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Nonlinear dynamics of giant resonances in atomic nuclei

D. Vretenar-? N. Paart P. Ring? and G. A. Lalazissfs
IPhysics Department, Faculty of Science, University of Zagreb, Croatia
2Physik-Department der Technischen Univéiisktinchen, D-85748 Garching, Germany
(Received 6 August 1998

The dynamics of monopole giant resonances in nuclei is analyzed in the time-dependent relativistic mean-
field model. The phase spaces of isoscalar and isovector collective oscillations are reconstructed from the time
series of dynamical variables that characterize the proton and neutron density distributions. The analysis of the
resulting recurrence plots and correlation dimensions indicates regular motion for the isoscalar mode, and
chaotic dynamics for the isovector oscillations. Information-theoretic functionals identify and quantify the
nonlinear dynamics of giant resonances in quantum systems that have spatial as well as temporal structure.
[S1063-651%99)02603-3

PACS numbd(ps): 05.45—a, 24.60.Lz

[. INTRODUCTION the analysis of phase spaces reconstructed from time series
of collective dynamical variables that characterize the iso-
In a recent paperl] we have started the analysis of col- scalar and isovector oscillations. The structure of recurrence
lective nonlinear dynamics in atomic nuclei in the frame-plots and the correlation dimensions should provide addi-
work of time-dependent relativistic mean-field theory. tional information about the chaotic regime of collective mo-
Atomic nuclei provide excellent examples of quantum sysion. The second objective is to study possible applications
tems in which the transition from regular to chaotic dynam-0f modern information-theoretic techniques to the nuclear
ics can be observed in experiments, and studied with a varany-body dynamicganalysis of information entropies and
ety of sophisticated theoretical models. Signatures of chaotigvaluation of mutual information functionsThis is espe-
dynamics have been observed in correlations of nuclear levéially important since nuclei are quantum objects of finite
distributions, and in the microscopic and collective motion ofsize, and therefore display interesting spatial as well as tem-
the nuclear many_body syste[m] Especia”y interesting in poral behavior. We will discuss Se\_/el‘al infprmation func-
this respect are giant resonances: highly collective nucledfonals that could be used to examine the influence of the
excitations whose properties, excitation energies and widthdinite spatial extension of nucleon densities on the nonlinear
nevertheless reflect the underlying microscopic dynamicsdynamics of collective excitations. The time-dependent
Theoretical studies predict that regular collective modes comodel that we use is limited to the description of the mean-
exist with chaotic single-nucleon motion: the adiabatic mearfield collective dynamics. For a more realistic description of
field created by the nucleons averages out the random conf2€ structure of giant resonances, in particular, for the damp-
ponents of their motion. In Ref1] we have studied the ing mechanism, effects beyond the mean-field level should
dynamics of the most simple giant resonances: isoscalar ariRg included: two-body dissipation caused by collisionlike
isovector collective monopole oscillations. In these resoProcesses, and nucleon escape into the continuum.
nances 0n|y Spatia' degrees Of freedom are excited and the The article is Organized as follows. In Sec. Il we describe
motion is Spherica”y SymmetriC, and therefore re'ative'ythe-time'depe-ndent relativistic mean.'ﬁeld model. The time-
simple for numerical integration. We have analyzed time-Series analysis and the reconstruction of phase spaces are
dependent and self-consistent calculations that reproduce ti@rformed in Sec. Ill. The use of information-theoretic func-
experimental data on monopole giant resonances in sphericpnals in the description of nonlinear dynamics is discussed
nuclei. In the microscopic mean-field model, self-consistentn Sec. IV. A summary of our results is presented in Sec. V.
solutions for ground states provide initial conditions, and
fully time-dependent calculations are performed for the
single-nucleon dynamics. Due to the self-consistent time
evolution, the nuclear model system is intrinsically nonlin- Theoretical models based on quantum hadrodynamics
ear. In particular, we have studied the difference in the mean-3,4] have been remarkably successful in the description of
field dynamics of isoscalar and isovector collective modesmany physical phenomena in atomic nuclei, nuclear matter,
Time series, Fourier power spectra, Poincseetions, auto- neutron stars, heavy-ion collisions, and electron scattering on
correlation functions, and Lyapunov exponents have beenuclei. In particular, the relativistic mean-field model has
used to characterize the nonlinear system and to identify chdseen applied in calculations of properties of ground and ex-
otic oscillations. It has been shown that the oscillations of thecited states, both for spherical and deformed nuffi@i a
collective coordinate can be characterized as regular for theecent review sef5]). In Refs.[6—9] we have used the time-
isoscalar mode, and that they become chaotic when initialependent version of the relativistic mean-field model to de-
conditions correspond to the isovector mode. scribe the dynamics of giant resonances. These collective
In the present paper we continue our investigation of gianexcitations have been observed in nuclei over the whole pe-
monopole resonances. There are two main objectives. Firstiodic table, and their characteristic properties vary smoothly

II. TIME-DEPENDENT MEAN-FIELD MODEL
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with mass number. Giant resonances can therefore be dé=1,2,... A) form the A-particle Slater determinant
scribed with models based on the mean-field approximation®(t)). The nucleons move independently in the classical
the two-body nucleon-nucleon correlations are replaced byneson fields, i.e., residual two-body correlations are not in-
the independent motion of nucleons in the effective one<luded, and the many-nucleon wave function is a Slater
body potential. The nucleons themselves are the sources determinant at all times. The sources of the fields in the
the potential. The self-consistent model of nuclear dynamic&lein-Gordon equations are calculated in tieseaapproxi-
is essential for a correct description of ground and excitednation[6]:
states. Self-consistent calculations ensure that the same cor- ,
relations that are important for the ground states also detefl’® scalar density,
mine the dynamics of excited states, in this particular case
giant resonances. =N T

