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Nonlinear dynamics of giant resonances in atomic nuclei

D. Vretenar,1,2 N. Paar,1 P. Ring,2 and G. A. Lalazissis2
1Physics Department, Faculty of Science, University of Zagreb, Croatia

2Physik-Department der Technischen Universita¨t München, D-85748 Garching, Germany
~Received 6 August 1998!

The dynamics of monopole giant resonances in nuclei is analyzed in the time-dependent relativistic mean-
field model. The phase spaces of isoscalar and isovector collective oscillations are reconstructed from the time
series of dynamical variables that characterize the proton and neutron density distributions. The analysis of the
resulting recurrence plots and correlation dimensions indicates regular motion for the isoscalar mode, and
chaotic dynamics for the isovector oscillations. Information-theoretic functionals identify and quantify the
nonlinear dynamics of giant resonances in quantum systems that have spatial as well as temporal structure.
@S1063-651X~99!02603-3#
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I. INTRODUCTION

In a recent paper@1# we have started the analysis of co
lective nonlinear dynamics in atomic nuclei in the fram
work of time-dependent relativistic mean-field theor
Atomic nuclei provide excellent examples of quantum s
tems in which the transition from regular to chaotic dyna
ics can be observed in experiments, and studied with a v
ety of sophisticated theoretical models. Signatures of cha
dynamics have been observed in correlations of nuclear l
distributions, and in the microscopic and collective motion
the nuclear many-body system@2#. Especially interesting in
this respect are giant resonances: highly collective nuc
excitations whose properties, excitation energies and wid
nevertheless reflect the underlying microscopic dynam
Theoretical studies predict that regular collective modes
exist with chaotic single-nucleon motion: the adiabatic me
field created by the nucleons averages out the random c
ponents of their motion. In Ref.@1# we have studied the
dynamics of the most simple giant resonances: isoscalar
isovector collective monopole oscillations. In these re
nances only spatial degrees of freedom are excited and
motion is spherically symmetric, and therefore relative
simple for numerical integration. We have analyzed tim
dependent and self-consistent calculations that reproduc
experimental data on monopole giant resonances in sphe
nuclei. In the microscopic mean-field model, self-consist
solutions for ground states provide initial conditions, a
fully time-dependent calculations are performed for t
single-nucleon dynamics. Due to the self-consistent ti
evolution, the nuclear model system is intrinsically nonl
ear. In particular, we have studied the difference in the me
field dynamics of isoscalar and isovector collective mod
Time series, Fourier power spectra, Poincare´ sections, auto-
correlation functions, and Lyapunov exponents have b
used to characterize the nonlinear system and to identify
otic oscillations. It has been shown that the oscillations of
collective coordinate can be characterized as regular for
isoscalar mode, and that they become chaotic when in
conditions correspond to the isovector mode.

In the present paper we continue our investigation of gi
monopole resonances. There are two main objectives. F
PRE 601063-651X/99/60~1!/308~12!/$15.00
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the analysis of phase spaces reconstructed from time s
of collective dynamical variables that characterize the i
scalar and isovector oscillations. The structure of recurre
plots and the correlation dimensions should provide ad
tional information about the chaotic regime of collective m
tion. The second objective is to study possible applicatio
of modern information-theoretic techniques to the nucl
many-body dynamics~analysis of information entropies an
evaluation of mutual information functions!. This is espe-
cially important since nuclei are quantum objects of fin
size, and therefore display interesting spatial as well as t
poral behavior. We will discuss several information fun
tionals that could be used to examine the influence of
finite spatial extension of nucleon densities on the nonlin
dynamics of collective excitations. The time-depende
model that we use is limited to the description of the me
field collective dynamics. For a more realistic description
the structure of giant resonances, in particular, for the da
ing mechanism, effects beyond the mean-field level sho
be included: two-body dissipation caused by collisionli
processes, and nucleon escape into the continuum.

The article is organized as follows. In Sec. II we descr
the time-dependent relativistic mean-field model. The tim
series analysis and the reconstruction of phase spaces
performed in Sec. III. The use of information-theoretic fun
tionals in the description of nonlinear dynamics is discus
in Sec. IV. A summary of our results is presented in Sec.

