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Contributions of higher angular momentum states to lateral resolution in scanning
tunneling microscopy

Dragan Sestovic and Marijan Sunjic
Department of Physics, University of Zagreb, Bijenicka cesta 92, $1000 Zagreb, Croatia

(Received 3 November 1994)

We investigate the influence of higher angular momentum states (AMS's) to the formation of a
scanning tunneling microscopy (STM) image. We calculate the tunneling current between the STM
tip, represented by the rotational paraboloid, and the sample, consisting of hemispherical protrusions
on the Bat metallic surface, using the Bardeen transfer Hamiltonian method. The electron wave
function in the paraboloidal tip is expanded in the AMS's which are the eigenstates of a spherical
tip. The total STM image can be constructed using the matrix elements for the tunneling of
these particular states. We numerically simulate the STM image of a sample surface and calculate
the contributions of a particular AMS to the STM image and to the lateral resolution, showing
that higher AMS's essentially improve the resolution in the STM image. Contributions and lateral
resolutions of various angular momentum channels are found to depend strongly on the curvature
on the tip apex.

I. INTRODUCTION

Many papers in the past decade studied theoretical in-
terpretation of scanning tunneling microscopy (STM) im-

ages and physical phenomena which occur when a sharp
STM tip scans a sample surface. Still there is no final
answer to the basic question, what does a STM image
represent? It is only obvious that the STM image is not
a direct topographic map of ion positions on the surface
but rather a function of the electron distribution in the
tip-sample system.

In the present work we investigate the electron tun-
neling between a paraboloidal STM tip and hemispheri-
cal protrusions on the Bat metallic surface (Fig. 1). We
shall be especially concerned with the influence of the
tip curvature and electronic states in the tip on the
STM image. Hemispherical protrusions represent three-
dimensional (3D) islands on the substrate surface which
can be formed, e.g. , by Volmer-Weber (3D islands) or
Stranski-Krastanov (3D islands on one or few layers)
modes of epitaxial growth. We shall use the Bardeen
transfer Hamiltonian method (THM) for the calculation
of the tunneling current, which enables us to treat the
electronic states in the tip and in the sample separately.

This method was used first by Tersoff' and Hamman,
who treated the tip electronic states approximately, as-
suming that the vacuum tail of the tip wave function can
be represented by the vacuum part of the spherically sym-
metric 8 state, i.e. , the lowest angular momentum state
(AMS) of the spherical potential well. Such an approx-
imation led them to the conclusion that the tunneling
current between the tip and the sample is proportional
to the local electronic density of states (LDOS) of the
sample at the Fermi level, but the predicted resolution
was in disagreement with the experimentally achieved
resolution. One way to resolve the contradiction be-

tween the experiment and theory is the inclusion of the
higher AMS in the simulation of the STM image, and
several authors have approached the problem in this way.
Chung et al. studied discrete bound states in a spherical
tip model of the potential. They found that contribution
of the p state should be taken into account and that this
contribution improves the resolution in the STM image.
Detailed theory of the derivation of the tunneling matrix
elements by expanding the vacuum tail of the tip and
sample wave functions in terms of complete sets of AMS's
and eigenfunctions in parabolic coordinates was devel-
oped by Chen. ' The total tunneling matrix element
was connected with the coefFicients in the expansions in
a simple way. Chen also suggested the importance of
the higher AMS, especially the contribution of the d 2

state on a tungsten tip to the atomic resolution in STM.

sample

FIG. 1. Paraboloidal STM tip scans the sample, which is
represented by hemispherical protrusions on a Bat metallic
surface.
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Improvement of the resolution in STM from the p com-
ponent of the tip wave function was shown by Lawunmi
and Payne.

In this paper we present results of a model where the
STM tip is represented by the rotational paraboloid. The
electronic wave function of the electron in such a tip,
which can be determined exactly only in the infinite bar-
rier model (IBM), is projected on the AMS. A sample
is represented by the flat metallic surface with one or
two hemispherical protrusions. The electron wave func-
tion in such a sample is calculated numerically by the
finite difference method (FDM). We separately investi-
gate tunneling of different AMS's through the potential
barrier and the total tunneling current. In this way we
decompose the resulting STM image into contributions
of particular AMS's, i.e., images of various angular mo-
mentum channels. The total current is obtained by the
summation of all angular momentum contributions and
the mixing terms between channels.

