Šplajt, Robert

Undergraduate thesis / Završni rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: **University of Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet**

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:594720

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-07-19

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

Sveučilište u Zagrebu PRIRODOSLOVNO-MATEMATIČKI FAKULTET Kemijski odsjek

Robert Šplajt

Student 3. godine Preddiplomskog sveučilišnog studija KEMIJA

SPOJEVI VOLFRAMA I MOLIBDENA KAO KATALIZATORI

Završni rad

Rad je izrađen u Zavodu za Opću i anorgansku kemiju

Mentor rada: Prof. dr. sc. M. Cindrić

Zagreb, godina 2019.

Datum predaje prve verzije Završnog rada:14. srpnja 2019.Datum ocjenjivanja Završnog rada i polaganja Završnog ispita:

Mentor rada: Prof. dr. sc. M. Cindrić

Potpis:

Sadržaj

SAŽETAKVI
1. UVOD1
2. PRIKAZ ODABRANE TEME2
2.1. Katalitičko dobivanje vodika iz vode2
2.2. Nanočestični MoS2 i WS24
2.2.1. Sinteza nanočestičnog MoS ₂ i WS ₂ 4
2.2.2. Struktura nanočestičnog MoS ₂ i WS ₂
2.2.3. Katalitička aktivnost nanočestičnog MoS ₂ 7
2.3. Klaster [Mo ₃ S ₄ (H ₂ O) ₉] ⁴⁺
2.3.1. Sinteza $[Mo_3S_4(H_2O)]^{4+}$
2.3.2. Struktura klastera $[Mo_3S_4(H_2O)]^{4+}$
2.3.3. Katalitička aktivnost klastera $[Mo_3S_4(H_2O)]^{4+}$
2.4. Fotoelektrokatalizatori9
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u11
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u11 2.5.1. Sinteza MoS ₂ i WS ₂ na nosaču SiO ₂
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u
2.5. MoS2 i WS2 kao fotokatalizator u HER-u
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u
2.5. MoS ₂ i WS ₂ kao fotokatalizator u HER-u

Commented [M1]: subscript

Robert Šplajt

Završni rad

iv

Sadržaj

Robert Šplajt

Završni rad

v

SAŽETAK

U okviru ovog rada prikazani su spojevi molibdena i volframa kao katalizatori u reakcijama dobivanja vodika iz vode. Poseban naglasak dan je na molibdenove i volframove disulfide koji se mogu ponašati kao elektro- ili fotokatalizatori u reakcijama dobivanja vodika ovisno o pripremi spojeva i načinu njihovog korištenja. Svaki dobar katalizatori ma dobro definiranu katalitičku aktivnost aktivnog mjesta, a što je povezano s relativno velikim brojem aktivnih mjesta i lakim pristupom supstrata aktivnom mjestu. U prikazu odabrane teme sažeto su dani određeni načini priprave nanočestičnih MoS_2 i WS_2 , klastera $[Mo_3S_4]^{4+}$ i amorfnih filmova MoS_x . Njihova katalitička aktivnost određena je nekom od uobičajenih metoda poput: mjerenja izmjene gustoće struje, mjerenje protoka nastalog vodika u određenom vremenu te određivanje broja aktivnih mjesta.

1. UVOD

Današnja potražnja za novim i praktičnim katalizatorima, pripremljenim od lako dostupnih metala koji se koriste u reakcijama dobivanja vodika u vodenim otopinama (2H⁺(aq) + 2e⁻ \rightarrow H₂(g)), skraćeno pisano (HER), je velika. Spojevi molibdena i volframa sa sumporom zbog svojih relativno dobrih elektrokemijskih svojstava, stvaranja metal – metal veza, netoksičnosti i mogućnosti sudjelovanja u fotokemijskoj rekciji HER-a kao katalizator zajedno s poluvodičem mogli bi naći primjenu u bliskoj budućnosti zajedno s platinom. Takvi primjeri spojeva su: nanočestični molibdenov disulfid MoS₂ (koristi se za hidrodesulfurizaciju u rafinerijama i kao lubrikant⁶), volframov disulfid WS₂, klaster molibdena i sumpora [Mo₃S₄]⁴⁺, u kojem je sumpor djelomično koordiniran pa sulfid ima strukturu nepotpune kocke, MoS₂ kao katalizator u fotokemijskoj reakciji dobivanja vodika iz vode i naposljetku amorfni filmovi MoS_x (X=2,3).