The details of the time-dependent relativistic mean-field Ps 21 vidi ®
model can be found in Reff,7]. In this section we include
a short outline of the basic properties. In quantum hadrodythe isoscalar baryon current,
namics the nucleus is described as a system of Dirac nucle-

ons that interact through the exchange of virtual mesons and : :ﬁ — . ©)
photons. The model is based on the one-boson exchange de- e = iy

scription of the nucleon-nucleon interaction. The Lagrangian

density reads the isovector baryon current,

L=(iy-9—m)ip+ 3(90)2~U(0) fﬂzﬁ i 10

1 1.2, 2_1p P 1,272
—ZQW,Q’“V'F M w —zRIU_VR’U’V‘f' zMyp

- %F,LLVFMV_ galalp_ gwE'y oy

— .- —  (1-73) e NN o ou T3
g,y = ey Ay M om= 2 Wi =5 s (19

The Dirac spinory denotes the nucleon with mass. where the summation is over all occupied states in the Slater
m,, m,, andm, are the masses of the meson, thew determinant®(t)). Negative-energy states do not contribute
meson, and the meson, and),,, g,,, andg, are the corre- to the densities in theo-seaapproximation for the stationary
sponding coupling constants for the mesons to the nucleosolutions, but their contribution is implicitly included in the

U(o) denotes the nonlinear self-interaction time-dependent calculatid]. The coupled system of Egs.
(3)—(7) describes the time evolution & nucleons in the
U(o)=1m20?+3g,0°+1g50%, (2) effective mean-field potential. The equations are equivalent
. to the equation of motion for the one-body density operator
andQ#”,R*”, andF*” are field tensors. p=p(t),

From the Lagrangian density the set of coupled equations

of motion is derived: the Dirac equation for the nucleons 0. -
in—p=[hp.pl, (12
i(ytlpi: a<_iv_gww_gp;ﬁ_e(l 2T3)A) . L .. ~
with an initial condition forp,
+ﬁ(m+go.(T)'f‘gwwo'f‘gp;f;o"f‘e%Ao} lﬂi , P(tin):pin- (13)
3) hp is the single-nucleon Dirac Hamiltonian defined in Eg.
(3). Starting from the self-consistent solution that describes
and the Klein-Gordon equations for the meson fields, the ground state of the nuclear system, initial conditions are
defined to simulate excitations of giant resonances in experi-
(<9t2— A+ mtzy)ff: ~gops—920°— 0307, 4 ments with electromagnetic or hadron probes. For example,
the one-body proton and neutron densities can be initially
(= A+M3)0,=0uj,, (5)  deformed and/or given some initial velocities. The resulting
mean-field dynamics can be described by the time-evolution
(32— A+ m’f);,#:gpfw (6)  of the collective variables. In coordinate space, for example,
these will be the multipole moments of the density distribu-
(af_ A)A,= ejim- 7) tions. Of course, the dynamics of collective variables reflects

the underlying single-nucleon motion in the self-consistent
In the mean-field approximation only the motion of the potential. Since the Dirac Hamiltonian depends on the
nucleons is quantized, the meson degrees of freedom araicleon densities and currents through the solutions of the
described by classical fields that are defined by the nucleollein-Gordon equations, it is obvious that the equations of
densities and currents. The single-particle spinafis  motion are nonlinear. For a specific choice of initial condi-
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tions the nuclear system could enter into a chaotic regime cdnalysis should be valid also for shape oscillations of higher
motion. The collective dynamics that we describe is intrinsi-multipole order. These are just much more difficult to solve
cally classical, since it is formulated as a time-dependenhumerically. The equations of motion have to be integrated
initial value problem, rather than a boundary value problemin two- or three-dimensional coordinate space, and the nu-
The single-nucleon wave functions, on the other hand, satmerical accuracy of our algorithms is simply not sufficient to
isfy the Pauli exclusion principle at all times, i.e., on the obtain long time series that are necessary for an analysis of
microscopic level of single-nucleon motion the nucleus is anonlinear dynamics. For excitations that include spin and/or
guantum system. The problem is therefore how to identifyisospin degrees of freedom, the dynamics is more involved.
and quantify chaotic dynamics in an ensemble of nucleonslevertheless, one expects that the present study will also
that, described as quantum objects on the microscopic levegbrovide some insight into the nonlinear phenomena that oc-
display classical oscillations of collective variables. cur in those more complicated excitations.

The time-dependent model describes the collective dy- The collective dynamical variables that characterize vi-
namics on the mean-field level. The contribution of one-bodybrations of a nucleus are defined as expectation values of
and two-body processes to dissipation in the collective mosingle-particle operators in the time-dependent Slater deter-
tion of finite Fermi systems is still an open problem. Two- minant |®(t)) of occupied states: multipole moments that
body dissipation caused by collision of pairs of nucleons ischaracterize the shape of the nucleus. In order to excite
strongly suppressed at low excitation energies due to thmonopole oscillations, the spherical solution for the ground
Pauli exclusion principle. The one-body dissipation processtate has to be initially compressed or radially expanded by
is caused by the escape of nucleons from the collective pdransforming the radial coordinate. For isoscalar oscillations
tential well into the continuunfescape width and by colli-  the monopole deformations of the proton and neutron densi-
sions of individual nucleons with the nuclear potential wall, ties have the same sign. To excite isovector oscillations, the
generated collectively by the mean field of all nucleons. Thenitial monopole deformation parameters of protons and neu-
escape into the continuum should be taken into account for tons must have opposite signs. For isoscalar monopole vi-
correct description of the widths of specific giant resonancesrations, the time-dependent monopole moment is defined:
In the present analysis, however, we are interested in the
nonlinear mean-field dynamics. The inclusion of the escape ) 1 )
process in model calculation would not change the results (ri()= 2 (@M@ (D)), (14
gualitatively. On the other hand, with a strong damping
mechanism through the nucleon escape, it would becomghereA is the number of nucleons. The corresponding is-
impossible to calculate the long time series of collective vari-gyector monopole moment is simply
ables, from which the phase space is reconstructed.

