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A two-dimensional electron system is expected to form a Wigner lattice at zero temperature,
but at very high electron densities even at T = 0 one expects a phase transition from a crystal
to a gas phase. For a Wigner lattice on a dielectric layer, a T = 0 melting was also predicted at
very low electron densities. Here we explain both high- and low-density phase transitions studying
the behavior of an external electron added to the periodic potential of a Wigner lattice. The band
structure of this electron is calculated within a model of a quasi-two-dimensional lattice. The T = 0

melting criterion is derived, comparing the chemical potentials of an additional electron when it
joins the lattice or stays delocalized. Good qualitative agreement is found between our results and
those obtained from the quantum extension of the Kosterlitz-Thouless melting theory.

I. INTRODUCTION

The two-dimensional (2D) electron system, even in the
absence of an external electromagnetic field, shows very
peculiar properties in the low-temperature range. At
T = 0 it is expected to form a Wigner crystal. The melt-
ing of this crystal at T & 0 is described as driven by the
dissociation of dislocation pairs. Such a melting mecha-
nism was Grst proposed by Kosterlitz and Thouless and
further elaborated by Nelson and Halperin and Young.
The predictions of the KTNHY theory were experimen-
tally veriGed and, e.g. , even the intermediate liquid-
crystal ("hexatic") phase is now well understood.

However, there still remains one open but very funda-
mental question: which mechanism determines the phase
transition of 2D electrons at T = 0? The KTNHY theory
is a classical one, valid at T )) T~. Since the Fermi tem-
perature T~ is proportional to the 2D electron concen-
tration n, at T ~ 0 strictly speaking KTNHY theory is
valid only in the n + 0 limit. 'Zherefore this theory can-
not explain the expected melting of a Wigner lattice at
T = 0 at some Gnite electron density. An ad hoe exten-
sion to this "quantum regime" was made by Peeters and
Platzman, who in the KTNHY melting criterion simply
replaced the kinetic energy term kT, valid for T )) T~,
by its quantum-mechanical version. Although this the-
ory has no clear physical justification, it predicts that at
T = 0 a Wigner crystal melts into a gas phase at both
very low and very high electron densities. These critical
densities also depend upon the properties of a dielectric
layer when 2D electrons are deposited on it."'

Another possible approach is to calculate the ground-
state energy of a 2D electron system in both crystal and
gas phases. It can be done accurately in the simplified
model of strictly 2D electrons, immersed in the posi-
tive background that provides charge neutrality. Both
theoretical and numerical evaluations show that at
high electron densities the gas phase has lower energy

than the crystal phase. Although the calculations were
very precise, the Wigner phase transition was predicted
with relatively large uncertainty (r, = 37 6 5) because
both phases have almost the same energy around the
r, = 40 value. Here r, = 1j/7rnao is an average lat-
eral distance between 2D electrons in units of Bohr ra-
dius ao. [In this paper we shall express electron density
by the lattice parameter ro (A) rather than by r, . But
for a 2D hexagonal Wigner lattice it is almost the same:
r, = 0.992', (A).j

Note that neither of these theoretical approaches ex-
plains the mechanism of the Wigner transition. Although
it is believed that this "quantum melting" is continuous,
as the thermal melting transition, a possible explanation
in terms of point defects was not successful mainly be-
cause one cannot use the entropy to lower the free energy
of a system at T = 0. Instead, one has to calculate the
change in 'zero-point vibration energy due to point de-
fects and compare it with the corresponding change in
Coulomb energy. Such calculations are very complicated
even for the model of strictly 2D electrons because they
require extreme numerical accuracy, otherwise they can
lead to wrong conclusions.

In this paper we shall try to explain the T = 0 melt-
ing of a 2D Wigner lattice treating the electrons in a
rather realistic model usually referred to as "quasi-2D
electrons. " This model is appropriate in the experimen-
tal setup where electrons are deposited on a dielectric
layer (usually liquid helium) with a metallic substrate,
which provides charge neutrality. The image force to-
gether with an applied pressing Geld confine electrons
close to but not strictly at a dielectric surface so they
behave as a monolayer delocalized in the perpendicular
direction. In the crystal phase we assume that delocal-
ized electrons form a perfect 2D hexagonal lattice with
a lattice parameter ro. Then we add an external elec-
tron that interacts with this lattice and calculate both
its coupling to the static lattice and the lowest-order dy-
namical corrections. Our final aim is to determine the
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ground-state energy of this added electron and to com-
pare it with the chemical potential of an electron in a
Wigner lattice. This comparison will show whether it is
favorable for an N-electron Wigner lattice to accept an
added electron and relax as an (N + 1)-electron lattice,
or whether it is more likely that this electron will remain
delocalized. The T = 0 Wigner transition then occurs at
the critical density at which an added electron could no
longer be trapped and localized by lattice electrons.