II. TIME-DEPENDENT MEAN-FIELD MODEL

Theoretical models based on quantum hadrodynam
@3,4# have been remarkably successful in the description
many physical phenomena in atomic nuclei, nuclear mat
neutron stars, heavy-ion collisions, and electron scattering
nuclei. In particular, the relativistic mean-field model h
been applied in calculations of properties of ground and
cited states, both for spherical and deformed nuclei~for a
recent review see@5#!. In Refs.@6–9# we have used the time
dependent version of the relativistic mean-field model to
scribe the dynamics of giant resonances. These collec
excitations have been observed in nuclei over the whole
riodic table, and their characteristic properties vary smoot
308 ©1999 The American Physical Society
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with mass number. Giant resonances can therefore be
scribed with models based on the mean-field approximat
the two-body nucleon-nucleon correlations are replaced
the independent motion of nucleons in the effective o
body potential. The nucleons themselves are the source
the potential. The self-consistent model of nuclear dynam
is essential for a correct description of ground and exc
states. Self-consistent calculations ensure that the same
relations that are important for the ground states also de
mine the dynamics of excited states, in this particular c
giant resonances.

The details of the time-dependent relativistic mean-fi
model can be found in Refs.@6,7#. In this section we include
a short outline of the basic properties. In quantum hadro
namics the nucleus is described as a system of Dirac nu
ons that interact through the exchange of virtual mesons
photons. The model is based on the one-boson exchang
scription of the nucleon-nucleon interaction. The Lagrang
density reads

L5c̄~ ig•]2m!c1 1
2 ~]s!22U~s!

2 1
4 VmnVmn1 1

2 mv
2 v22 1

4 RW mnRW mn1 1
2 mr

2rW 2

2 1
4 FmnFmn2gsc̄sc2gvc̄g•vc

2grc̄g•rW tWc2ec̄g•A
~12t3!

2
c. ~1!

The Dirac spinorc denotes the nucleon with massm.
ms , mv , and mr are the masses of thes meson, thev
meson, and ther meson, andgs , gv , andgr are the corre-
sponding coupling constants for the mesons to the nucle
U(s) denotes the nonlinears self-interaction

U~s!5 1
2 ms

2s21 1
3 g2s31 1

4 g3s4, ~2!

andVmn,RW mn, andFmn are field tensors.
From the Lagrangian density the set of coupled equati

of motion is derived: the Dirac equation for the nucleons

i ] tc i5FaS 2 i¹2gvv2grtWrW 2e
~12t3!

2
AD

1b~m1gss!1gvv01grtWrW 01e
~12t3!

2
A0Gc i ,

~3!

and the Klein-Gordon equations for the meson fields,

~] t
22D1ms

2 !s52gsrs2g2s22g3s3, ~4!

~] t
22D1mv

2 !vm5gv j m , ~5!

~] t
22D1mr

2!rW m5gr jWm , ~6!

~] t
22D!Am5e jm

em. ~7!

In the mean-field approximation only the motion of th
nucleons is quantized, the meson degrees of freedom
described by classical fields that are defined by the nuc
densities and currents. The single-particle spinorsci
e-
n:
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( i 51,2, . . . ,A) form the A-particle Slater determinan
uF(t)&. The nucleons move independently in the classi
meson fields, i.e., residual two-body correlations are not
cluded, and the many-nucleon wave function is a Sla
determinant at all times. The sources of the fields in
Klein-Gordon equations are calculated in theno-seaapproxi-
mation @6#:

the scalar density,

rs5(
i 51

A

c̄ ic i ; ~8!

the isoscalar baryon current,

j m5(
i 51

A

c̄ ig
mc i ; ~9!

the isovector baryon current,

jW m5(
i 51

A

c̄ ig
mtWc i ; ~10!

the electromagnetic current for the photon field,

j em
m 5(

i 51

A

c̄ ig
m

12t3

2
c i ; ~11!

where the summation is over all occupied states in the Sl
determinantuF(t)&. Negative-energy states do not contribu
to the densities in theno-seaapproximation for the stationary
solutions, but their contribution is implicitly included in th
time-dependent calculation@6#. The coupled system of Eqs
~3!–~7! describes the time evolution ofA nucleons in the
effective mean-field potential. The equations are equiva
to the equation of motion for the one-body density opera
r̂5 r̂(t),

i\
]

]t
r̂5@hD ,r̂ #, ~12!

with an initial condition forr̂,

r̂~ t in!5 r̂ in . ~13!