(ra)—=(ram).

Fourier transforms of the collective dynamical variable de-
Excitations of giant resonances result in dampedermine the frequencies of eigenmodes.
harmonic/anharmonic density oscillations around the equilib- In Fig. 1 we display the time series of monopole moments
rium ground state of the nucleus. Since there are two types ofhich represent the isoscalar and isovector oscillations in
nucleons in the nucleus, protons and neutrons, a basic di§”®Pb. As in our calculation of Ref1], the NL1 effective
tinction is made between isoscalar and isovector oscillationgnteraction has been used for the mean-field Lagran@n
Isoscalar motion is characterized by proton and neutron derfective masses for the mesons and coupling constants of
sities oscillating in phase. The two densities have opposit@ucleons to meson fielisThis interaction reproduces the
phases for isovector oscillations. In general, shape oscillaground-state properties of®®b, as well as experimental
tions of the density can be represented as superposition g&ta on the energies of giant resonances: monopole, isovec-
different multipoles: monopole, dipole, quadrupole, etc. vi-tor dipole, and isoscalar quadrupole. However, the precise
brations. Depending on the type and energy of the experivalues for the frequencies of the eigenmodes are not crucial
mental probe, it is sometimes possible to selectively excitén our study of nonlinear dynamic$®Pb is one of the most
different multipoles. In addition to shape oscillations, spinstudied nuclei, both experimentally and theoretically. The
degrees of freedom can be excited in giant resonances. Thoperties are well known, and we have selectétPb be-
spin of the nucleon being naturally included in the relativisticcause it is a heavy spherical system, with relatively little
framework, it has been shown in Rd8] that the time- fragmentation of the modes, compared to lighter or deformed
dependent relativistic mean-field model provides a consistentuclei. The experimental isoscalar GMR energy*fPb is
description of the spin-multipole resonances. Another type ofvell established at 13:70.3 MeV, and the isovector GMR
excitations, the Gamow-Teller resonances, include not onlys at 26-3 MeV. The isoscalar mode displays regular un-
spin degrees of freedom, but also rotations in isospin spaceélamped oscillations, while for the isovector mode we ob-
i.e., a neutron is transformed into a proton or vice versa. Irserve strongly damped anharmonic oscillations. Of course,
principle, these resonances can also be described in thbe time series alone cannot determine whether the signal of
framework of relativistic mean-field models, though the ac-the dynamical variable displays characteristics of chaotic
tual description of excitations that involve so many degreesnotion. In Fig. 2 we show the corresponding Fourier power
of freedom might become very complicated. Therefore, inspectra in logarithmic plots versus the excitation endegy
the present study we consider only the most simple situatior=#% . There is very little spectral fragmentation in the iso-
giant monopole resonancé&MR), but the results of our scalar channel, and a single mode dominates at the excitation

Ill. TIME-SERIES ANALYSIS



PRE 60 NONLINEAR DYNAMICS OF GIANT RESONANCES IN ... 311

44
42_- (a)
40
38 [
36 |
34 [
32|
30
2|
Y e ———

<r*> [fm]

2 2.
>-<r "> [fm’]
>
T

A2k

2
P

<r

14 |

el v v,
0 500 1000 1500 2000 2500 3000

t [fm/c]

FIG. 1. Time-dependent isoscaléar?) (a), and isovector(rS)
—(r?) (b) monopole moments fof°Pb.

energy of~11 MeV. The Fourier spectrum of the isovector

very little information can be inferred from the Fourier spec-

trum of the isovector oscillations. This observation would be

consistent with the well known fact that nonlinear systems in
the chaotic regime do not display any useful spectral content.
In order to extract more information from the time-series,

methods of nonlinear analysis have to be used.

For time series that result from linear physical processes
the Fourier analysis unfolds the characteristic frequencies
that are invariants of the dynamics, i.e., they classify the
dynamics. For nonlinear systems the corresponding analysis
is somewhat more complicated. In order to reconstruct the
dynamics of the system from the time series of a measured or
calculated dynamical variable, one starts by reconstructing
the phase space using time delays. In this procedure there are
two principal quantities that have to be determined: the time
delay and the dimension of the phase space on which the
attractor unfolds. In this section we basically follow the pre-
scriptions of Ref[10] for the reconstruction of the phase
space.

The time series in Fig. 1 have the form

x(n)=x(to+n7s), Nn=0,1,2 .. ., (15

where 74 is the sampling time. Since in our case the time
series is calculated by numerical integration of a set of partial
differential equations, the sampling time can be chosen arbi-
trarily. In order to define a coordinate system in which the
structure of orbits in phase space can be described, time-
lagged variables are used,

mode is strongly fragmented. However, the main peaks are

found in the energy region 25-30 MeV, in agreement with
the experimental data. The frequency of the isoscalar mode

X(n+T)=x(tg+(n+T)7y), (16)

provides useful information about the underlying dynamics, ) ] ] ]
for example the compression modulus. On the other handvhere T is some integer that defines the time delay. The

10 F

P(E) [fm® /c®]

107 F
10 F

3

102&..(\.. . . AA[\..A.

10 20 30 40 50
E [MeV]

P(E) [fm°® /c?]