The paper is organized as follows. In Sec. II we erst
brieHy analyze the properties of a quasi-2D Wigner lat-
tice and then focus our attention on the problem of an
external electron in a (static) potential of this lattice.
The physical parameters determining the external elec-
tron wave function are discussed in detail and the elec-
tron energy band structure is analyzed. In Sec. III we
compare the ground-state energy of an external electron
with the chemical potential of lattice electrons. This
comparison will give us a clear insight into the Wigner
phase transition at T = 0. The conclusions are given in
Sec. IV. The dynamical correction to the electron-lattice
interaction, i.e. , polaron self-energy, is calculated in the
Appendix.

W"(p; z, z') = dk W(k; z, z') e'"~,

W(k; z, z') = —— e "' ' —D(k) e "~'+' l . (4)

Here S = 1/n is an average area per electron. We shall
need the k —+ 0 limit:

W(k = 0; z, z') = —2vr
i

i2d
e' t'1 —P )

&1+ )
+(z + z') + lz —z'I (5)

The Hamiltonian H, of an external electron at the lat-
eral position p and at distance z above the dielectric
surface contains electron kinetic energy K, its image po-
tential V' (z), and its interaction U(p, z) with lattice
electrons in their regular lateral positions p,. :

H. = K+ V' (z) + U(p, z),

The electron-electron interaction (direct and image
terms) is simply represented in the two-dimensional k
space:

II. ELECTRON IN A PERIODIC POTENTIAL
OF A WIGNER LATTICE

V(p, z) = ) W"(p, —p; z;, z) . (7)

Our basic system consists of N electrons that form a
quasi-2D Wigner lattice configured on a dielectric layer
with a dielectric constant e. All numerical calculations in
this paper are performed for liquid helium (s = 1.057),
which represents a standard experimental setup. The
thickness of the layer is d and it is placed on a semi-
infinite metallic substrate. Now we add an external elec-
tron to interact with lattice electrons. The total Hamil-
tonian becomes

Therefore H, describes the behavior of an electron in the
static potential of a 2B Wigner lattice.

The remaining term in (1) is obviously the interaction
of an electron with the dynamical part of the lattice po-
tential:

H, L, = ) [
W" (p, —p; z;, z) —W" (p,. —p; z;, z) ] .

H =HL, +H, +H L, .

Here HL, is the electron lattice Hamiltonian: A. Lat tice Ham. iltanian

II, =) a, +) V'-(z;)
'e

+—) ) W" (p; —p~; z, , z~) (2)

1 ~V' (z) = ——e dk D(k) e
2 p

with the dielectric response function:

P+ e
—21cd s 1

D(k) =

and K, , V', and W" denote kinetic energy, image po-
tential, and electron-electron interaction, respectively, of
lattice electrons at sites z; above the dielectric surface
and at lateral distances p,z

——
~
p; —

p~ ~.

The explicit form of the image potential is

In order to point out some relations relevant to our
further discussion, we shall first brieHy analyze the lat-
tice Hamiltonian (2). We have already solved the prob-
lem of a delocalized Wigner lattice above a dielectric
surface by assuming the separation of the lattice wave
function @I, into "lateral" vt. (pq. . . p~) and "perpen-
dicular" ul, (zj. . . z~) components. For the perpendic-
ular component we have taken a Hartree approximation
uL, (zq. . . z~) = uq(z, ) . u~(z~), and the study of the
lateral component enables us (in the harmonic approxi-
mation) to derive the phonon spectrum of a 2D Wigner
lattice. '4 "

For the ground state of a lattice we have used the per-
pendicular, one-electron variational wave function:

u (z) =2a ~ ze

where the variational parameter a determines the per-
pendicular delocalization of an electron. The lattice
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ground-state energy (per one electron) is given in the
form

= (E"')+ (E' )+ '(W-") . (10)

The erst term,

(E-') =
N ).):2 -. = ): (11)

d~ 6
Sg 2

(E' ) = dz; u* (z, )

(12)

represents the contribution from the two phonon modes

p = (—,+), usually referred to as longitudinal (I )
and transverse (T), respectively. Their frequencies w„„
and their polarization eigenvectors 6„& were already
analyzed. O' Here m is the phonon wave vector and
S~ is the surface of the first Brillouin zone (BZ). Since
the integrand in Eq. (11) is a periodic function of m

(w„+c „=w z), the integration over the BZ can be per-
formed as a summation over the characteristic points, as
explained in Ref. 16. Let us also note that the p = (—,+)
modes are well polarized in the (T, I) directions, respec-
tively, only close to the I point in the BZ (v « go), while
close to the zone boundary the polarization eigenvectors
can deviate significantly &om the (T, I ) directions. Here
go is the reciprocal lattice parameter.