Spojevi molibdena i volframa sa sumporom mogu se pripremiti na više načina iz različitih ishodnih supstancija, što naposljetku dovodi do materijala podesive stehiometrije, strukture i morfologije. Nadalje, metode koje se koriste u pripremi MoS₂ i WS₂ baziraju se na kemijskom nanošenju iz parne faze (CVD) te početna impregnacija vlagom (IWI).³ Obje metode dat će nanočestični materijal, ali će se razlikovati u morfologiji i atomskoj strukturi, ovisno o temperaturi, brzini zagrijavanja i o koncentraciji i sastavu sumporovodika. MoS₂ i WS₂ mogu unaprijediti katalitička svojstva umetanjem kobaltovih ili niklovih atoma metodom impregnacije.⁶ Ostali navedeni katalizatori mogu se sintetizirati nanošenjem na različite nosače reakcijama redukcije ili elektrodepozicijom (taloženje metala na elektrodi procesom elektrolize).³

Katalitička svojstva ispitivana su mjerenjem promjene gustoće struje u otopinama, obrtnim brojem katalizatora i protokom nastalog vodika, a slike priređenih spojeva dobivene su skenirajućim tunelskim mikroskopom i transmisijskim elektronskim mikroskopom visoke rezolucije. Vrijednosti izmjene gustoće struje pri termodinamičkom redoks potencijalu ponekad nije moguće uspoređivati s aktivnošću katalizatora jer se dobivaju ekstrapolacijskim metodama i zbog toga su podložne greškama.³

Robert Šplajt

1

2. PRIKAZ ODABRANE TEME

2.1. Katalitičko dobivanje vodika iz vode

Molibdenovi i volframovi sulfidi imaju svojstvo sudjelovanja u elektrokemijskim i fotokemijskim reakcijama dobivanja vodika iz vode, za koje je dodatno potreban poluvodič. Najveća razlika između ova dva tipa procesa je gustoća izmjene struje odnosno brzina reakcije pri kojoj se odvija HER. Stoga elektrokatalitičko cijepanje vode pronalazi veću komercijalnu primjenu u odnosu na fotokemijsko. Gledano iz biološke perspektive, aktivno mjesto kemijskog katalizatora, u kojem će se odvijati HER trebao bi nalikovati aktivnom mjestu u biološkim enzimima. Tipovi takvih enzima [FeFe] hidrogenaza i [NiFe] hidrogenaza nalaze se u bakterijama poput *Helicobacter, E. coli, Clostridium* itd.

Iz kemijske perspektive odabir kemijski sintetiziranog katalizatora u komercijalne svrhe može se činiti boljim i ispravnijim. Jedan od razloga je stabilnost koja je ograničavajuća kod bioloških katalizatora, dok kemijski katalizatori mogu uvijek biti dodatno modificirani u svrhu povećanja stabilnosti. Drugi razlog je glomaznost bioloških enzima u usporedbi s kemijskim katalizatorima, čija veličina i razmještaj atoma može varirati ovisno o odabiru početnih reagensa i uvjetima reakcije. Nadalje, u modifikacijama katalizatora trebalo bi težiti povećanju katalitičke aktivnosti aktivnog mjesta, povećanju broja aktivnih mjesta kao i olakšanom elektrokemijskom pristupu supstrata aktivnom mjestu.

DFT izračun omogućuje određivanje Gibbsove energije vezanja vodika na površinu katalizatora, tako da se zbroj Gibbsovih energija slobodnog katalizatora i polovine molekula vodika u plinovitom stanju oduzme od Gibbsove energije vezanog vodika na površinu katalizatora.¹ Ovakvim pristupom konstruirana je slika raspodjele katalitičke aktivnosti prijelaznih metala, odnosno ovisnost izmjene gustoće struje o slobodnoj energiji vezanja vodika na površinu katalizatora.

Iz slike 1. vidljivo je kako dobar katalizator treba imati vrijednosti što sličnije platini. Stoga molibdenov disulfid sa svojim vrijednostima odgovara dobrom profilu potencijalnih katalizatora HER-a.

Mehanizmi kojima se objašnjavaju procesi nastanka vodika iz vode nazivaju se Volmer – Heyrovskyim mehanizmom i Volmer – Tafelovim mehanizmom. Oba mehanizma mogu se odvijati u kiselom ili bazičnom pH području.

Volmer - Heyrovsky mehanizam

$$\begin{split} H_{3}O^{+}(aq) + e^{-} + * \rightleftharpoons H^{*} + H_{2}O(l) \ (Volmerova \ reakcija \ u \ kiselom \ pH \ području) \\ H_{2}O(l) + e^{-} + * \rightleftharpoons H^{*} + OH^{-}(aq) \) \ (Volmerova \ reakcija \ u \ bazičnom \ pH \ području) \\ H^{*} + H_{3}O^{+}(aq) + e^{-} \rightleftharpoons H_{2}(g) + H_{2}O(l) + * \ (Heyrovskyeva \ reakcija \ u \ kiselom \ pH \ području) \\ H^{*} + H_{2}O(l) + e^{-} \rightleftharpoons H_{2}(g) + OH^{-}(aq) + * \ (Heyrovskyeva \ reakcija \ u \ bazičnom \ pH \ području) \end{split}$$

Volmer - Tafelov mehanizam

$$\begin{split} H_{3}O^{+}(aq) + e^{-} + * \rightleftharpoons H^{*} + H_{2}O(l) \mbox{ (Volmerova reakcija u kiselom pH području)} \\ H_{2}O(l) + e^{-} + * \rightleftharpoons H^{*} + OH^{-}(aq) \mbox{ (Volmerova reakcija u bazičnom pH području)} \\ H^{*} + H^{*} \rightleftharpoons H_{2}(g) + 2^{*} \mbox{ (Tafelova reakcija za bazične i kisele uvjete)} \end{split}$$

Commented [M2]: Sto je 2?