FIG. 2. Fourier power spectra for the isoscdklr and isovector
(b) monopole oscillations irf%Pb.

collection of time-lagged variables defines a vector in
d-dimensional phase space,

y(n)=[x(n),x(n+T),x(n+2T), ... x(n+(d—1)T)].
17

In general, there is no unique prescription as to how to
choose the optimal time lagand the dimension of the space
d. The time delay should be chosen in such a way that
x(n+jT) andx(n+(j+1)T) present two independent coor-
dinates. If the time delay is too small, their numerical values
will be so close to make them practically indistinguishable; if
it is too large, the two coordinates will be completely inde-
pendent of each other in a statistical sense, i.e. no dynamics
will connect their values. Of course, one also has to avoid
that the time delay coincides with a natural period of the
system. The choice of the dimension of the reconstructed
phase spacdg: (embedding dimensigndepends on the di-
mension of the attractodgz must be sufficiently large so that
the physical properties of the attractor are the same when
computed in time-lagged coordinates, and when computed in
the physical coordinates, which we do not know. For ex-
ample, if two points in the phase space are found close to
each other, this should result from the underlying dynamics,
and not from the small dimension of the phase space in
which the dynamics is represented. The procedure is to em-
bed the time series in dg-dimensional phase space. The
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FIG. 4. Average mutual information as a function of time delay

FIG. 3. Linear autocorrelation functions for isoscala), and S
for monopole oscillations.

isovector(b) oscillations.

embedding dimensiodg has to be equal or larger than the erage, linearly independent. For nonlinear systems a more
minimum number of dynamical variables needed to modebppropriate method is to use the average mutual information.

the system. This function can be considered as a generalization of the
One possible way to choose the time delay is to considelinear autocorrelation to nonlinear systems, and it tells us
the linear autocorrelation function, how much information can be learned about a measurement

at one time from a measurement taken at another time. For a

N — — time seriex(n) and time-lagT, the average mutual informa-
nzl [x(n+T)=x][x(n) =] tion is defined
CuM= N ; (18
V12
2, xm=x] ~ EN) P(x(n),x(n+T))
I(T)_n=1 P(x(n),x(n+T))log, P(N)PX(N+T)|’
where (20)

_ 1N

- Nzl x(n). (19 The probability distributionP(x(n)) corresponds to the fre-

guency with which any given value of(n) appears. The
By choosing the time lag to be the first zero of the autocorjoint distribution P(x(n),x(n+T)) corresponds to the fre-
relation functionx(n+jT) andx(n+(j+1)T) become, on guency with which a unit box in th&(n) versusx(n+T)
the average over the observation, linearly independent. Thelane is occupied. The information functions calculated from
linear autocorrelation functions for isoscalar and isovectothe isoscalar and isovector time series are displayed in Fig. 4.
oscillations are shown in Fig. 3. The normalizatiorQg(T ~ We notice that on the average there is much more mutual
:0):1_ In generaL when the time series is irregu|ar or Chajnformation in the isoscalar signal. The prescription is now
otic, information about its past origins is lost. This meansto choose as time lag the value for whitfT) displays the
that|C_(T)|—0 asT—w, or the signal is only correlated first minimum{[11]. The curious r_esult is that from the_aver-
with its recent past. For the isovector mod® (T)| indeed 2age mutual information we obtain e_xactly th_e same time de-
disp|ays a much more rapid decrease’ as Compared to islﬁys as from the linear autocorrelation function: 27 fm/c for
scalar oscillations. The first zeros of the autocorrelation functhe isoscalar, and 13 fm/c for the isovector mode.
tion correspond to time delays of 27 fm/c and 13 fm/c, for In order to determine the embedding dimensions from the
the isoscalar and isovector modes, respectively. These valub¥0 time series, we have used the method of false nearest
could be used as time delays in the reconstruction of th&eighborg12]. For each vectof17) in dimensiond, we de-
corresponding phase spaces. This method generally producise a nearest neighbgN(n). The Euclidean distance be-
vectors in phase space with components that are, on the atween the two vectors is
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RA(N)=[x(n)—x"N(n)]?+ - - +[x(n+(d—1)T) 100{ m
—xNN(n+(d-1)T)]% (21) 50 (a)
Of course the two vectors are nearest neighbors if this dis- ]
. . ! . . 60 -
tance is small, in a sense that we will define shortly. In di- ]
mension {+ 1) the distance between the two vectors be- = 404
comes < )
2 20-
R2,,(N)=R3(n)+[x(n+dT)—x"N(n+dT)]2 (22 8 7| '\
) ) o 2 04 | | [ | |
If the two points were nearest neighbors in dimensipbut z L L L L L L
now we find thatR3, ,(n) is large compared t&®3(n), this B 100F m
must be due to the projection from some higher-dimensional § I (b)
attractor down to dimensioth By going from dimensiom to z 80f
(d+1), we have shown that the two points were “false 3 eo.-
nearest neighbors.” If the ratio Y |
[ |
Ix(n+dT)—x"N(n+dT)| 03 40 [
Ra() 29 20|
is larger than some threshold, the assertion that the two vec- o By m
tors are nearest neighbors is false. The fact that they are 1' ; é "t é é

found to lie close to each other in dimensidnis not a
property of the dynamics of the system, but the result of d
projecting the dynamics onto a phase space of too low di-
mension. The embedding dimension is now determined with
a simple procedure. First we decide what value for the?