The image energy (E' ) in Eq. (10) gives the contribu-
tion from the perpendicular kinetic energy and the image
potential of the lattice electron:

of W(k = 0; z;, z~) follows immediately because it does
not depend upon the particular shape of the (normalized)
function u (z):

(Wo) = 2mne
~ ~

2d .
(1 —P)
&1+&)

(17)

Let us point out that the variational parameter o. can
be determined in two diferent ways. First, according
to the Hartree approximation used for the perpendicu-
lar wave function of the lattice ut,„, we can determine
o. by varying independently each electron wave function
u (z,). This leads to the standard one-particle Hartree
equation for an electron in a central field of other elec-
trons (omitting the factor 1/2 in front of the electron-
electron interaction (W ')). The minimization of this
Hamiltonian gives o; = o.~, which describes best the
one-particle properties. One can obtain the ground-state
energy in this way, but usually it is not a very good
approximation. A better result for the ground-state en-

ergy is obtained if one minimizes the total lattice en-
ergy NEI, (n) with respect to n. This will give the value
O.' = 0!E.

In Eq. (10) (E ") is almost independent of n, but
(E' ) and (W") depend on it. Because in the total en-
ergy NEI, the factor 1/2 appears in front of (W"), we
expect a difference between o.~ and o.E. This difference
is not very large (see the inset in Fig. 2), but we shall
still take o; = nH in the calculation of the one-particle
properties and. o. = o.E in the calculation of the phonon
spectrum and the ground-state energy of the Wigner lat-
tice.

The last term in Eq. (10) is the average electrostatic
potential of lattice electrons in their regular lateral sites:

(W-) = ) dz, iu (z, ) i'

x dz, iu (z;)i W"(p,. —p. ; z;, z. ) .

When we perform the summation over all electrons in
the lattice, an essential step that enables us to remove di-
vergencies is to calculate first (W") without the Fourier
k = 0 component (5) and then to add the contribution
from this component in its explicit form:

B. E~ternal electron

The problem of an external electron in the periodic
potential of a lattice is a standard problem of solid state
physics, but here instead of an attractive electron-ion in-
teraction we have a repulsive electron-electron interac-
tion U(p, z) (7). To find the electron energy e, in such
a potential we shall first average U(p, z) over the per-
pendicular lattice coordinates with ~ul. (zi. . . ziv)

~

. This
will give U(p, z). As a periodic function of p it can be
expanded in the Fourier series:

U(p, z) = W(k = 0, z) + ZU(p, z),

(Wp) = dz iu (z)~ W(k = O, z), (14) AU(p, z) = ) W(C, z) e'

AQO

where we have defined for any k:

W(k, z) = dz, iu (z, )~ W(k; z;, z) . (15)

If we take Eq. (9) for u (z), the z-dependent terms of
W(k = 0; z;, z~), Eq. (5), contribute to (Wo) as

Here C is the reciprocal lattice vector of a two-
dimensional Wigner lattice and W(G, z) is defined by
Eq. (15).

Now we have to determine the external electron wave
function 4, (p, z), which satisfies the Schrodinger equa-
tion determined by the (z, )-averaged electron Hamilto-
nian (6):

233 1
(Wo ) = 2z.ne

16 o.
(16) [K+ V' (z) + U(p, z) ] @.(p, z) = e, @.(p, z) . (2o)

The contribution to (Wo) from the z-independent term We are interested in the ground. -state energy of this
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electron. As in the lattice case, we shall write @,(p, z) as
a product of the perpendicular u, (z) and parallel g, (p)
components:

The form of the image potential V' (z) then suggests
to take for u, (z) the same form as in Eq. (9), with the
variational parameter o, = o,

The parallel component @,(p) should satisfy the Bloch
theorem:

Here A = NS is the total area of the lattice, C is the nor-
malization constant, and 0, is the variational parameter
that determines the lateral delocalization of an electron.
[Additionally, for the centered interstitial sites (sq, s2),
we have also calculated the electron wave function local-
ized at the edge interstitial sites, i.e. , between two lattice
electrons, but this wave function gives higher electron
energy. ~

]
Let us expand the periodic function g„(p) (22) in the

Fourier series:

0-(p) = ).n-(G) e' ' .
A

where m is the wave vector in the BZ. If we assume that
an external electron is localized in between the lattice
electrons, we can describe it by Wannier functions 4(p)
localized at those sites:

Taking the Fourier components of the Gaussian function
P(p), we obtain (k = ~ + G)

4-(p) = ).e '"' "@(p—p,') . (22)
g„(G) = 2vrno, e & i"+"l cos[zk(sq —sq)] e

In the primitive hexagonal lattice there are two centered
interstitial sites: sq ——(a+ b)/3 and s2 ——2sq (Fig. 1)
where the electrostatic potential energy of an external
electron has a minimum. In the vicinity of these points
the potential energy is nearly harmonic so we can put

@(p —p,') = — 4(p —p,' —»)

+P(p —p, —s2)

P(p) = e

The coefficient C in Eqs. (23) and (22) follows from
the normalization condition for g, (p):

&. ' = ).In-(G)I'.