Commented [RŠ3R2]: 2* predstavlja broj slobodnih aktivnih mjesta nakon T. reakcije. Možda se može staviti samo * al pošto sudjeluju dva atoma vodika na kraju moraju nastati 2 slobodna mjesta.

Robert Šplajt

Završni rad

U reakcijama simbol * predstavlja aktivno mjesto katalizatora. Najvažniji korak ove reakcije je vezanje vodika na površinu katalizatora. Za idealni katalizator promjena slobodne Gibbsove energije u tom koraku trebala bi biti što bliže nuli. Analogno tome dobar katalizator trebao bi imati sposobnost lakog vezanja intermedijera i otpuštanja konačnog produkta iz aktivnog mjesta katalizatora. Nadalje, katalitička aktivnost ispituje se mjerenjem gustoće izmjene struje, koja se opisuje Butler-Volmerovom jednadžbom.

$$j = j_o * \{ \exp[\frac{\alpha z F \eta}{RT}] - \exp[\frac{\beta z F \eta}{RT}] \}$$

Jednadžba se sastoji od dva dijela: anodnog i katodnog (α predstavlja koeficijent prijenosa naboja na katodi dok β predstavlja koeficijent prijenosa naboja na anodi). Pošto se redukcija odvija na katodi potreban je samo jedan član jednadžbe koja u konačnici glasi $j = -j_o e^{-(\eta/b)}$ gdje j predstavlja gustoću struje, j_o predstavlja izmjenu gustoće struje, odnosno brzinu prijenosa elektrona katalizatorom, η predstavlja prenapon (razlika termodinamički određenog redukcijskog potencijala i potencijala pri kojem se redoks reakcija odvija) i b predstavlja nagib koji ovisi o više faktora. Neki od njih su mehanizam reakcije i uvjeti apsorpcije supstrata na katalizator.¹ Optimalni katalizator iz ovoga trebao bi biti materijal koji daje visoke vrijednosti izmjene gustoće struje pri što nižem prenaponu. Analogno tome nagib (b) u lineariziranoj jednadžbi trebao bi biti što manji.

2.2. Nanočestični MoS₂ i WS₂

2.2.1. Sinteza nanočestičnog MoS2 i WS2

Sinteza nanočestičnog MoS_2 provodi se CVD metodom. Metalni molibden nanosi se na tanki zlatni film (Au(111)) u atmosferi sumporovodika pod tlakom od 10⁻⁶ mbar pri 400 K. Nadalje, uzorak se postupno zagrijava do temperature između 673 K i 823 K i održava u kontroliranoj atmosferi sumporovodika 15 minuta.³

IWI metoda koristi vodene otopine $(NH_4)_6Mo_7O_{24} * 4H_2O$ (za MOS_2), $H_{24}N_6O_{39}W_{12} * xH_2O$ (za WS_2) ili $(NH_4)_2(MS_4)$ (M= Mo ili W za MOS_2 i WS_2) za impregnaciju nosača (npr. prah ili tanki papir ugljika). Pripremljeni uzorci prvo se suše na zraku pri temperaturi višoj od 373 K, a zatim obrađuju s 10% sumporovodikom u atmosferi vodika 4 sata pri temperaturi od 723 K ili 6 sati pri 1073 K.³

2.2.2. Struktura nanočestičnog MoS₂ i WS₂

Nanočestični MoS₂ i WS₂ pokazuju trokutastu morfologiju s blago obrubljenim stranama. Ravnina nanočestičnog MoS₂ opisuje se kao S-Mo-S ravnina. Više naslaganih susjednih S-Mo-S ravnina jedna na drugu drže se van der Waalsovim interakcijama. Provodnost je izrazito slaba kod višeslojnog nanočestičnog MoS₂ u odnosu na jednoslojni nanočestični MoS₂. U jednoslojnom nanočestičnom MoS₂ prijenos elektrona odvija se samo između nosača i Mo – ruba, dok kod višeslojnog dolazi do prijenosa između više S-Mo-S ravnina kako bi došao do aktivnog mjesta.¹

Slika 2. Prikaz kugličnog modela nanoklastera, dobiven metodom STM. Lijeva slika prikazuje trokutasti nanoklaster MoS₂ sa završnim Mo – rubom, dok desna slika prikazuje isti nanoklaster po sastavu, ali sa završnim S – rubom. (Preuzeto iz znanstvenog rada ⁶)

Hipotetska heksagonska struktura MoS_2 sadrži dvije rubne strane različitog tipa: S - rub i Mo - rub, ali zbog trokutaste morfologije može biti prisutan samo jedan. Mo - rub je nestabilan sam za sebe te se prekriva sa sumporom. Stoga, sumpor se apsorbira na Mo - stranu i može formirati 50% prekriven ili 100% prekriven Mo – rub.³

