1;

M. Fiolhais, J. N. Urbano and K. Goeke, Phys. Lett. 150B (1985) 253; K. Goeke, J.
N. Urbano, M. Fiolhais and M. Harvey, Phys. Lett. 164B (1985) 249; E. Ruiz Arriola,
P. Alberto, J. N. Urbano and K. Goeke, Z. Phys. A 333 (1989) 203;

J. G. Taylor, Ann. of Phys. 115 (1978) 153; M. Bolsterli, Phys. Rev. D 24 (1981) 400;
T. Neuber, M. Fiolhais, K. Goeke and J. N. Urbano, Nucl. Phys. A 560 (1993) 909;

G. Kallen, Quantum Electrodynamics (Springer-Verlag, New York-Heidelberg-Berlin,
1972);

R. F. Alvarez-Estrada, F. Fernandez, J. L. Sanchez-Gomez and V. Vento: Models of
Hadron Structure Based on Quantum Chromodynamics, Leture Notes in Physics 259,
(Springer, Berlin, 1986);

M. C. Birse, Prog. Part. Nucl. Phys. 25, 1, edited by A. Faessler (Pergamon, Oxford,
1990);

K. Goeke, F. Grimmer, M. Fiolhais, and J. N. Urbano, in Nuclei, Neutrons and Energy,
Proceedings of the VIII International School on Nuclear Physics, Neutron Physics and
Nuclear Energy, Varna, 1987, edited by W. Andrejtscheff, Chr. V. Chri-stov and D.
Elenkov (World Scientific, Singapore, 1988);

K. Goeke, M. Harvey, F. Grimmer and J. N. Urbano, Phys. Rev D 37 (1988) 754;

U. Ascher, J. Christiansen and R. D. Russel, Math. Comp. 33 (1979) 659; A. C. M.
Trans. Math. Software 7 (1981) 209; SIAM Review 23 (1981) 238;

L. R. Dodd and M. A. Lohe, Phys. Rev D 32 (1985) 1816.

FIZIKA B 4 (1995) 1, 71-91



HORVAT, PODOBNIK AND TADIC: A NON-HEDGEHOG SOLUTION . ..

NE-JEZEVSKA RJESENJA ZA KIRALNU VRECU
DUBRAVKO HORVAT*, BORIS PODOBNIK i DUBRAVKO TADIC

* Department of Physics, Faculty of Electrical Engineering, University of Zagreb, 41000
Zagreb, Hrvatska
Department of Physics, Faculty of Natural Sciences, University of Zagreb, 41000 Zagreb,
Hrovatska

UDK 539.12

PACS 12.39.Ba

Kiralni sigma model, smjesten u okolisu kiralne vrece je rjeSen pomocu uvrstenja
(“ansatz”) koji ¢uva izospin i spin, svaki posebno. To kiralno uvrstenje je obradeno
na dva nacina: i) kao skup operatorskih jednadzbi, koje se rijese medu kvarkovskim
stanjima i ii) Hamiltonijan se usrednji izmedu odgovarajuéih hadronskih stanja,
pa se jednadzbe gibanja izvedu za ta prosjecna polja. Drugi pristup je potpuno
analogan uobicajenom koji upotrebljava jezevske kvarkove i koji je ovdje takoder
reproduciran. Pokazalo se kako se energijski minimumi (tj. hadronske mase) mogu
naci i na kiralnim i na jezevskim kvarkovima. Modelska predvidanja za aksijalno—
vektorsku konstantu vezanja i za nukleonski magnetski moment su jednako dobra
ili bolja nego ona koja su dobijena u uobicajenoj jezevskoj aproksimaciji.

FIZIKA B 4 (1995) 1, 71-91 91