E = (e ) + (e ) + (t ) (24)

The parallel kinetic energy of an electron is

Now we can integrate the Schrodinger equation (20)
to obtain the energy of an external electron interacting
with the (static) potential of a Wigner lattice:

The image energy has the same form as in the lattice case
(12) but with the variational parameter o, It gives

D(k)
(1+ k/n. )'

The potential energy derived from the electron-lattice
interaction U(p, z) has three terms, which according to
Eqs. (18) and (19) are

(
' ') = (W,") + (W, " .

) + (AU) . (25)

FIG. 1. 2D hexagonal lattice with the primitive vectors
a, b. Full circles represent the regular positions of lattice
electrons and empty circles the most probable positions of
an external electron. Empty circles form peaks of a hexagon
around each lattice electron. We have also shown reciprocal
lattice vectors A, H and the belonging irreducibile part of the
BZ, determined by the special points I', X, and J.

The first two terms in Eq. (25) are obtained by taking
the z average of the C = 0 component W(k = 0, z) of
the lattice potential (18). The first term (Wo) is ob-
tained from the z-independent term of Eq. (5) so we
immediately find the previous result (17). The second
term (Wo ') is obtained by averaging the z-dependent
terms of Eq. (5) with two different functions ~u H

~

and
~u ~, which describe the perpendicular density of a lat-
tice and an external electron, respectively. It gives
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12023 3' 1
(Wp ) = 2~ne 1 —n~

nH (nm + n~)

+
20!~ 20!0+

(~re + ~.)' (~re + ~.)' ) (26)

For n, = nIr = n, Eq. (26) turns into the result (16) for
(~CXC1)

The third term in Eq. (25) is calculated with the help
of the G expansion of both EU(p, z) (19) and @„(p)(22):

(EU) = c„' Q f tlz ~u (z)~*W(o, z)
ago

x ) 7I„*(C')q„(G'—C) . (27)

The variational parameters (n„(r, ) can now be ob-
tained by the minimization of e, (tc) in Eq. (24) with
respect to these parameters. To obtain the total ground-
state energy of an external electron we have to add to

also the contribution e,L, &om the dynamical part
of electron-lattice interaction, which is described by the
Hamiltonian (8). This contribution is calculated in the
Appendix.

C. Discussion af an external electron mave function
and of e, (m) dependence

The wave function @,(p, z) of an external electron is
determined, for a given m, by two parameters: o., and o
We shall first analyze their ground-state (tc = 0) values.

The "perpendicular" parameter o. defines the average
position (z) = 3/2n of an electron above a dielectric sur-
face. For an external electron, Fig. 2 shows that (z, )
increases with increasing r p similarly as does (z~) in
the case of lattice electrons. At high electron densi-

ties (rp 100 A) the direct electron-electron interaction
is very strong and the thickness of a dielectric layer has
almost no influence on (z,). But at lower electron den-
sities, the image potential becomes more important, par-
ticularly in the case of thin dielectric layers (d 100 A.)
where it clearly reduces (z, ) values.

In the inset of Fig. 2 we have compared (z, ) and (zH).
At higher electron densities (rp 1000 A.), an external
electron is efFiciently repelled by lattice electrons so we

find (z, ) ) (zII). At rp 1000 A. , the electron repul-
sion is very weak and both (z, ) and (z~) are mainly
determined by the same image potential, which gives

Z~ ~ Z~ ~

The lateral spread of an external electron wave func-
tion is determined by the parameter 0 . Figure 3 shows

the ratio a, /rp. At thin dielectric layers (d 100 A.) and

at low electron densities (rp 1000 A.) the well-screened
lattice electrons weakly interact with an external elec-
tron, which leads to a large spread of an external electron
wave function.