Moguća izmjena morfologije ovisi o reakcijskim uvjetima u kojima je priređivan MoS_2 . Sinteza u atmosferi $H_2S : H_2 = 500$ doprinijela je nastanku trokutastog MoS_2 dok u atmosferi $H_2S : H_2 = 0,07$ dovodi nastanku heksagonske strukture s Mo - stranom i S - stranom na kojoj je apsorbiran vodik. Umetanje nestehiometrijske količine kobalta i nikla dovodi do izrazite promjene u morfologiji nanočestica. Dodatkom Co i Ni u MoS_2 nastaje izrazito obrubljeni trokut (heksagon) s istaknutom S - stranom.³

Slika 4. Prikaz heksagonskog nanoklastera CoMoS sa završnim Mo – rubom te supstituiranim S rubom s atomima Co. (Preuzeto iz znanstvenog rada ⁶)

Robert Šplajt

Završni rad

6

2.2.3. Katalitička aktivnost nanočestičnog MoS₂

Mjesto aktivnosti MoS_2 nanoklastera bit će Mo - strana kod običnog i kod nanoklastera s umetnutim atomima Co ili Ni. Teorijskim izračunima (DFT) potvrđeno je kako je promjena Gibbsove energije pri apsorpciji vodika (ΔG_H) na kristalni MoS₂, uz zasićenje sumporom od 50%, točnije na Mo - strani, blizu nule, što se može približno usporediti s platinom. Elektrokemijskim mjerenjem ovisnosti izmjene gustoće struje o veličini ruba i površini MoS₂ ustanovljena je proporcionalnost između izmjene gustoće struje i duljine ruba, ali ne i površine. Ova činjenica potvrđuje kako Mo - rubovi u nanoklasteru MoS₂ zbilja jesu katalitički aktivna mjesta. ³

Slika 5. Prikaz ovisnosti izmjene gustoće struje (J_o) o površini (A) (lijeva slika) i o duljini ruba (d) (desna slika) (Preuzeto iz znanstvenog rada ³)

(TOF) obrtni broj organometalnog katalizatora utvrđen pri 0 mV prenapona iznosi 0,02 s⁻¹, dok kod platine iznosi 0,9 s⁻¹. Usporedbom izmjene gustoće struje pri danom prenaponu za WS₂ i MoS₂ dokazano je kako su približno iste katalitičke aktivnosti. Nadalje, umetanjem kobalta također je pokazano kako kod WS₂ i MoS₂ dolazi do unaprjeđivanja katalitičke aktivnosti. Pri 300 mV prenapona MoS₂, WS₂, CoMoS₂ i CoWS₂ imaju izmjenu gustoće struje oko 1,5 1,0 4,0 i 5,5 mAcm⁻². ³

Solvotermalnom sintezom uz upotrebu (NH₄)₂MoS₄ i hidrazina kao prekursora u DMF otopini oksidiranog grafita pripremljen je MoS₂ a na reduciranom grafitnom oksidu (RGO). RGO sam po sebi nema izrazitu katalitičku aktivnost, ali kombinacijom s MoS₂ javlja se kemijsko i elektronsko cijepanje između grafitnih ploha i MoS₂ zbog čega dolazi do visoke disperzije MoS_2 nanočestica i boljeg prijenosa elektrona između manje provodnog MoS_2 i same elektrode.³

2.3. Klaster [Mo₃S₄(H₂O)₉]⁴⁺

2.3.1. Sinteza $[Mo_3S_4(H_2O)]^{4+}$

Klaster $[Mo_3S_4(H_2O)_9]^{4+}$ sintetiziran je redukcijom $(NH_4)(MoS_4)$ ili $[MoO_2S_2(H_2O)_6]^{2+}$ s natrijevim borhidridom i imobiliziran na Toray grafitnom papiru ili pirolitičkom grafitu (HOPG) koji mora biti aktiviran u svojoj hidrofilnoj formi kako bi došlo do apsorpcije $[Mo_3S_4]^{4+.3}$

2.3.2. Struktura klastera $[Mo_3S_4(H_2O)]^{4+}$

Kompleks se sastoji se od tri atoma molibdena u oksidacijskom stanju (+4) postavljenih u trigonsku piramidalnu ravninu i premoštenih s atomom sumpora ($\mu_3 - S^{2-}$). Mo – Mo veze premoštene su s ostala tri atoma sumpora ($\mu_2 - S^{2-}$) s katalitički aktivnim svojstvima.