hD is the single-nucleon Dirac Hamiltonian defined in E
~3!. Starting from the self-consistent solution that describ
the ground state of the nuclear system, initial conditions
defined to simulate excitations of giant resonances in exp
ments with electromagnetic or hadron probes. For exam
the one-body proton and neutron densities can be initi
deformed and/or given some initial velocities. The resulti
mean-field dynamics can be described by the time-evolu
of the collective variables. In coordinate space, for examp
these will be the multipole moments of the density distrib
tions. Of course, the dynamics of collective variables refle
the underlying single-nucleon motion in the self-consist
potential. Since the Dirac Hamiltonian depends on
nucleon densities and currents through the solutions of
Klein-Gordon equations, it is obvious that the equations
motion are nonlinear. For a specific choice of initial cond
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tions the nuclear system could enter into a chaotic regim
motion. The collective dynamics that we describe is intrin
cally classical, since it is formulated as a time-depend
initial value problem, rather than a boundary value proble
The single-nucleon wave functions, on the other hand,
isfy the Pauli exclusion principle at all times, i.e., on t
microscopic level of single-nucleon motion the nucleus i
quantum system. The problem is therefore how to iden
and quantify chaotic dynamics in an ensemble of nucle
that, described as quantum objects on the microscopic le
display classical oscillations of collective variables.

The time-dependent model describes the collective
namics on the mean-field level. The contribution of one-bo
and two-body processes to dissipation in the collective m
tion of finite Fermi systems is still an open problem. Tw
body dissipation caused by collision of pairs of nucleons
strongly suppressed at low excitation energies due to
Pauli exclusion principle. The one-body dissipation proc
is caused by the escape of nucleons from the collective
tential well into the continuum~escape width!, and by colli-
sions of individual nucleons with the nuclear potential wa
generated collectively by the mean field of all nucleons. T
escape into the continuum should be taken into account f
correct description of the widths of specific giant resonanc
In the present analysis, however, we are interested in
nonlinear mean-field dynamics. The inclusion of the esc
process in model calculation would not change the res
qualitatively. On the other hand, with a strong dampi
mechanism through the nucleon escape, it would beco
impossible to calculate the long time series of collective va
ables, from which the phase space is reconstructed.

III. TIME-SERIES ANALYSIS

Excitations of giant resonances result in damp
harmonic/anharmonic density oscillations around the equ
rium ground state of the nucleus. Since there are two type
nucleons in the nucleus, protons and neutrons, a basic
tinction is made between isoscalar and isovector oscillatio
Isoscalar motion is characterized by proton and neutron d
sities oscillating in phase. The two densities have oppo
phases for isovector oscillations. In general, shape osc
tions of the density can be represented as superpositio
different multipoles: monopole, dipole, quadrupole, etc.
brations. Depending on the type and energy of the exp
mental probe, it is sometimes possible to selectively ex
different multipoles. In addition to shape oscillations, sp
degrees of freedom can be excited in giant resonances.
spin of the nucleon being naturally included in the relativis
framework, it has been shown in Ref.@8# that the time-
dependent relativistic mean-field model provides a consis
description of the spin-multipole resonances. Another type
excitations, the Gamow-Teller resonances, include not o
spin degrees of freedom, but also rotations in isospin sp
i.e., a neutron is transformed into a proton or vice versa
principle, these resonances can also be described in
framework of relativistic mean-field models, though the a
tual description of excitations that involve so many degr
of freedom might become very complicated. Therefore,
the present study we consider only the most simple situat
giant monopole resonances~GMR!, but the results of our
of
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analysis should be valid also for shape oscillations of hig
multipole order. These are just much more difficult to sol
numerically. The equations of motion have to be integra
in two- or three-dimensional coordinate space, and the
merical accuracy of our algorithms is simply not sufficient
obtain long time series that are necessary for an analys
nonlinear dynamics. For excitations that include spin and
isospin degrees of freedom, the dynamics is more involv
Nevertheless, one expects that the present study will
provide some insight into the nonlinear phenomena that
cur in those more complicated excitations.

The collective dynamical variables that characterize
brations of a nucleus are defined as expectation value
single-particle operators in the time-dependent Slater de
minant uF(t)& of occupied states: multipole moments th
characterize the shape of the nucleus. In order to ex
monopole oscillations, the spherical solution for the grou
state has to be initially compressed or radially expanded
transforming the radial coordinate. For isoscalar oscillatio
the monopole deformations of the proton and neutron de
ties have the same sign. To excite isovector oscillations,
initial monopole deformation parameters of protons and n
trons must have opposite signs. For isoscalar monopole
brations, the time-dependent monopole moment is define

^r 2~ t !&5
1

A
^F~ t !ur 2uF~ t !&, ~14!

whereA is the number of nucleons. The corresponding
ovector monopole moment is simply

^r p
2~ t !&2^r n

2~ t !&.