In our model, lattice electrons are described in a har-
monic approximation as phonons. As a simple test of this

40

30—

20—

10

40—

0 I I I I I I I I) I I I I I III( I I I I I II( I I I I I I

100 1000 10000

PIG. 2. A~erage distance (z, ) of an external electron above
a dielectric surface as a function of ro, for three di8'erent thick-
nesses d. Inset: The comparison between (z, ) = 3/2n (full
line) and (z~) = 3/2nH (dashed line) values. We also give
(zs) = 3/2na curve (dotted line) in order to show the diKer-
ence between o.H and o.~.

approximation we can define the lateral spread of lattice
electrons (err. ) through the relation that is satisfied by a
2D harmonic oscillator in the ground state:

h(«)=I („) I

Here (w) is defined as the phonon frequency averaged over

r
d=20 A

0.4 I

0.2—

0.0
100 1000 10000

ro (A)

FIG. 3. Relative spread o /rp of an external electron wave
function as a function of ro, for three different thicknesses d
and for m = 0. Dashed lines represent corresponding values
or. /l II for lattice electrons, calculated from the phonon model.
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the two phonon modes and over the BZ, as in Eq. (11).
The ratio err, /rp is also shown in Fig. 3. Suprisingly,
it gives a resonable result even in the very high density
limit.

Let us point out some limitations of our theory.
(i) The true Wannier functions are defined as orthog-

onal for difFerent lattice points, but our choice (23) will
strictly satisfy this condition only in the o, ~ 0 limit.
For other cr, values, Wannier functions (23) will de-
pend upon tc and therefore we have to minimize e, (tc) in
Eq. (24) for each m As .a result, both variational parame-
ters (n„o', ) depend upon lc. This dependence should be

negligible for small 0, (0 rp/4), because in that case
Wannier functions (23) are well localized and therefore
almost orthogonal, mostly at lower electron densities. At
that limit our theory simply represents the tight-binding
approximation. At higher electron densities the over-
lap between Wannier functions (23) at different primitive
cells is not negligible so we expect that (n„a,) in that
case will depend upon m stronger. Finally, in the limit of
large 0, an external electron becomes delocalized. But
then we notice that in all energy terms that include sum-
mation over G, the convergence is achieved through the
terms exp( —OzG2). We can neglect their contributions

for O.,gp 3, so the relation 1/gp ——(~3/47r)rp 0.14rp

enables us to take the cr, —+ oo limit for cr, rp/2. In
that case only C = 0 terms remain and we immediately
obtain the electron energy e, as if an electron were de-
scribed by a plane wave exp(itcp). In that sense g, (p)
will give a correct physical description of an external elec-
tron for all 0, values, which could be essential when one
minimizes an electron energy with respect to 0, .

(ii) Although the external electron wave function is
defined for all o., values, we have not orthogonalized it
to the lattice electron wave function and included the
exchange processes of an external electron with lattice
electrons. The first requirement would raise and the sec-
ond process would lower the energy of an external elec-
tron. Both those contributions are negligible if the over-
lap between the external and the lattice electron wave

functions is negligible. This happens for ol, /rp 1/4
and cr, /rp 1/4, i.e. , for rp 20 A.. At higher electron
densities our theory is not expected to be very accurate.

(iii) We have not taken into account the inHuence ot
the pressing field Z, which is normally applied in the z
direction in order to press the 2D electrons on the di-
electric surface. Its contribution (E ') to the energy of
lattice electrons (10) and (ei") to the energy of an exter-
nal electron (24) can be easily calculated:

(Ei") = ef (z~), (P') = ef (z,) .

At high electron densities these two contributions dif-
fer because of the difference between the (z~) and (z, )
values, but for standard macroscopic fields (E 500
V/cm), both contributions are negligible in comparison
with the strong Coulomb interaction. At low electron
densities and for large pressing fields, the terms (E ')
and (s&') can noticeably contribute to the electron ener-
gies EL, and e, respectively. But in that case we Gnd

0.25 ——

0.20— r0= 30 A

d= 1004

4) 0.15—
ro= 100 A

ro= 300 A

0.10
-0.6 -0.3

K/ g0

0.3 0.6

FIG. 4. Relative spread cr /r p of an external electron wave
function as a function of tc, for various ro values. We took
ic (in units of the reciprocal lattice parameter go) along the
two characteristic directions of the BZ. The thickness of a
dielectric layer is d = 100 A, but similar curves are obtained
for other d values.

(zII) = (z, ), so these two contributions are practically
the same and almost independent of electron density. In
that sense the pressing field will not change the difference
between the crystal and the external electron chemical
potential, which will be intensively discussed in Sec. III.

Now we shall analyze the influence of m on variational
parameters. As expected, the "perpendicular" parameter

turns out to be almost independent of m, so in Fig. 4
we show only a, (lc) No.tice that at high electron densi-

ties (rp 15 A.), o', (v —gp/2) can take much higher val-
ues than o, (K = 0). But at rp ——30 A. and particularly at
lower electron densities o, becomes almost independent
of m. The periodicity requirement cr, (tc) = cr, (tc+G) can
be clearly seen around the X point, because this point
exactly divides the C = A + B reciprocal lattice vector
(Fig. 1).