Euclidean distance should be taken as small. This general%)mplicated structure. It is nonuniform and boxes of dense

depends on the data set that we are analyzing. For all vecto . :
points appear along the diagonal. Of course, in all recurrence

in the phase space of dimensidnwe count the number of lots there i i n the di Ln The recurren
nearest neighbors. Then we have to determine the percental f? S there Is a stripe on Ihe diagoma=n. The recurrence
ots for the phase spaces of the isoscalar and isovector time

of nearest neighbors that turn out to be false when going tseries are shown in Fig. 6. We notice a pronounced differ-

dimension @+1). The minimal necessary embedding di- .
mensiondg is selected to be the one for which the percent—ence between the two modes. For the isoscalar mode the

age of false nearest neighbors goes to zero. For the isoscalar

FIG. 5. Percentage of false nearest neighbors as a function of
hase space dimension, for isoscalr and isovectokb) modes.

and isovector time series, the false nearest neighbors are dis- 3000~ (a)
played in Fig. 5 as functions of the phase space dimension. 2500_‘
The percentage of false nearest neighbors goes to zero for ]
dg=3 (isoscalar mode and for dg=4 (isovector modg 2000 -
These values are taken as embedding dimensions for the re- = 1500
construction of the corresponding phase spaces. E ]
The reconstructed phase space can be represented by the=" 1000 -
recurrence plot. By embedding the time series we create a 1
sequence of vectors, 5007
0_

y(n)=[x(n), ... x(n+(dg—1)T

Y(M=[X(n), ... X(N+(de=1)T)] 2000, o)
in the phase space of dimensida. In our example the time 2500 4
delay is 27 fm/c for the isoscalar, and 13 fm/c for the isovec- ;
tor mode. The corresponding embedding dimensiongare 2000 4
=3 anddg=4, respectively. We can calculate the distance < 1500_'
between any two points in the phase space, E ]
— 1000 ~
s(m,n)=[y(m)—y(n)|. 500
To construct the recurrence plot we choose some distgnce o—.

and ask whernly(m)—y(n)|<r. m is placed on the hori-
zontal axis,n on the vertical axis, and a dot is placed at the

coordinate (n,n) if |§(m)—§(n)|<r. For a periodic signal

v 1 N 1 N 1 M 1 N 1 M 1
0 500 1000 1500 2000 2500 3000
t [fm/c]

the recurrence plot displays a series of stripes at 45 degrees. FIG. 6. Recurrence plots for the time series of isoscagrand
If a time series is chaotic, the recurrence plot has a mor&ovector(b) monopole oscillations.
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recurrence plot displays a pattern representative for regular -r
oscillations, with stripes separated by a distance that corre-
sponds to the period of oscillations. On the other hand, the 10" 4
recurrence plot for the isovector mode indicates nonstation- L
arity. N
The number of dots in a recurrence plot tells how many 310 3 d

times the phase space trajectory came within distarafea o E \
previous value. A measure of the density of dots is provided s F
by the correlation integral. If the dynamics of a system is 10 r
deterministic, the ensemble of phase space trajectories con- r (a)
verges towards an invariant subset of the phase space—the AT I EEN R
attractor. For chaotic dynamics the attractor has fractional r
dimension, whereas the dimension is integer for regular dy- 4t

. . . . 10 F
namics. The correlation dimension of the attractor can be :
numerically evaluated from the correlation integral. If there 3
areN pointsy?(n) in the reconstructed phase space of dimen- 1_\10’3 r
sion d, we can compute all distancég(m)—y(n)|. The s r \
correlation integral is defined 443] - r

> N (b)
> > r
Ca(r) = —N<N—1>n§n O —ly(m-ym), (24 S S

, , _ 10° 10° 10°
for a distance in phase spacé (x)=0 if x<0 and®(x) 2
=1 for x>0. In a certain range of, the scaling region, r [fm’]

C,(r) behaves like FIG. 7. Sequence of correlation integrals for isoscér and

C (r):rd (25) isovector(b) monopole oscillations. I€,(r) vs Inr plots are dis-
2 ' played for a sequence of embedding dimensiosdl, . . . ,8.

The correlation dimensiob, is determined by the slope of
the InC,(r) versus Irr. It is defined as the slope of the plot
in the r—0 limit. The dimension of the attractor can be
determined by plotting I€,(r) versus Irr for a set of in-
creasing dimensions of the phase space. As the embeddi
dimension increases, the correlation dimension should
saturate at a value equal to the attractor’'s correlation dime
sion. The logarithm of the correlation integral is plotted in

S=-tr(D log,D)=—2>, \jlogy\;, (26)
j

r\1/\$i1ere)\j are eigenvalues of the density operdimecupation
rErobabilities, and the entropy can be interpreted as the miss-
ing information about which eigenvector the system occu-
Fig. 7 for the isoscalar and isovector modes, for a set of'es: _Entropy IS cor_lserved under Hamiltonian dynamical
evolution, both classically and for a quantum system. Clas-

increasing dimension&irection of the arroiw The corre- . P )
; ; : ) . Lo sically this is a consequence of the conservation of phase
sponding correlation dimensions are displayed in Fig. 8. We

notice that for the isoscalar mode, fdE=3, the correlation -Pace volume, in guantum mechanics it follows from the
) . 2 ' . unitarity of Hamiltonian evolution. However, if the system is
dimension saturates &,=2. The integer value for the di-

mension of the attractor indicates regular dynamics. For tthUpled o a perturbing environment, the interaction gener-
isovector mode the correlation dimension does not saturate.
but slowly increases to some fractional value between 2 anc
3. The fractional dimension of the attractor would imply cha-

otic or stochastic dynamics. 4t —Q— isoscalar
—[—isovector

IV. INFORMATION-THEORETIC FUNCTIONALS sl

In this section we continue with the analysis of nonlinear — 0O
dynamics in time series of giant monopole oscillations. Thet . /I:I/I:|
identification and quantification of the underlying regular or 2r 7D—‘G—Q—O-—-O—O
chaotic dynamics will be based on the evaluation of I
information-theoretic functionals. We start with the informa- 4L
tion entropy of a physical system. For classical systems the
entropy is defined on the phase space density, and represer
the missing information about which fine-grained cell of the 0
phase space the system occupies. For a quantum system t|
information entropy can be defined on the density operator. d
The von Neumann entropy of the one-body density operator rig g correlation dimensiol, as function of embedding