2.3.3. Katalitička aktivnost klastera $[Mo_3S_4(H_2O)]^{4+}$

TOF dobiven eksperimentalno iznosi $0,07 \text{ s}^{-1}$ i istog je reda kao nanočestični MoS₂. [Mo₃S₄]⁴⁺ nanesen na HOPG gubi katalitičku aktivnost tijekom uzastopnih polarizacijskih mjerenja uslijed desorpcije klastera s katode. Prema rendgenskim podacima dobivenim fotoelektronskom spektroskopijom dokazano je kako dolazi do gubitka klasterske građe uslijed polarizacijskih mjerenja .³

Slika 6. Prikaz klastera [Mo₃S₄(H₂O)₉]⁴⁺, dobiven MM2 teorijom u Chem3D programu, gdje su žutom bojom označeni atomi sumpora, sivom bojom atomi molibdena i crvenom bojom atomi kisika iz vode.

2.4. Fotoelektrokatalizatori

Fotoelektrokataliza danas pronalazi primjenu u dezinfekciji vode, oksidaciji organskih spojeva, redukciji anorganskih spojeva i proizvodnji vodika. U procesu fotoelektrokatalize poluvodič apsorbira foton, čija energija mora biti veća od razlike energije između pobuđenog i osnovnog stanja ($hv > E_G$) kako bi došlo do pobude elektrona i prevođenja istoga u vodljivu vrpcu. Ovime se formira par (h^+/e^-) koji ima kratko vrijeme postojanja jer se elektron brzo vraća u osnovno stanje uz oslobađanje topline. Da bi se spriječio ovaj fenomen uvodi se nova elektroda, odnosno katoda kako bi nastao gradijent potencijala. U konačnici elektroni generirani fotonima odvode se na katodu, gdje se odvija redukcija određene molekule, a na fotokatalizatoru nastale rupe (h^+) oksidiraju molekule u otopini.

Kinetički faktor koji određuje brzinu formiranja para (h⁺/e⁻) je brzina redoks reakcije između poluvodiča i elektrolitne otopine. Uspostavom ravnoteže između ova dva sustava javlja se protok naboja i dolazi do savijanja valentne i vodljive vrpce u poluvodiču koje ovisi o Fermijevim nivoima između poluvodiča i elektrolita. Savijanje vrpci karakterizirano je nakupljanjem elektrona ili praznih rupa (h⁺) na površini.⁴ Minimalni potencijal za cijepanje vode na molekulu vodika i kisika je 1,7 eV. Kada poluvodič operira blizu maksimalne snage, eksperimentalno dokazano, dolazi do smanjenja energetske razlike između valentne i vodljive vrpce za otprilike 0,5 eV. Iz ovoga proizlazi kako je poluvodič s razlikom u energiji između valentne i vodljive vrpce (E_G = 2,2 eV) potreban za reakciju cijepanja vode na vodik i kisik.¹

Slika 7. Spektar ovisnosti broja nadolazećih fotona o energiji fotona. (Preuzeto iz znanstvenog rada¹)

Iz priloženog spektra očituje se pad u broju fotona s energijom potrebnom za HER. Kako bi se postiglo veće iskorištenje fotona koriste se dva poluvodiča međusobno uparena s različitom energetskom razlikom između valentne i vodljive vrpce. Prvi poluvodič trebao bi prikupljati fotone od viših energija pa sve do E_{G1} , dok bi drugi poluvodič trebao apsorbirati fotone energije od E_{G1} do E_{G2} . Oba poluvodiča u konačnici trebala bi apsorbirati jednak broj fotona. Na slici 7 pokazano je kako upareni poluvodiči apsorbiraju 28% fotona sunčevog svjetla dok zasebni poluvodič apsorbira samo 13%. ¹

Uparenim pristupom omogućen je veći izbor materijala i zaštita od korozije. Također je omogućena separacija kisika i vodika koji se razvijaju u redoks reakciji. Time se sprječava razvoj eksplozivne plinovite smjese poznate pod drugim imenom "plin praskavac". MoS₂ ima svojstva poluvodiča i može raditi upareno jer je prisutan direktni razmak između vrpci pri 1,7 eV (mogući je prijelaz elektrona iz najviše energetske razine valentne vrpce u najnižu energetsku razinu vodljive vrpce bez promjene kristalne strukture) i indirektni razmak vrpci pri 1,2 eV (nije moguć prijelaz elektrona iz najviše energetske razine valentne vrpce u najnižu

Robert Šplajt

10

energetsku razinu vodljive vrpce bez promjene kristalne strukture).¹ Položaj vrpce u MoS_2 je u pozitivnijoj energetskoj vrijednosti u odnosu na HER te je potrebno pomicanje vodljive vrpce prema negativnijim energetskim vrijednostima.