The parameters 0,(tc) and n, (tc) are derived from the
minimization of electron energy e, (m). The energy dif-
ference Dy, (r, ) = e, (m) —e, (lc = 0) is shown in Fig. 5.
Notice that at high electron densities (rp 30 A) and at
small wave vectors (K/gp (( 1) the effective mass of an
external electron m* = 5 (0 e, /OIc ) is even smaller
than the &ee-electron mass m. At the BZ boundary
(Ic/gp 0.5), the large cr, /rp values (Fig. 4) suggest that
one can take only a few G components in Eq. (22) to
construct the electron wave function. As a test we have
taken three suitably chosen C components and treating
the corresponding coefficients g„(G) as variational pa-
rameters, we have obtained practically the same e, (m)
values as in Fig. 5.

At lower electron densities the bandwidth becomes
much smaller, as it is closely related to the overlap of
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0.0003—

0.0002—

0.0001—

The main contribution to both pl. and p comes from
the term (Wp ) (17) which even diverges for d + oo. This
term has a factor 1/2 in Eq. (10) for EL„but because
of (Wp) n we find that both pL, and p,, contain (Wp)
with the same factor 1 in front. Therefore this term is
simply canceled in Eq. (28) for EE and we can define
"shifted" chemical potentials as

0.0000

p', = p,, —(Wp") = e', (~ = 0) + e,l, ,

0.04—

0.00—
-0.6 -0.3 0.0

K / g0

0.3 0.6

FIG. 5. Energy of an external electron Ae as a function
of tc taken along the I'X and I'J direction of the BZ. At ro
= 300 A three different De, (m) curves are obtained for three
difFerent d values. At rp = 30 A all three d values give the
same Ae, (m) curve. Dashed lines represent the free-electron
curves ep(m) = 5 r /2m

the external electron wave function centered at diferent
lattice sites, i.e. , to the a, /rp ratio. Therefore the elec-
tron effective mass becomes large (m.* )) m), particularly

if electrons are not well screened (d 100 A.). But for)
d = 20 A strong image potential screens the repulsive
electron-electron interaction and an external electron for
small m travels in the p direction almost freely.

III. VPICNEB. TR,ANSITI(3N AT T = 0

LE= pl, —p~,

where pI. is the chemical potential of a Wigner lattice:

6
p, L, = (N+1) EI,(N+1) —NEL, (N) = [nEI, (n)j

and p, can be regarded as the chemical potential of an
external electron. It is its ground. -state energy that con-
tains both the static and the dynamical contribution from
the electron-lattice interaction:

p~ = E~(IC = 0) + 6~1,

As pointed out in the Introduction, the main result
that we wish to obtain in this paper is to determine
electron densities at which a 2D Wigner cryst, al melts at
T = 0 into a 2D electron gas. In that sense we shall 6.rst
define EE as the energy difFerence between the (N + 1)-
particle Wigner lattice and the N-particle Wigner lattice
interacting with an external electron. We can write LE
as

where E& and e', are defined by Eqs. (10) and (24),
respectively, but without the (Wp) term. Now we can
easily calculate and compare pl and. p', terms since they
remain Gnite for any dielectric thickness d. If we obtain
for a particular (n, d) value that p'I & p'„ i.e. , EE &
0, the (N + 1)-particle system will be a Wigner lattice.
However, for p,l ) p, '„we find EE ) 0, and the (N +
1)-particle system will consist of an N-particle Wigner
lattice and an external electron that interacts with it.
Thus LE = 0 can be regarded as the sign of the Wigner
phase transition.

The renormalized chemical potentials p& and p' are
shown in Fig. 6, where we have also shown the renor-
malized energy of a lattice electron EI . At high electron
densities, Fig. 6(a), El is significantly lower than p& as a
consequence of a large gradient of a function E&(rp), for

rp 50 A. The function. EL (rp) has a minimum around
pp 70 A and it tends rather smoothly to zero at smaller
electron densities, Fig. 6(b). Therefore we find El ) p'L

at that density region.
At high electron densities, Fig. 6(a), E& and p& are

practically independent of d, and for each d value we can
determine the points at which p&

——p', . It happens at
critical lattice parameters r, 36 jl for d —+ oo, r, —
60 A. for d = 100 A. and there is no crossing for d =
20 A. . If one neglects other efFects that can destroy the
latticeip (electron tunneling, surface roughness, etc.), one
can interpret this result as follows.