Our results suggest that the higher AMS, even higher
than the d state, cannot be ignored in the theoretical
considerations, especially for greater curvatures at the
tip apex. Besides, higher AMS's contribute to the better
resolution in the STM images.

In Sec. II we briefly present the basic tunneling formal-
ism used in this paper. In Sec. III we use the paraboloidal
tip model as a useful geometric model of the STM tip
and decompose the wave function of the paraboloid in
the AMS. Results of theoretical simulations of the STM
images with a discussion are presented in Sec. IV. A brief
sketch of the FDM used in our problem is presented in
the Appendix.

x = cosy~(g,

y = sing~(g,

2

(3d)

( = r(1 —cos 0),

g = r(1+ cos 0),

(,q&0. (3g)

The paraboloidal coordinate system is obviously conve-
nient because one coordinate surface (( = (o) coincides
with the surface of the tip, as defined by

actly determine the electron states of the paraboloidal
tip in the IBM by solving the Schrodinger equation in the
paraboloidal coordinate system. We define paraboloidal
variables (, q, and p, where ( and rj represent two fami-
lies of rotational paraboloids, one with the opening in the
positive z direction and the other in the negative direc-
tion, and y is the angle of rotation (Fig. 2). The relations
of variables of the rectangular (x, y, z) and the spherical
(p, 0, p) system are given by

II. FORMALISM

~2+ y2 (2
2 0

(4)

Using Hardeen's transfer Hamiltonian method we can
calculate the tunneling current between the tip and the
surface at low temperature and in the low bias limit from
the following expression:

The variable (o is equal to the radius of curvature of the

t)s

where Mq, is the matrix element for the transition from
tip state t to surface state 8, given by

h2
M, , =

2m -6 0

where 4q and 4, are the tip and sample wave functions,
determined assuming in6nitely separated electrodes. In-
tegration can be obtained along any surface in the vac-
uum which separates the tip and the sample regions. In
this way the whole problem is reduced to the calculation
of the functions 4'q and 4, .

III. PARABOLOIDAL MODEL
OF THE STM TIP

It is a reasonable assumption to represent the tip
shape by a rotational paraboloid (Fig. 1). We can ex-

FIG. 2. The shape of the ( and rl coordinate surfaces on
the x-z section plane. The bold curve represents the surface
of the tip.
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paraboloid at its apex.
Potential in the IBM is given by

0 if(&(pV((n v) =

The Schrodinger equation for the electron in the tip is

4 8 (M) 8 (0@)
n+( ~& & ~() ~« ~~)

+ —rl

10@
, +k'0 = 0, (6)

77 Bp

where k is

2 2mE
h2 (7)

Writing the solution in the form

@((,n v) = f(t.')g(~)h(~)

d ( df) (k'(
««&) & 4

we get three equations for the functions f((), g(rl), and
h(~):

(k, r) = ) C„' (k)P,'",(k, r),
L,m

where

p'," (k, r") = j((kr) Y, (e, (p) (18)

and k is given by (7). Coe%cients in the series (17) can
be calculated from

Results of the numerical calculation of possible electron
energies for various values of the separation constant v
are shown in Fig. 3. The meaning of the quantum number
n is more obvious in Fig. 4, where we present the wave
function f (k, () along the coordinate (: n determines
the number of nodes of the wave function.

For the calculation of the tunneling current in the
THM we must know the tail of the tip electronic wave
function in the vacuum, so we should determine the wave
function in the finite potential. This cannot be done an-
alytically by separating the variables, because the poten-
tial in that case depends on the coordinate ( and enters in
both differential equations for f(() and for g(rl) through
the wave vector k(()2 = 2m[E —V(()]/h . Therefore we
have to use an approximative approach. First, we shall
decompose the stationary state wave function of the rota-
tional paraboloid (16), obtained in the IBM, in the AMS,
i.e. , the free electron wave functions in the spherical co-
ordinate system:

d ( dg) (k'q m'—
I n I+ I

—— +~ lg =o
dye dry) q4 4q

(10) C„' (k) = dV[P',",(k, r)*4„'" (k, r)],

d2h
m h.

where integration is made inside the tip region. The vol-
ume element in the paraboloidal system is

The solutions are dV = d(dydee,
n+(

4
(20)

h-(~) =
kxmy

(12)
which leads to the final expression:

f, (k, () = A.( ~ M, „( ((ik(),

g (k, rl) = Bg ~ M .. ( ~ (ikrl), (14)

C„' (k) =h

to
d( f„(k,()g„(k,rl)

where v is the separation constant and Mp „is the Whit-
taker function. ' The boundary condition for the wave
function in the IBM,

f (k, (p) = 0,

+xmg
(k, r) = f„(k,()g„(k,rl).