Analogno tome, relativno veliki kristali MoS_2 pod utjecajem svjetla neće razviti vodik u HER-u. To je moguće izbjeći na dva načina: primjenom negativnog potencijala i kvantnim ograničenjem (sintezom nanočestičnog MoS_2 , čija veličina odgovara veličini udaljenosti između para (h⁺/e⁻), postižu se diskretne energetske razine) koje pomiče valentnu vrpcu prema pozitivnijim energetskim vrijednostima i boljoj separaciji para (h⁺/e⁻).³ U dizajniranju fotoelektroda potrebno je uskladiti veličine strukturnih jedinica kako bi došlo do optimalne apsorpcije fotona (što je deblji materijal, to je bolja apsorpcija fotona), što bolje separacije para (h⁺/e⁻) (što je manja debljina, to je bolja difuzija elektrona) i njegovog prenošenja na površinu.⁵

Oblik fotoelektrode trebao bi nalikovati dvostrukom giroidu, vertikalnim stupovima ili vertikalno naslaganim ravninama. Dvostruki giroid ima veliku površinu i broj aktivnih mjesta, a raspršena svjetlost može biti apsorbirana od drugog poroznog zida. Međutim, kod giroida najveći nedostatak je prijenos elektrona između S-Mo-S ravnina, koje imaju izrazito slabu vodljivost. Drugi način optimiziranja fotoelektrode može biti drugog izbor materijala koji će apsorbirati fotone ili promjenom sustava primjerice koloid nanočestičnog MoS₂.¹

2.5. MoS₂ i WS₂ kao fotokatalizator u HER-u

2.5.1. Sinteza MoS₂ i WS₂ na nosaču SiO₂

Priređeni su WS₂ i MoS₂ na nosaču silicijevog dioksida u vodenoj suspenziji KOH koncentracije 0,1 mol/dm⁻³ zajedno s CdS/SiO₂, koji ima funkciju hvatanja fotona, i metanolom kao donorom elektrona. TOF za MoS₂ i WS₂ iznosi 0,6 i 0,2 h⁻¹ računajući za jednu jedinku MoS₂ i WS₂.³

2.5.2. Katalitička aktivnost MoS₂ i WS₂ na nosaču SiO₂

Brzina kojom nastaje vodik izmjerena je za oba katalizatora $MoS_2/SiO_2 i WS_2/SiO_2 te$ iznosi 15 do 6 ml H₂ po satu (odnosi se na jedan gram katalizatora). Uspoređujući MoS_2/SiO_2 i WS_2/SiO_2 s Pt/SiO₂, pokazalo se kako MoS_2/SiO_2 i WS_2/SiO_2 imaju bolju stabilnost i katalitičku aktivnost pod istim uvjetima.³

Povećanjem temperature za vrijeme termičkog raspada i kalcinacije MOS_3/SiO_2 u MOS_2/SiO_2 u atmosferi argona ili vodika javljaju se defekti u strukturi površine koja predstavlja ujedno i katalitičko aktivno mjesto.³

2.5.3. Sinteza MoS₂ na nosaču CdS

Pripravljen je MoS_2 je direktno nanesen na CdS čija glavna uloga jest apsorpcija fotona.

Uzorak je pripremljen impregnacijom CdS s vodenom otopinom $(NH_4)_2[MoS_4]$. Nadalje, uzorak je tretiran protokom sumporovodika pri temperaturi od 443 K do 773 K oko 2 sata.³

2.5.4. Katalitička aktivnost MoS₂ na nosaču CdS

Fotokatalitička reakcija odvijala se u vođenoj suspenziji MoS_2/CdS ; kao foton apsorber bio je $[Ru(bpy)_3]^{n+}$, a kao donor elektrona koristila se mliječna kiselina radi sprječavanja fotokorozije kadmijevog sulfida.

Postoji optimalna količina MoS₂ koja može biti nanesena na površinu kadmijevog sulfida, a daljnjim povećanjem količine MoS₂ smanjuje se kontakt između CdS i MoS₂. Time opada sposobnost prijenosa elektrona između navedenih dviju površina. Katalizatori poput Pt, Ru, Rh, Pd i Au naneseni su na CdS i ispitivana je brzina HER-a. Najbolji kao fotokatalizator pokazao se MoS₂/CdS.³

2.5.4. Sinteza MoS₂ na nosaču TiO₂

Fotodepozicijskom tehnikom naneseni su MoS₂ nanokristali na površinu TiO₂ korištenjem otopine voda etalnol (NH₄)₂MoS₄. Rezultirajući fotokatalizator MoS₂/TiO₂ pokazao je aktivnost u vodenoj otopini mravlje kiseline i stabilnost pod utjecajem iradijacije.³

2.5.5. Sinteza klastera [Mo₃S₄]⁴⁺ na nosaču Si (100)

Nanošenjem hidrofilnog [Mo₃S₄]⁴⁺ klastera kao katalizatora na vertikalno postavljene silicijeve fotokatode nastaje fotoelektrokatalizator koji ima slična svojstva dvostrukom giroidu. Klaster ima umjesto vode vezane ciklopentadienil ligande kako bi se spriječilo otpadanje

Commented [M4]: Ne stavljati u zagrade MoS4

 $[Mo_3S_4]^{4+}$ s nosača. Sinteza kreće od otopine klastera u smjesi 1:1 diklormetan i metanol koja se nanosi na fotoelektrokatodu silicija (100) sa završnim atomom vodika.³