Fourier transforms of the collective dynamical variable d
termine the frequencies of eigenmodes.

In Fig. 1 we display the time series of monopole mome
which represent the isoscalar and isovector oscillations
208Pb. As in our calculation of Ref.@1#, the NL1 effective
interaction has been used for the mean-field Lagrangian~ef-
fective masses for the mesons and coupling constant
nucleons to meson fields!. This interaction reproduces th
ground-state properties of208Pb, as well as experimenta
data on the energies of giant resonances: monopole, iso
tor dipole, and isoscalar quadrupole. However, the prec
values for the frequencies of the eigenmodes are not cru
in our study of nonlinear dynamics.208Pb is one of the mos
studied nuclei, both experimentally and theoretically. T
properties are well known, and we have selected208Pb be-
cause it is a heavy spherical system, with relatively lit
fragmentation of the modes, compared to lighter or deform
nuclei. The experimental isoscalar GMR energy in208Pb is
well established at 13.760.3 MeV, and the isovector GMR
is at 2663 MeV. The isoscalar mode displays regular u
damped oscillations, while for the isovector mode we o
serve strongly damped anharmonic oscillations. Of cou
the time series alone cannot determine whether the signa
the dynamical variable displays characteristics of chao
motion. In Fig. 2 we show the corresponding Fourier pow
spectra in logarithmic plots versus the excitation energyE
5\v. There is very little spectral fragmentation in the is
scalar channel, and a single mode dominates at the excita
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energy of'11 MeV. The Fourier spectrum of the isovect
mode is strongly fragmented. However, the main peaks
found in the energy region 25–30 MeV, in agreement w
the experimental data. The frequency of the isoscalar m
provides useful information about the underlying dynami
for example the compression modulus. On the other ha

FIG. 1. Time-dependent isoscalar^r 2& ~a!, and isovector̂ r p
2&

2^r n
2& ~b! monopole moments for208Pb.

FIG. 2. Fourier power spectra for the isoscalar~a!, and isovector
~b! monopole oscillations in208Pb.
re

de
,
d,

very little information can be inferred from the Fourier spe
trum of the isovector oscillations. This observation would
consistent with the well known fact that nonlinear systems
the chaotic regime do not display any useful spectral cont
In order to extract more information from the time-serie
methods of nonlinear analysis have to be used.

For time series that result from linear physical proces
the Fourier analysis unfolds the characteristic frequenc
that are invariants of the dynamics, i.e., they classify
dynamics. For nonlinear systems the corresponding ana
is somewhat more complicated. In order to reconstruct
dynamics of the system from the time series of a measure
calculated dynamical variable, one starts by reconstruc
the phase space using time delays. In this procedure ther
two principal quantities that have to be determined: the ti
delay and the dimension of the phase space on which
attractor unfolds. In this section we basically follow the pr
scriptions of Ref@10# for the reconstruction of the phas
space.

The time series in Fig. 1 have the form

x~n!5x~ t01nts!, n50,1,2, . . . , ~15!

where ts is the sampling time. Since in our case the tim
series is calculated by numerical integration of a set of par
differential equations, the sampling time can be chosen a
trarily. In order to define a coordinate system in which t
structure of orbits in phase space can be described, ti
lagged variables are used,

x~n1T!5x„t01~n1T!ts…, ~16!

where T is some integer that defines the time delay. T
collection of time-lagged variables defines a vector
d-dimensional phase space,

yW ~n!5@x~n!,x~n1T!,x~n12T!, . . . ,x„n1~d21!T…#.
~17!

In general, there is no unique prescription as to how
choose the optimal time lagT and the dimension of the spac
d. The time delay should be chosen in such a way t
x(n1 jT) andx„n1( j 11)T… present two independent coo
dinates. If the time delay is too small, their numerical valu
will be so close to make them practically indistinguishable
it is too large, the two coordinates will be completely ind
pendent of each other in a statistical sense, i.e. no dynam
will connect their values. Of course, one also has to av
that the time delay coincides with a natural period of t
system. The choice of the dimension of the reconstruc
phase spacedE ~embedding dimension!, depends on the di-
mension of the attractor.dE must be sufficiently large so tha
the physical properties of the attractor are the same w
computed in time-lagged coordinates, and when compute
the physical coordinates, which we do not know. For e
ample, if two points in the phase space are found close
each other, this should result from the underlying dynam
and not from the small dimension of the phase space
which the dynamics is represented. The procedure is to
bed the time series in adE-dimensional phase space. Th
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embedding dimensiondE has to be equal or larger than th
minimum number of dynamical variables needed to mo
the system.