Let us add, at ro ) r, an external electron to a Wigner
lattice of N electrons. At erst it will most probably come
to a position denoted by empty circles in Fig. 1. In the
interaction with lattice electrons it can move within the
lattice and push the lattice electrons to new positions, as
e.g. , in the simplified case of a Landau polaron. Finally,
we assume, the lattice will relax as an (N + 1)-electron
Wigner lattice. This mechanism works until one reaches
the critical density, with ro ——r . If one now adds one
more electron, it will strongly interact with lattice elec-
trons and its wave function will rather be delocalized: an
added electron will travel along the lattice rather than
become a lattice electron. Interacting with lattice elec-
trons, it will act as a "trigger" mechanism to destroy the
lattice, so the lattice will melt into an electron gas. This
added electron, which in fact can be regarded as any of
the displaced lattice electrons, now plays a role of a dis-
sociated dislocation pair, which destabilizes the lattice at
T) 0, ro))rc.
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At lower electron densities, Fig. 6(b), there is no clear
crossover between the pl and p', curves. In fact, at the
d ~ oo limit we find pL ( p' even at ro —+ oo, i.e. , the
Wigner lattice remains stable even at very low electron
densities. At low electron densities, but at finite d val-
ues, the electrons with their images form a dipole layer
that tends to distroy the Wigner lattice. Namely, for d
= 100 A we find almost the same values for p& and p, ',

at ro 400 A. . They are determined mainly by the same

0.15

image potential because the perpendicular parameters o.
and o.H are now almost equal. In these circumstances
one electron out of N + 1 electrons in a Wigner lattice
can take place, e.g. , in between the regular lattice points
with equal probability. Even if the lattice would relax,
it would end up with N electrons, i.e., with lower con-
centration, so the same proces can be continued. Finally,
we shall find randomly distributed electrons, which we
recognize as an electron gas that interacts with the sub-
strate. At d = 20 A. the image potential is so strong that
it prevents formation of a Wigner lattice at any electron
density.

0.10— IV. CONCLU SION
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FIG. 6. Renormalized chemical potential of an external
electron p', (full lines) and of a Wigner lattice p'L (dashed
lines) as a function of rs. Dotted lines represent the renor-
malized energy (per electron) Rr, of a Wigner lattice. The
scale for ro is (a) linear in the high-density region, and (b)
logarithmic in the low-density region. Notice that in (a) the
p'I (ro) curves are the same for d = 100 A and d = oo and
are both above the corresponding d = 20 A curve. The same
holds for El, (rs) curves.

Using simple physical arguments, we have been able to
explain the melting of a quasi-2D Wigner lattice at T =
0. The lattice electrons were described by the phonon
model and their interaction with the external electron
was calculated using the standard many-body techniques.
We have derived the chemical potential of an electron
in the Wigner lattice as well as the ground-state energy
of the external electron. By comparing them we have
determined the critical lattice parameters r, which give
the critical electron densities at which the Wigner phase
transition occurs.

We have mentioned in the Introduction that the rigor-
ous numerical ground-state calculations of Ref. 11, per-
formed for perfectly Hat 2D electrons, determined r,
within a relatively large error of 20%, because the crys-
tal and gas phases have almost the same energies around
the critical density. Similarly, we have obtained close
values for chemical potentials of a lattice electron and of
an external electron around the critical lattice parame-
ters (Fig. 6). Although we were not able to determine
precisely all possible errors introduced by our approxi-
mations, we can expect roughly the same uncertainty in
our r, values. Apart froxn this, we have shown explicitly
the following.

(i) At high electron densities the T = 0 phase tran-
sition occurs when the Wigner lattice becomes "over-
charged" in the sense that due to strong Coulomb re-
pulsion a liquid state of an added electron becomes ener-
getically more favorable than its crystal state. An impor-
tant term that determines r values at those densities is
the electron-phonon interaction i.e. , polaron self-energy.
Performing a calculation without this term, one would
obtain a phase transition at much higher electron densi-
ties.

(ii) At lour electron densities the behavior of the 2D
electron system is determined mainly by the image po-
tential. For infinitely thick dielectric layers this potential
is very weak so the electron-electron interaction forms a
lattice that will not melt into an electron gas. At 6.nite
dielectric thicknesses the image potential, caused mainly
by a metallic substrate below the dielectric layer, will
screen the electron-electron interaction and even a weak
perturbation can lead to the melting of a Wigner lattice.

As pointed out in the Introduction, the ad hoe
quantum-mechanical extension of KTHNY theory gen-
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erally predicts two r, values. For d —+ oo, at high
electron densities one finds p, 60 A and at low den-
sities r ~ oo. We have obtained the same low'-density
result, but at high densities our result r, = 36 A is closer
to the Tanatar-Ceperley result p, 37 A. , derived for
perfectly Hat 2D electrons.