D (measured in bits dimension, for isoscalar and isovector oscillations.
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FIG. 9. Time-dependent entropy functiond®?) for isoscalar  tions which reflect the exchange of energy between the
and isovector monopole motion. We display the total entropy of thenucleons and the meson fields. The oscillations are identical
nucleon systen(a), the neutron(b), and the proton entropyc).  to those of the dynamical variable, the isoscalar monopole
Solid curves correspond to isoscalar oscillations, dashed curves ®moment in Fig. 1. For the isovector mode the entropies, in
isovector oscillations. The thick solid curves are the referenceaddition to somewhat more complicated oscillations, slowly
ground-state entropies. decrease to the values that are characteristic for the ground

state of the nucleus. This decrease in entropy is caused by the
ally changes the system’s entropy. In our model only thestrong mean-field damping of the isovector mode, i.e. from
motion of nucleons, protons, and neutrons is quantized. Thghe collisions of the nucleons with the moving wall of the
equation of motion(12) describes the time evolution of the nuclear potential generated by the self-consistent meson
one-body density in the time-dependent meson fields. Theelds. In the isovector mode the protons and neutrons effec-
mean fields play the role of the environment, the self-tively move in two self-consistent potentials that oscillate out
consistent interaction of the nucleon with the meson fieldsf phase, and that in this way inhibit the resonance. To ex-
determines the nonlinear dynamics. This implies that, if fromract the information content of the time-dependent entropies
the nucleon densities we define some time-dependent enz7), we have calculated the Fourier transforms. For the to-
tropy functionals, their time evolution might contain useful tal, neutron and proton entropies, the Fourier power spectra
information about the dynamics of the system. For exampleare displayed in Figs. 10 and 11, for isoscalar and isovector
we can define the information entropy functional oscillations, respectively. For the isoscalar mode the infor-
mation content of the entropy is exactly the same as that of
_ ~ > 3 the dynamical variable, the monopole moment: a single
S(t)= _f p(r,Dlog, p(r.t) d°r, @7 mode dominates, at a frequency that corresponds to the ex-
citation energy of the giant monopole resonance. This is not
where p is the vector densityOth component in Eq(9)]. surprising, if one considers that the monopole moment is
Since we consider both isoscalar and isovector motion, thdefined with an integral identical to the one that defines the
density in Eq.(27) can be the neutron or the proton density, entropy in Eq.(27), except that—log, p is replaced byr?.
or the total nucleon density. The situation is different for the isovector modeig. 11).

In Fig. 9 we display the time-dependent tofal, neutron  The entropy contains more information than the dynamical
(b), and proton(c) entropies(27) for the isoscalar and variable. In addition to the frequencies in the region of is-
isovector monopole oscillations if"®b. In addition, in all ovector monopole resonances (25-30 MeV), there are
three cases we include the entropy that results from the timstrong peaks at the frequency of the isoscalar resonance.
evolution of the system that has not been excited in any wayThey are related to the compressibility modulus of the
These ground state entropies provide a measure of the nauclear matter. The entropy of the total density therefore
merical accuracy of the integration algorithm. We notice thatcontains information about both modes, but now we notice
for the isoscalar mode the entropies display regular oscillathat the Fourier spectra for the neutron and proton entropies



316 D. VRETENAR, N. PAAR, P. RING, AND G. A. LALAZISSIS PRE 60

1.2x10’

8.0x10° |

isovector
isoscalar

4.0x10° | -2000

oo |l

3x107

P(E) [bits” fm® /c” ]

-2050
(b)

7

2x10° 1

7

1x10°

4.0x10° | ©

S, [bits]

P(E) [bits® fm” /c° ]

-2150

2.0x10° | et
1 M 1 M 1 " 1 " 1 " 1 M 1
0.0 I 0 500 1000 1500 2000 2500 3000

t [fm/c]

P(E) [bits® fm® /7]

10 20 30 40 50
E [MeV . . .
[(MeV] FIG. 12. Time-dependent conditional entropi{@8) for isosca-
FIG. 11. Fourier power Spectra of the to(a]’ neutron(b), and lar and isovector monopole motion. The thick solid line is the ref-

proton (c) entropies, for isovector monopole oscillations. erence ground-state entropy.

are different. For neutrons the peaks in the region of isovect® (D)|:p(1)p(r"):|@(1))=p(r)p(r")

tor excitations are strongly suppressed, and there is fragmen- z

tation at the frequency of the isoscalar mode. - (1) wj(F) b (r) ()
The radius of a heavy spherical nucleus lik&Pb is ] .