One possible way to choose the time delay is to cons
the linear autocorrelation function,

CL~T!5

(
n51

N

@x~n1T!2 x̄#@x~n!2 x̄#

(
n51

N

@x~n!2 x̄#2

, ~18!

where

x̄5
1

N(
n51

N

x~n!. ~19!

By choosing the time lag to be the first zero of the autoc
relation function,x(n1 jT) andx„n1( j 11)T… become, on
the average over the observation, linearly independent.
linear autocorrelation functions for isoscalar and isovec
oscillations are shown in Fig. 3. The normalization isCL(T
50)51. In general, when the time series is irregular or c
otic, information about its past origins is lost. This mea
that uCL(T)u→0 asT→`, or the signal is only correlated
with its recent past. For the isovector modeuCL(T)u indeed
displays a much more rapid decrease, as compared to
scalar oscillations. The first zeros of the autocorrelation fu
tion correspond to time delays of 27 fm/c and 13 fm/c,
the isoscalar and isovector modes, respectively. These va
could be used as time delays in the reconstruction of
corresponding phase spaces. This method generally prod
vectors in phase space with components that are, on the

FIG. 3. Linear autocorrelation functions for isoscalar~a!, and
isovector~b! oscillations.
l

er
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e
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erage, linearly independent. For nonlinear systems a m
appropriate method is to use the average mutual informat
This function can be considered as a generalization of
linear autocorrelation to nonlinear systems, and it tells
how much information can be learned about a measurem
at one time from a measurement taken at another time. F
time seriesx(n) and time-lagT, the average mutual informa
tion is defined

I ~T!5 (
n51

N

P„x~n!,x~n1T!…log2 F P„x~n!,x~n1T!…

P„x~n!…P„x~n1T!…G .
~20!

The probability distributionP„x(n)… corresponds to the fre
quency with which any given value ofx(n) appears. The
joint distribution P„x(n),x(n1T)… corresponds to the fre
quency with which a unit box in thex(n) versusx(n1T)
plane is occupied. The information functions calculated fro
the isoscalar and isovector time series are displayed in Fig
We notice that on the average there is much more mu
information in the isoscalar signal. The prescription is no
to choose as time lag the value for whichI (T) displays the
first minimum@11#. The curious result is that from the ave
age mutual information we obtain exactly the same time
lays as from the linear autocorrelation function: 27 fm/c f
the isoscalar, and 13 fm/c for the isovector mode.

In order to determine the embedding dimensions from
two time series, we have used the method of false nea
neighbors@12#. For each vector~17! in dimensiond, we de-
fine a nearest neighboryW NN(n). The Euclidean distance be
tween the two vectors is

FIG. 4. Average mutual information as a function of time del
for monopole oscillations.
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Rd
2~n!5@x~n!2xNN~n!#21•••1@x„n1~d21!T…

2xNN
„n1~d21!T…#2. ~21!

Of course the two vectors are nearest neighbors if this
tance is small, in a sense that we will define shortly. In
mension (d11) the distance between the two vectors b
comes

Rd11
2 ~n!5Rd

2~n!1@x~n1dT!2xNN~n1dT!#2. ~22!

If the two points were nearest neighbors in dimensiond, but
now we find thatRd11

2 (n) is large compared toRd
2(n), this

must be due to the projection from some higher-dimensio
attractor down to dimensiond. By going from dimensiond to
(d11), we have shown that the two points were ‘‘fal
nearest neighbors.’’ If the ratio

ux~n1dT!2xNN~n1dT!u
Rd~n!

~23!

is larger than some threshold, the assertion that the two
tors are nearest neighbors is false. The fact that they
found to lie close to each other in dimensiond is not a
property of the dynamics of the system, but the result
projecting the dynamics onto a phase space of too low
mension. The embedding dimension is now determined w
a simple procedure. First we decide what value for
Euclidean distance should be taken as small. This gene
depends on the data set that we are analyzing. For all vec
in the phase space of dimensiond we count the number o
nearest neighbors. Then we have to determine the percen
of nearest neighbors that turn out to be false when goin
dimension (d11). The minimal necessary embedding d
mensiondE is selected to be the one for which the perce
age of false nearest neighbors goes to zero. For the isos
and isovector time series, the false nearest neighbors are
played in Fig. 5 as functions of the phase space dimens
The percentage of false nearest neighbors goes to zero
dE53 ~isoscalar mode!, and for dE54 ~isovector mode!.
These values are taken as embedding dimensions for th
construction of the corresponding phase spaces.