2.5.6. Katalitička aktivnost MoS_2 klastera $[Mo_3S_4]^{4+}$ na nosaču Si (100)

Fotoelektroda silicija može imati oblik stupa ili planarni oblik. Fotoelektrokemijskim mjerenjima pokazano je kako fotoelektroda u obliku stupa ima veću katalitičku aktivnost u odnosu na elektrodu planarnog oblika. U prisutnosti kisika dolazi do oksidacije između silicija i klastera. Na fotokatodi dolazi do apsorpcije crvene svjetlosti i IR – zraka zbog manje energetske razlike u vrpcama. Klaster ne apsorbira zračenje zbog toga što je jednoslojno nanesen te lako dopire do silicijeve elektrode. Fotoanode i fotokatode odvojene su propusnom membranom za oksonijeve ione koji putuju u područje redukcije radi koncentracijskog gradijenta.¹

2.5.7. Amorfni filmovi MoS_x (X=2,3)

Amorfni MoS_x filmovi sintetizirani su elektrodepozicijom vodene otopine (NH₄)[MoS₄]. Pri anodnom potencijalu nastaje MoS_3 film, dok pri katodnom potencijalu nastaje MoS_2 film u procesu elektrolize. Također postoji drugi, ujedno i bolji način sinteze amorfnog MoS_x filma pošto elektrodepozicijom može doći do mogućih nepoželjnih morfoloških promjena. Termolizom pri 293 K iz prekursora (NH₄)[MoS₄] na nosaču napravljenom od ugljikovih vlakana sintetiziran je MoSx koji pokazuje, pri katalitičkom punjenju 3,2 mg/cm², Tafelov nagib 50,5 mV/dec i relativno visoku izmjenu gustoće struje 1,5 \cdot 10⁻³ mA/cm² u otopini sumporne kiseline koncentracije 0,5 mol/dm³. Amorfni MoS_x može unaprijediti katalitička svojstva inkluzijom željezovih, kobaltovih ili niklovih iona koji omogućuju brži elektrokemijski rast.²

Inkorporiranjem NbCl₅ u otopinu prekursora u sintezi MoS_x postiže se poboljšavanje katalitičke aktivnosti (samo 1% totalne mase uzrokuje relativno veliku promjenu u elektrokemijskim svojstvima kao što je pad Tafelovog nagiba na 46,0 mV/dec i porast izmjene gustoće struje na 3,3 · 10⁻³ mA/cm²). XPS analiza otkrila je kako se Nb ne veže na MoS_x matriks, već uzrokuje strukturne promjene MoS_x (variranje koncentracija S₂²⁻, Mo⁴⁺ i Mo⁵⁺) zbog svoje prisutnosti u matriksu. Postotak S₂²⁻ u matriksu MoS_x je bitan jer porastom količine NbCl₅ s 1% na veći postotak uzrokuje pad te analogno i opadanje katalitičke moći. Ova činjenica potvrđuje kako je S₂²⁻ aktivna vrsta u elektrokatalizi.²

Treća metoda priprave, koja je relativno jednostavna i nije ograničena na male količine priprave, je uzastopno ponovljeno mjerenje gustoće struje cikličkom voltametrijom (CV) vodene otopine (NH₄)[MoS₄] s ukupno 25 ponavljanja CV i naponom između +0,1 i -1,0 V (Ag/AgCl). Filmovi se nanose na nosače poput ITO i FTO i obično su debljine između 30-130 nm. Pri anodnom potencijalu, kako je opisano na početku poglavlja, nastaje MoS₃ film, a pri katodnom MoS₂ film. Obje vrste su aktivni katalizatori. MoS₃u 1,0 mol/dm³ sumporne kiseline pokazao je izmjenu gustoće struje $1,5 \cdot 10^{-7} - 0,4 \cdot 10^{-7}$ A cm⁻² i Tafelov nagib oko 40 mV/dec. Katalitička aktivnost MoS₃ filma raste povećanjem broja ponavljajućih CV-a jer tako nastaje deblji film.³

Robert Šplajt

14

Commented [M5]: ne zagrada

Commented [M6]: postiže se

2.6. Usporedba aktivnosti Pt i MoSx u prisutnosti plina CO

Platina je osjetljiva na tragove nečistoća u otopini i lako apsorbira ione na svoju površinu. Aktivnost platine opada tijekom uzastopnih polarizacijskih mjerenja dok filmovi MoS_3 zadržavaju svoju aktivnost i gustoća struja ostaje konstantna tijekom višesatnog korištenja. Ugljikov monoksid inhibira platinu jer je CO dobar π – akceptor elektrona, a površina Pt(0) je bogata elektronima. Ugljikov dioksid i monoksid ne inhibiraju filmove MoS_x , što se vidi iz polarizacijskih krivulja na slici 9.