~5-6 fm. The giant multipole resonances represent collec-

N
tive oscillations of the proton and neutron densities, and -> l//f(f»)lﬂj(f*)lﬁ(f*')%(re')-
therefore provide excellent physical examples for the analy- i .
sis of systems that have spatial as well as temporal structure. (30)

For a nonlinear system in chaotic regime, we might consider
the influence of spatial moti<_)n on tem_pc_>ra| chaos. We a_sk i(F) denotes the single nucleon Dirac spinor, &) is
what are the spatial correlations in a finite system that disghe number of protongneutrong. The conditional entropy
plays chaotic oscillations of a collective dynamical variable.(zg) should provide a measure of two-body spatial correla-
Consider, for example, the conditional entropy defined fromjons. For some kind of collective motion, regular or chaotic,
a two-body total density, this function contains the following information: how much
are the oscillations of nucleon density at some point in space
determined by the oscillations at some other point in the
p2(r,r' 1) 5 13 system, i.e., what are the correlations between oscillations of
—=————=—|d°rdr’, nucleon density at various points in the finite system.
p(r,Op(r’,t) o8 The time-dependent entropi€€8) that correspond to
(28) isoscalar and isovector oscillations are shown in Fig. 12.
They are compared with the value that results from the time-
revolution of the system that has not been excifgohe-
dependent entropy of the ground sjatBor the isoscalar
mode, regular modulated oscillations are observed. Compar-
ing also with the reference ground-state entropy, we notice
how the numerical accuracy affects the results for long times
2_ TiE ~oT Fataa of integration (T>2000 fm/c). The entropy that corre-
P % (lpMIiXKlp(rIXP(]aa, a,a]|<I>(t)>. sponds to the isovector mode is much lower and more irregu-
(29 lar at the beginning, but it eventually approaches values
comparable to those of the isoscalar mode. Similar to the
entropy defined on the one-body density operator, this be-
In coordinate representation the expression becomes havior reflects the strong mean-field damping of the isovec-

sz<t>=—f P27 1)log,

where the two-body density matrix is defined from the Slate
determinant of occupied states
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FIG. 13. Fourier power spectra of the conditional entrop#s; FIG. 14. Mutual information(33) between the time-dependent
for isovector(a), and isoscalatb) monopole oscillations. mean square radii of the proton and neutron density distributions.

tor illations. The information contents of the “two-body” The two curves that correspond to isoscalar and isovector oscilla-
or osciffations. 1he information contents of the 0-bOOY"™ +ions are plotted as functions of the size of the box in the linear

entropies are shown in the corresponding Fourier POWEL 1 hedding of the time series.
spectra in Fig. 13. For the isoscalar mode we again find that

the entropy contains the same information as the dynamicqjiven value of x appears in the baxof dimensione. The
variable, a single mode at the_frequgncy of the giant reSOsum is over occupied boxes of dimensien in the one-
hance. .Th'S means 'that there is a high degree of tWC."bOdéfimensional embedding of the time series. For two time se-
correlations for the isoscalar mode, the nucleon density OSjes. the corresponding joint information function is

cillates with the same frequency at all points in the nuclear

system. For the isovector mode we do not find any useful

information in the Fourier spectrum. There is a highly frag- I (€)= —Z Pi (X7, Y )I0g P j(Xz,y,). (32
mented structure in the region of the isoscalar giant reso- b

nance, but in addition we find strong peaks in the very low.

frequency region. This result indicates that there is very IittIeThe joint distributionP; ; corresponds to the frequency with

spatial correlation for the isovector oscillations of the Which a box (,j) (linear dimensiore) in the x,, versusy,

nucleon density, or that the nonlinear nuclear system oscilPl2n€ is occupied. The average amount of information about

lates in a regime for which the Fourier spectrum of the conthe variabley that the variables contains is quantified by the

ditional entropy(28) does not contain useful information. ~ Mutual information(14]
In the previous section, we have used the average mutual

information function to determine the time delay for the re-

construction of the phase space. This function quantifies th _ . . .

information that is contained in the signal, at some momen&early' the mutL!aI infarmation yamshes_ iPi,;(x,y)

in time, about the value of the dynamical variable at other_ Pi(x) Pi,(y)’ .e., if x andy are ;tanstlca_lly mcjependent.

times. Since we describe isoscalar and isovector oscillationd, "€ Precise value of the mutual information will of course

i.e., we distinguish between proton and neutron componenl@epend on the size Of. the b@( but one should try to find a

of the system, we might ask how much information is con-r€gion of values fore in which M, ,(€) does not vary ap-

tained in the dynamical variable of the neutron distribution,Preciably.

about the proton subsystem, and vice versa. The two dynami- !N our example of giant monopole resonances, the vari-
cal variables in this example are the mean square radii of th@P!€ X corresponds to the mean square radius of the proton

two distributions. We define the information function istribution, andy to that of the neutron distribution. The
mutual information functiongin units of bitg are displayed

in Fig. 14, for the isoscalar and isovector oscillations. The
I n() (€)= _Ei Pi(Xa(1))10G2 Pi(Xz(y))- (8D acceptable values far depend on the sampling of the time
series. Fore<0.2 fn? the probability distribution functions
The signalx is quantized in units ok. The probability dis- cannot be properly determined, there are many empty boxes,
tribution P;(x) corresponds to the frequency with which any and the calculated mutual information is not useful. For

Mx,y(é):Ix(f)"Hy(E)_lx,y(f)- (33
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region, they oscillate almost independently. The mutual in-
formation increases again beyond the ground-state radius of
the nucleus, but in this asymptotic region the densities rap-
idly decrease to zero. Of course, the behavior in the surface
region is not completely unexpected. The nucleons at the
surface are less bound, and the effective compression modu-
lus of the surface region is different from that in the volume
of the nucleus. For example, the nuclet®b contains 82
protons and 126 neutrons. However, due to the combined
effects of Coulomb repulsion between protons, and the Pauli
exclusion principle, the protons occupy practically the same
volume as the neutrons. Yet the dynamics for the two types
of nucleons seem to be very different in the surface region.
The slowly vibrating self-consistent potentials, in which the
protons and neutrons move, do not average on the surface in
the same way as in the bulk region. It is very interesting how
the details of the underlying nonlinear dynamics emerge in
the radial behavior of the mutual information function.