The reconstructed phase space can be represented b
recurrence plot. By embedding the time series we crea
sequence of vectors,

yW ~n!5@x~n!, . . . ,x„n1~dE21!T…#

in the phase space of dimensiondE . In our example the time
delay is 27 fm/c for the isoscalar, and 13 fm/c for the isov
tor mode. The corresponding embedding dimensions aredE
53 anddE54, respectively. We can calculate the distan
between any two points in the phase space,

d~m,n!5uyW ~m!2yW ~n!u.

To construct the recurrence plot we choose some distanr,
and ask whenuyW (m)2yW (n)u,r . m is placed on the hori-
zontal axis,n on the vertical axis, and a dot is placed at t
coordinate (m,n) if uyW (m)2yW (n)u,r . For a periodic signal
the recurrence plot displays a series of stripes at 45 deg
If a time series is chaotic, the recurrence plot has a m
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complicated structure. It is nonuniform and boxes of den
points appear along the diagonal. Of course, in all recurre
plots there is a stripe on the diagonalm5n. The recurrence
plots for the phase spaces of the isoscalar and isovector
series are shown in Fig. 6. We notice a pronounced dif
ence between the two modes. For the isoscalar mode

FIG. 5. Percentage of false nearest neighbors as a functio
phase space dimension, for isoscalar~a!, and isovector~b! modes.

FIG. 6. Recurrence plots for the time series of isoscalar~a!, and
isovector~b! monopole oscillations.
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recurrence plot displays a pattern representative for reg
oscillations, with stripes separated by a distance that co
sponds to the period of oscillations. On the other hand,
recurrence plot for the isovector mode indicates nonstat
arity.

The number of dots in a recurrence plot tells how ma
times the phase space trajectory came within distancer of a
previous value. A measure of the density of dots is provid
by the correlation integral. If the dynamics of a system
deterministic, the ensemble of phase space trajectories
verges towards an invariant subset of the phase space—
attractor. For chaotic dynamics the attractor has fractio
dimension, whereas the dimension is integer for regular
namics. The correlation dimension of the attractor can
numerically evaluated from the correlation integral. If the
areN pointsyW (n) in the reconstructed phase space of dim
sion d, we can compute all distancesuyW (m)2yW (n)u. The
correlation integral is defined as@13#

C2~r !5
2

N~N21! (mÞn

N

Q„r 2uyW ~m!2yW ~n!u…, ~24!

for a distancer in phase space.Q(x)50 if x,0 andQ(x)
51 for x.0. In a certain range ofr, the scaling region,
C2(r ) behaves like

C2~r !5r d. ~25!

The correlation dimensionD2 is determined by the slope o
the lnC2(r ) versus lnr . It is defined as the slope of the plo
in the r→0 limit. The dimension of the attractor can b
determined by plotting lnC2(r ) versus lnr for a set of in-
creasing dimensions of the phase space. As the embed
dimension increases, the correlation dimensionD2 should
saturate at a value equal to the attractor’s correlation dim
sion. The logarithm of the correlation integral is plotted
Fig. 7 for the isoscalar and isovector modes, for a set
increasing dimensions~direction of the arrow!. The corre-
sponding correlation dimensions are displayed in Fig. 8.
notice that for the isoscalar mode, ford>3, the correlation
dimension saturates atD252. The integer value for the di
mension of the attractor indicates regular dynamics. For
isovector mode the correlation dimension does not satur
but slowly increases to some fractional value between 2
3. The fractional dimension of the attractor would imply ch
otic or stochastic dynamics.

IV. INFORMATION-THEORETIC FUNCTIONALS

In this section we continue with the analysis of nonline
dynamics in time series of giant monopole oscillations. T
identification and quantification of the underlying regular
chaotic dynamics will be based on the evaluation
information-theoretic functionals. We start with the inform
tion entropy of a physical system. For classical systems
entropy is defined on the phase space density, and repre
the missing information about which fine-grained cell of t
phase space the system occupies. For a quantum syste
information entropy can be defined on the density opera
The von Neumann entropy of the one-body density oper
D̂ ~measured in bits!,
lar
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S52tr~D̂ log2 D̂ !52(
j

l j log2 l j , ~26!

wherel j are eigenvalues of the density operator~occupation
probabilities!, and the entropy can be interpreted as the m
ing information about which eigenvector the system oc
pies. Entropy is conserved under Hamiltonian dynami
evolution, both classically and for a quantum system. Cl
sically this is a consequence of the conservation of ph
space volume, in quantum mechanics it follows from t
unitarity of Hamiltonian evolution. However, if the system
coupled to a perturbing environment, the interaction gen

FIG. 7. Sequence of correlation integrals for isoscalar~a!, and
isovector~b! monopole oscillations. lnC2(r) vs lnr plots are dis-
played for a sequence of embedding dimensionsd51, . . . ,8.