Slika 9. Prikaz polarizacijskih krivulji odnosno ovisnosti izmjene gustoće struje o potencijalu pri različitim volumenima CO. Lijeva slika je prikaz za platinu, a desna amorfni film MoS_{3.}

(Preuzeto iz znanstvenog rada³)

DFT računi pokazali su kako je Mo – strana s 50% apsorbiranog sumpora katalitički aktivna jer sumpor postaje nezasićen. Kao rezultat vodikovi atomi mogu se apsorbirati na sumpor i Gibbsova energija vezanja vodika na površinu MoS₂ relativno je mala. Amorfni MoS₂ ima strukturne defekte na kojima se nalaze nezasićeni sumporovi atomi. Uključenost sumporovih atoma u redoks reakciji HER-a ujedno zaštićuje atome molibdena od potencijalno reducirajućih plinova.⁶

2.7. Općenita usporedba

Metoda pripreme nanočestičnog MoS_2 nanesenog na Au (111) iz ekonomskog aspekta poprilično je skupa jer iziskuje visoku čistoću Mo i Au (111), veliku energetsku potrošnju radi održavanja visoke temperature i čiste atmosfere sumporovodika. Priprema klastera $[Mo_3S_4]^{4+}$ nanesenog na nosač, ugljikovog sastava, pokazala se dosta jednostavnom, ali zbog desorpcije s površine elektrode katalitička aktivnost postepeno se gubi. Potrebno je pronaći način dobrog vezanja klastera na površinu nosača. Amorfni filmovi MoS_x pripremljeni su jednostavnim i jeftinim načinom elektropolimerizacije molibdenovih sulfida pri sobnoj temperaturi i atmosferskim tlakom. MoS_x filmovi pokazali su niski Tafelov nagib i relativno dobru izmjenu gustoće struje, koja se može povećati strukturnom modifikacijom dodavanjem NbCl₅ u otopinu prekursora. Usporedbom TOF vrijednosti molibdenovih spojeva sa sumporom pokazalo se kako je vrijednost najveća kod nanočestičnog MoS_2 , zatim kod klastera $[Mo_3S_4]^{4+}$ pa na kraju filmova MoS_x .

2.8. Zaključak

Spojevi molibdena i volframa sa sumporom pokazuju relativno dobru katalitičku aktivnost i mogu se nanijeti na različite nosače. Umetanjem dodatnih metala poput Ni ili Co može doći do poboljšavanja katalitičkih svojstva i stabilnosti izmjenom njihove strukture. Određujući faktori komercijalne primjene ovih tipova katalizatora su troškovi i što veća količina proizvodnje. Razumijevanjem mehanizama kojima se odvija HER s MoS₂ na molekularnoj razini može dovesti do boljeg dizajna katalizatora. Molibdenovi i volframovi sulfidi pokazali su dobra fotokatalitička svojstva kada se upare s poluvodičem ili molekulama koje apsorbiraju fotone željene energije. U dodatnoj kombinaciji s elektrokatalizorom fotokataliza može se dodatno unaprijediti boljom separacijom para (e⁻/h⁺). U sintezi nanočestičnog MoS₂ najveću pažnju treba obratiti dobivanju što više aktivnih strana za katalizu HER-a i omogućiti što lakši kontakt supstratu aktivnom mjestu. Postavljanjem osnovne ravnine MoS₂ okomito na površinu nosača optimizira vodljivost od aktivnog mjesta do potporne elektrode. Amorfni filmovi MoS_x

2. Prikaz odabrane ter	me
------------------------	----

s izrazito lakom sintezom i mogućnostima modifikacije predstavlja predmet velikog broja provedenih istraživanja.

3. LITERATURNI IZVORI

1. A. B. Laursen, S. Kegnæs, S. Dahl, I. Chorkendorff, *Energy Environ. Sci. Molybdenum* sulfides – efficient and viable materials for electro – and photoelectrocatalytic hydrogen evolution. **5** (2012) 5577-5591.

2. C. L. Hsu, Y. H. Chang, T. Y. Chen, C. C. Tseng, K. H. Wei, L. J. Li International Journal of Hydrogen Energy. Enhancing the electrocatalytic water splitting efficency for amorphous MoS_x . **39** (2014) 4788-4793.

3. D. Merki, X. Hu, *Energy Environ. Sci. Recent development of molybdenum and tungsten sulfides as hydrogen evolution catalysts.* **4** (2011) 3878-3888.

4. G. G. Bessegato, T. T. Guaraldo, M. V. B. Zanoni. *Enhancment of Photoelectrocatalysis Efficiency by Using Nanostructured Electrodes*, IntechOpen, DOI: 10.5772/58333. (2014) 271-276

5. H. J. Lewerenz, C. Heine, K. Skorupska, N. Szabo, T. Hannappel, T. Vo-Dinh, S. A. Campbell, H. V. Klemm, A. G. Muñoz, *Energy Environ. Sci. Photoelectrocatalysis: principles, nanoemitter applications and routes to bio-inspired systems.* **3** (2010) 748-760.

6. S. S. Grønborg, N. Salazar, A. Bruix, J. Rodríguez-Fernández, S. D. Thomsen, B. Hammer, J. V. Lauritsen, *Nature Communications. Visualizing hydrogen-induced reshaping and edge activation in MoS*₂ and Co-promoted MoS₂ catalyst clusters. **9** (2018) 1-5.