For d = 100 A. the "extended" KTHNY theory gives
70 A. in the high- and p, 3000 A in the low-

density region, but in the latter region the transition
temperature becomes very small. For re 700 A it falls
below 1 K, so it is obviously dificult to determine the
exact r value for the T = 0 transition. We have obtained
p, = 60 A in the high-density region and our calculations
were not precise enough to determine unambiguously the
low-density r value, which is roughly estimated to be
r. -' 400 A.

For d = 20 A. both our and "extended" KTHNY theo-
ries lead to the same conclusion: strong image potential
prevents the formation of a Wigner lattice. Having in
mind that the "extended" KTHNY theory is essentially
given as a simple balance between the electron kinetic
and potential energies, the agreement between this and
our theory is quite satisfactory.

term in u~. In that case only the 0 + 1 phonon processes
are possible. This approximation is obviously correct for
small electron displacements, i.e. , for small lTI, /ro values
and we have already accepted this condition.

After H I, is averaged over perpendicular lattice coor-
dinates with the function ~uL, (zi. . .z~) ~, we find

H, l, = ) ) e'"PMi,p (a„„+at „„),
k p

where a„z are standard boson operators and

1 (
Mi,p = W(k, z) i

k cos @p(k, v) .
(, 2m~„p)

The summation extends over all k = tc, + G values. Usu-
ally only the C = 0 term is calculated. However, we
have pointed out that we have to take into account all G
terms for which o. G 3.

The polarization angle 4z is de6ned for any wave vec-
tork=tc, +G as

k
cos 4p(k, tc) =—

APPENDIX: POLAHON SELF-ENEB.G Y

In Sec. II we have calculated the interaction of an
external electron with the static potential of a Wigner
lattice. Here we shall calculate the dynamical correction,
i.e., the electron-phonon interaction. This energy correc-
tion, usually called the polaron self-energy, is expected
to be more important for the Wigner lattice than for a
standard atomic lattice, because the electrons that form
a Wigner lattice are much lighter than atoms.

The electron-phonon interaction H, I, (8) takes in k
space the standard form

N

H, l. = —) ) W"(k;z Iz)e' e ' ~(e ' ' —1),
k j=l

(AS)

where uz ——pz —p. is a displacement of a lattice electron
j from its equilibrium position.

The usual approximation is to expand the exp( —iku~. )
term in H L, around uz ——0 and to keep only the linear

I

The polaron self-energy can be calculated with various
many-body techniques and probably the best results are
obtained as the second-order term in the Schrodinger-
Rayleigh perturbation expansion: "

e,g = —) ) —) (~e~Mkp(z) e*"P~Oe)
Ee Icp

p

(A2)

Here ~see) denotes the external electron wave function.
The energy difference between an excited one-phonon
state ~lf)~ve) and the ground-state ~0f)~0e) of the
electron-phonon system is

Ze(IGP) = Aldpgp + E~(fc) —t~(0) (A3)

Notice that we have not included the summation over
electron excitations in higher (perpendicular) electron
bands. These excitations involve high electron energies
and we have estimated their contribution to e,L, to be
negligible.

After some manipulation, Eq. (A2) can be put in the
form

2 2 4e,L,
————e ann ao g2

p

d~ fp(~)
SB (d~p AE'(ICp)

(A4)

f„(~) = ~C„~ ~Co~ ) ~~+ G~ cos4„(~+ G, v) S„(G) (A5)

S„(G) = dzu*, („)(z)u, (o)(z) W(~+ C, z) ) I)„*(G')go(G' —C) .
0 ~I
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In the limit o, (m) ~ oo only G = 0 terms remain and we obtain a "perpendicularly delocalized" Frohlich polaron, i7

where

OO 2

f„(tc) = m cos 4„(m, m) dz u*, („l(z) u (p) (z) W(m, z)
0

The Bloch energy of an external electron is a periodic
function of tc: e, (tc) = e, (tc + G) and so is the function
(A5): f~(m) = f„(tc + C). It means that we can again
use the method of Ref. 16 to perform the integration over

As expected, this energy contribution becomes very

important at higher electron densities (rp 100 A) and
it greatly reduces the eÃect of electron repulsion, which
is mainly described by the k = 0 terms in Eq. (25).

In this paper we are interested in the external electron

ground-state energy, so we have calculated polaron self-
energy e,L, only for zero electron momentum p, = 0. The
polaron self-energy, calculated for p, ) 0 values, could
change, e.g. , effective electron mass m*. But to find e L,

for p, ) 0 is obviously a tedious task. For instance, the
energy difference Ee(tcp), which appears in the denom-
inator of Eq. (A4) is no longer a periodic function of m

and one cannot replace the integration over m with the
summation over the characteristic points.
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