FIG. 8. Correlation dimensionD2 as function of embedding
dimension, for isoscalar and isovector oscillations.
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ally changes the system’s entropy. In our model only
motion of nucleons, protons, and neutrons is quantized.
equation of motion~12! describes the time evolution of th
one-body density in the time-dependent meson fields.
mean fields play the role of the environment, the se
consistent interaction of the nucleon with the meson fie
determines the nonlinear dynamics. This implies that, if fr
the nucleon densities we define some time-dependent
tropy functionals, their time evolution might contain usef
information about the dynamics of the system. For exam
we can define the information entropy functional

S~ t !52E r~rW,t !log2 r~rW,t ! d3r , ~27!

where r is the vector density@0th component in Eq.~9!#.
Since we consider both isoscalar and isovector motion,
density in Eq.~27! can be the neutron or the proton densi
or the total nucleon density.

In Fig. 9 we display the time-dependent total~a!, neutron
~b!, and proton ~c! entropies ~27! for the isoscalar and
isovector monopole oscillations in208Pb. In addition, in all
three cases we include the entropy that results from the
evolution of the system that has not been excited in any w
These ground state entropies provide a measure of the
merical accuracy of the integration algorithm. We notice t
for the isoscalar mode the entropies display regular osc

FIG. 9. Time-dependent entropy functionals~27! for isoscalar
and isovector monopole motion. We display the total entropy of
nucleon system~a!, the neutron~b!, and the proton entropy~c!.
Solid curves correspond to isoscalar oscillations, dashed curve
isovector oscillations. The thick solid curves are the refere
ground-state entropies.
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e
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e
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t
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tions which reflect the exchange of energy between
nucleons and the meson fields. The oscillations are iden
to those of the dynamical variable, the isoscalar monop
moment in Fig. 1. For the isovector mode the entropies
addition to somewhat more complicated oscillations, slow
decrease to the values that are characteristic for the gro
state of the nucleus. This decrease in entropy is caused b
strong mean-field damping of the isovector mode, i.e. fr
the collisions of the nucleons with the moving wall of th
nuclear potential generated by the self-consistent me
fields. In the isovector mode the protons and neutrons ef
tively move in two self-consistent potentials that oscillate o
of phase, and that in this way inhibit the resonance. To
tract the information content of the time-dependent entrop
~27!, we have calculated the Fourier transforms. For the
tal, neutron and proton entropies, the Fourier power spe
are displayed in Figs. 10 and 11, for isoscalar and isove
oscillations, respectively. For the isoscalar mode the inf
mation content of the entropy is exactly the same as tha
the dynamical variable, the monopole moment: a sin
mode dominates, at a frequency that corresponds to the
citation energy of the giant monopole resonance. This is
surprising, if one considers that the monopole momen
defined with an integral identical to the one that defines
entropy in Eq.~27!, except that2 log2 r is replaced byr 2.
The situation is different for the isovector mode~Fig. 11!.
The entropy contains more information than the dynami
variable. In addition to the frequencies in the region of
ovector monopole resonances (25–30 MeV), there
strong peaks at the frequency of the isoscalar resona
They are related to the compressibility modulus of t
nuclear matter. The entropy of the total density theref
contains information about both modes, but now we not
that the Fourier spectra for the neutron and proton entro

e

to
e

FIG. 10. Fourier power spectra of the total~a!, neutron~b!, and
proton ~c! entropies, for isoscalar monopole oscillations.
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are different. For neutrons the peaks in the region of isov
tor excitations are strongly suppressed, and there is fragm
tation at the frequency of the isoscalar mode.