M, [bits]

V. CONCLUSIONS

In the present work we have used the time-dependent
relativistic mean-field model to analyze the nonlinear dy-
namics of giant resonances in atomic nuclei. The character-
istic properties of these collective excitations vary smoothly
FIG. 15. Radial dependence of the mutual information betweer\"”th the size of the nucleus, and therefore a self-consistent

proton and neutron density distributions. Results f®,%°Ca, and Mean-field approach provides a consistent description of

208ph are displayed. Solid curves correspond to isoscalar oscilld2ucleon dynamics. In particular, we have analyzed the time
tions, dashed curves to isovector oscillations. series of dynamical variables that characterize the giant

monopole resonances: isoscalgroton and neutron densi-

larger values ok the calculated mutual information changesties oscillate in phaseand isovectorproton density oscil-
very slightly, practically with the same slope for isoscalarlates against the neutron dengitfhe nucleons move in the
and isovector modes. Of course, the principal result is theffective self-consistent single nucleon potentials, and the
comparison between the two modes: the average amount efuations of motion describe the time evolution of the one-
information thatr?) of the proton density contains about the body density. Since the time-dependent potentials are calcu-
dynamical variable of the neutron distribution is more than dated in a self-consistent way, the model of the nuclear sys-
factor of 3 larger for the isoscalar mode. tem is intrinsically nonlinear, and chaotic motion is expected

Another interesting possibility is to consider the mutualfor specific initial conditions. The time-dependent model de-
information as a function of the spatial coordinate. Instead ofcribes the collective dynamics on the mean-field level, i.e.,
using as dynamical variables integrated quantities such as thiere are no contributions to the dissipation of collective mo-
mean square radii, we can follow the time evolution of thetion from two-body collisionlike processes and from the es-
proton and neutron densities at various points along the razape of individual nucleons into the continuum.
dial axis(the motion is spherically symmetjicThe dynami- From the time series of isoscalar and isovector monopole
cal variablesx andy will be the values of the proton and moments of?°%b, we have reconstructed the corresponding
neutron densities at each point in space, and we can plot thghase spaces. The time delays have been calculated from the
average mutual information of the densities as function ofaverage mutual information, and the embedding dimensions
the radial coordinate. The results are shown in Fig. 15. Irdetermined by the method of false nearest neighbors. The
addition to 2°® Pb, we also display the mutual information reconstructed phase spaces have been represented by recur-
for 1 O and*%Ca. These two spherical nuclei are smaller,rence plots. We have found that for the isoscalar mode the
but have the advantage of containing identical numbers ofecurrence plot displays a pattern characteristic for regular
protons and neutrons. In all three nuclei the mutual informaeoscillations, while for the isovector mode it indicates non-
tion of the proton and neutron density is much higher for thestationarity. From the reconstructed phase spaces we have
isoscalar mode. In fact, fot?0 and *°Ca, the mutual infor- also calculated the correlation integrals and the correspond-
mation for the isovector mode practically vanishes, and ndang correlation dimensions. As a function of the embedding
radial dependence is observed. It is somewhat higher fodimension of the phase space, the correlation dimeri3ipn
20%ph and with some modulation, slowly decreases from theaturates at the integer value 2 for the isoscalar mode. On the
center of the nucleus towards the surface. The isoscalar modeher hand, a fractional correlation dimension is found for
displays a very interesting radial behavior of the mutual in-the isovector oscillations. The results confirm our conclu-
formation. It is high in the nuclear volume, but there is alsosions from Ref[1] that the motion of the collective coordi-
a pronounced minimum at the radius that corresponds to theate is regular for isoscalar oscillations, and that it becomes
surface of the nucleus. This means that there is little correehaotic when initial conditions correspond to the isovector
lation between proton and neutron densities in the surfacenode.

r [fm]
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The nonlinear dynamics of giant resonances has also beeanation much higher for the isoscalar mode, but it also dis-
analyzed in the framework of information-theoretic function- plays an interesting radial dependence which reflects the dif-
als. For the time-dependent one-body nucleon densities, Wierences in the dynamics of the monopole motion in the
have calculated the von Neumann information entropy funcyolume and on the surface of the nucleus.
tionals. The Fourier analysis has shown that the entropy of The results of the present analysis, as well as those of Ref.
the isoscalar mode contains the same information as the le], have shown that giant resonances in nuclei provide ex-
namical variable. The structure is more Complicated for thQ‘;e”ent examp|es for the Study of regu|ar and chaotic dynam-
isovector mode, for which peaks are found both in the rejcs in quantum systems. In addition, the finite spatial exten-
gions of isoscalar and isovector eigenfrequencies. The spatiglon of nuclei enables the analysis of spatiotemporal
correlations have been described with a time-dependent cofehavior in nonlinear dynamical systems. And yet we have
ditional entropy defined from a two-body nucleon density.only examined the most simple modes of collective motion:
This function enables the study of the influence of spatiainonopole oscillations. More complicated excitations, espe-
motion on temporal chaos. From the dynamical variables thagja|ly those involving spin and isospin degrees of freedom,
characterize the proton and neutron distributions, i.e., theyould certainly disclose more interesting properties of the
mean square radii, we have calculated the average mutughderlying nonlinear dynamics.
information for the isoscalar and isovector modes. The aver-
age information that is contained in the collective dynamical
variable of the proton density, about the neutron density, is ACKNOWLEDGMENTS
more than a factor of 3 larger for the isoscalar mode. We
have also analyzed the mutual information between proton This work has been supported in part by the Bundesmin-
and neutron densities as a function of the spatial coordinatésterium fir Bildung und Forschung under contract No. 06
It has been shown that, not only is the average mutual inforTM 875.
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