+2vr
(16)

implies that for fixed k, i.e., electron energy, and az-
imuthal quantum number m there is a discrete spectrum
of possible values of the separation constant v defining
the new integer quantum number n. The electronic state
in the rotational paraboloid is therefore determined by
the three quantum numbers k, m, and n, and the wave
function is

2l + 1 (l —m')!
2 l + m'!; P& (cos(e))j~(kr). (21)

If we now introduce the finite potential step Vo on the
tip surface, tip states will be allowed to extend in the
barrier region. We can match the state in the tip P&"

(18) with the vacuum part of the AMS, which is given
for E(Voby

y;"(~, rg = „, V;(e, ~)h, , (iKr),
j((kB) (g) .

h.,"(i~a)
where ~ is given by

(22)

2m(Vp —E)
h2

Therefore we represent the vacuum part of the tip wave
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FIG. 7. Decomposition of the STM image in Fig. 6 (along
the z axis) into images from l = 0, 1, 2, 3 momentum channels,
along the x axis.

FIG. 5. STM image of the sample with one hemispherical
protrusion (with B, = 4 a.u. ). The image is formed by the
calculated values of the conductivities in 10 0 (z axis).
The paraboloidal tip ((o ——4 a.u. ) scans the sample at the
height 6 a.u.

sample (2: and y axes), and is shown in Fig. 5.
In the second case we assume two equal hemispherical

protrusions with radii 4 a.u. which touch each other on
the fiat surface (Fig. 1). We repeat the previous proce-
dure and calculate the STM image of this sample. The
result of the calculation is shown in Fig. 6. One can see

0. 3

one great protrusion with two visible maxima above the
centers of the hemispheres. Contributions of particular
angular momentum channels to the total image are inves-
tigated, defining the intensity of a particular channel as
the contribution to the total conductivity from the tran-
sitions between the tip state (I, m = 0) and the sample
state 8 by

cr( = e ~M(~„l b(E( —E~)8(E —EJ;) (28)

In such a manner we calculated the intensities of partic-
ular channels when the tip moves above the line pass-
ing through the centers of hemispherical protrusions, as
shown in Fig. 7. We can see that only three lower angu-
lar momentum channels l = 0, 1, 2 give essential contribu-
tions to the total image in this case, and the l = 1. channel
has the highest intensity. It is interesting that the l = 0
channel contribution cannot resolve the two protrusions,
and only for high channels are the protrusions well sepa-
rated. This leads us to the obvious conclusion that higher
AMS's contribute to the better resolution in STM, due
to the fact that m = 0 angular momentum states (inves-
tigated here) with higher I are mostly directed along the
z axis, and become sharper with l.

From this study we can also determine the inBuence of
the radius of curvature of the tip apex, i.e. , the sharpness

80

60

I=O

l=2

20

FIG. 6. S'tM image of the sample with two hemispherical
protrusions (with R, = 4 a.u. ). The image is formed by the
calculated values of the conductivities in 10 0 (z axis).
The paraboloidal tip ((o ——4 a.u. ) scans sample at the height
6 a.u.

0
0.0 10.0

R„,(a.U.)

15.0 20.0

FIG. 8. Dependence of o'~ (28) on the radius of curvature at
the tip apex R~,.~, when the tip is positioned above the center
of one protrusion.
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of the tip, on the role of different channels in STM. Let
us fix the tip position above the center of one hemispher-
ical protrusion and change the radius of the curvature
(Rt;p) of the tip apex but without changing the distance
between the tip and the sample (Fig. 1). We calculated
the conductivities in this system for different radii of cur-
vatures and for the different channels, as shown in Fig. 8
for t' = 0, 1,2, 3 channels. The intensities of all chan-
nels oscillate with the tip radius. For a very sharp tip
(Rf 'p & 2 a.u. ) the channel l = 0 is dominant, due to the
fact that higher AMS's cannot exist near the tip apex
which is the relevant region for tunneling, but this chan-
nel loses importance for greater Bt,.~. For the tip with
R$ p —4 a.u. the l = 1 channel dominates but t = 0 and
2 channels also make appreciable contributions. Chan-
nel I, = 3 appears at R& p 6 a.u. and dominates for

ip 8 au
We can de6ne the lateral resolution of the hemispher-

ical defects in STM image as

O center 0 middle

0 middle

where 0, „&, is the conductivity for the tip above the
protrusion center and a;dd~, is the conductivity for the
tip above the middle point between the two hemispheres.
We study the influence of At,.~ on the resolution of par-
ticular angular momentum channels. The results for the
l = 0, 1, 2 channels are shown in Fig. 9 and it is evident
that higher channels have better resolution, but there is
a critical value of Bt,-~ for which p changes sign, which
means that the two protrusions become unresolvable in
the STM image.

I'IG. 9. Dependence of the resolution p of the l = 0, 1, 2

momentum channels on the radius of curvature (Bt;p) on the
tip apex.

consists of a flat metallic surface with one or two hemi-
spherical protrusions. Although the tunneling matrix el-
ements for particular AMS (in the tip and the surface),
up to I = 2, were already derived in simple analytical
form, we have calculated them numerically for all / and
for a simulated surface. In this way we have decomposed
the STM image into various angular momentum chan-
nels and systematically analyzed their intensities and res-
olutions. Numerical simulations demonstrated that (i)
higher AMS's should be taken into account, especially
for the radius of curvature at the tip apex (Rt;p) greater
than 2 a.u. ; (ii) the contributions of particular momen-
tum channels to STM are greatly influenced by Rt;p, (iii)
higher momentum channels essentially contribute to the
better resolution in STM; and (iv) the resolution of the
image formed by particular channels decreases with the
the tip radius, but much more slowly for higher angular
momentum channels.

APPENDIX: DETERMINATION
OF THE SAMPLE STATES

h, 4(x, y, z) + k(x, y, z)'C (x, y, z) = O, (Al)

where finite barrier Vo..

E in the metal
x, y, zf E —Vo in the vacuum. (A2)

%"e can choose any shape of the body. In Sec. IV this
method is used for hemispherical protrusions on the flat
metallic sur face.

We impose the boundary conditions on the faces on the
large cube: (x s ——+L/2, y s = +I/2, z, g = +L/2),

(A3)

Determination of electronic states in metallic solids of
arbitrary shapes analytically, by direct integration of the
Schrodinger equation using the separation of variables
method, is possible only for a few cases. The condi-
tion which must be satisfied is that the surface of the
solid must coincide with the coordinate surface of some
coordinate system in which the Schrodinger equation is
separable. For a general shape the determination of
wave functions is possible only numerically. For such a
calculation we can use the finite difference method. Our
equation is

V. CONCLU SIONS
After discretization the initial differential equation by the
construction of the three-dimensional net

We have extended the Tersoff and HamInan theory of
STM by including higher angular momentum states with
the help of the geometric model of STM tip based on
its representation by the rotational paraboloid. The vac-
uum tail of the tip wave function has been expanded in
the AMS, as in the earlier work by Chen and the
coeKcients in the expansion have been numerically cal-
culated. We have applied this model to a sample that

x, =x +(i —l)d,

1)2) ~ ~ ~ )n+

XQ X~
x

nK —1

we get an equation of differences,

(A4)
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4'(i, j, k —1) + 4(i, j —1, k) + 4(i —1,j, Ic) + ([E —V(i, j, A:)] d —6) 4(i, j, k)

+ 4(i + 1,j, Ic) + 4(i, j + 1, k) + 4(i, j, k + 1) = 0. (A5)

We can transform the tensors @(i,j, k) and V(i, j, k) to vectors @(n) and V(n) by transformation of indices

n = (k —l)n nv + (i —1)nu+ j, (A6)

where n, n„, and n are the numbers of nodes of the coordinate net in the 2:, y, and z directions. This transformation
leads to the equation

—0 (n —n n„) —4(n —n„) —0 (n —1) + V(n) d' + 6] @(n)—

—C (n + 1) —C (n + n„) —C (n + n.n„) = Ed'C (n), (A7)

which can be written in the matrix form

(AS)

where

A=Ed . (A9)

Matrix A is a sparse matrix and all elements apart from those on the main diagonal (n, n), neighboring diagonals
(n, n+ 1), (n, n —1), and diagonals (n, n+ n n„) (n, n —n n„) (n, n+n„) (n, n —n„) are zero. Certainly, all elements
in these diagonals at the boundary (A3) are also equal to zero. The matrix eigenvalue problem (AS) can be solved
by standard numerical routines.
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