The radius of a heavy spherical nucleus like208Pb is
'5 –6 fm. The giant multipole resonances represent col
tive oscillations of the proton and neutron densities, a
therefore provide excellent physical examples for the an
sis of systems that have spatial as well as temporal struc
For a nonlinear system in chaotic regime, we might consi
the influence of spatial motion on temporal chaos. We
what are the spatial correlations in a finite system that
plays chaotic oscillations of a collective dynamical variab
Consider, for example, the conditional entropy defined fr
a two-body total density,

S2~ t !52E r2~rW,rW8,t !log2F r2~rW,rW8,t !

r~rW,t !r~rW8,t !
Gd3r d3r 8,

~28!

where the two-body density matrix is defined from the Sla
determinant of occupied states

r25(
ki j l

^ i ur̂~rW !u j &^kur̂~rW8!u l &^F~ t !uai
1ak

1alaj uF~ t !&.

~29!

In coordinate representation the expression becomes

FIG. 11. Fourier power spectra of the total~a!, neutron~b!, and
proton ~c! entropies, for isovector monopole oscillations.
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c-
d
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re.
r
k
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.

r

^F~ t !u: r̂~rW !r̂~rW8!:uF~ t !&5r~rW !r~rW8!

2(
i j

Z

c i
1~rW !c j~rW !c j

1~rW8!c i~rW8!

2(
i j

N

c i
1~rW !c j~rW !c j

1~rW8!c i~rW8!.

~30!

c i(rW) denotes the single nucleon Dirac spinor, andZ(N) is
the number of protons~neutrons!. The conditional entropy
~28! should provide a measure of two-body spatial corre
tions. For some kind of collective motion, regular or chaot
this function contains the following information: how muc
are the oscillations of nucleon density at some point in sp
determined by the oscillations at some other point in
system, i.e., what are the correlations between oscillation
nucleon density at various points in the finite system.

The time-dependent entropies~28! that correspond to
isoscalar and isovector oscillations are shown in Fig.
They are compared with the value that results from the tim
evolution of the system that has not been excited~time-
dependent entropy of the ground state!. For the isoscalar
mode, regular modulated oscillations are observed. Com
ing also with the reference ground-state entropy, we no
how the numerical accuracy affects the results for long tim
of integration (T.2000 fm/c). The entropy that corre
sponds to the isovector mode is much lower and more irre
lar at the beginning, but it eventually approaches valu
comparable to those of the isoscalar mode. Similar to
entropy defined on the one-body density operator, this
havior reflects the strong mean-field damping of the isov

FIG. 12. Time-dependent conditional entropies~28! for isosca-
lar and isovector monopole motion. The thick solid line is the r
erence ground-state entropy.
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tor oscillations. The information contents of the ‘‘two-body
entropies are shown in the corresponding Fourier po
spectra in Fig. 13. For the isoscalar mode we again find
the entropy contains the same information as the dynam
variable, a single mode at the frequency of the giant re
nance. This means that there is a high degree of two-b
correlations for the isoscalar mode, the nucleon density
cillates with the same frequency at all points in the nucl
system. For the isovector mode we do not find any use
information in the Fourier spectrum. There is a highly fra
mented structure in the region of the isoscalar giant re
nance, but in addition we find strong peaks in the very l
frequency region. This result indicates that there is very li
spatial correlation for the isovector oscillations of t
nucleon density, or that the nonlinear nuclear system os
lates in a regime for which the Fourier spectrum of the c
ditional entropy~28! does not contain useful information.

In the previous section, we have used the average mu
information function to determine the time delay for the r
construction of the phase space. This function quantifies
information that is contained in the signal, at some mom
in time, about the value of the dynamical variable at oth
times. Since we describe isoscalar and isovector oscillati
i.e., we distinguish between proton and neutron compon
of the system, we might ask how much information is co
tained in the dynamical variable of the neutron distributio
about the proton subsystem, and vice versa. The two dyn
cal variables in this example are the mean square radii of
two distributions. We define the information function

I p~n!~e!52(
i

Pi~xp~n!!log2 Pi~xp~n!!. ~31!

The signalx is quantized in units ofe. The probability dis-
tribution Pi(x) corresponds to the frequency with which a

FIG. 13. Fourier power spectra of the conditional entropies~28!
for isovector~a!, and isoscalar~b! monopole oscillations.
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given value of x appears in the boxi of dimensione. The
sum is over occupied boxes of dimensione, in the one-
dimensional embedding of the time series. For two time
ries, the corresponding joint information function is

I p,n~e!52(
i , j

Pi , j~xp ,yn!log2 Pi , j~xp ,yn!. ~32!

The joint distributionPi , j corresponds to the frequency wit
which a box (i , j ) ~linear dimensione) in the xp versusyn

plane is occupied. The average amount of information ab
the variabley that the variablex contains is quantified by the
mutual information@14#

Mx,y~e!5I x~e!1I y~e!2I x,y~e!. ~33!

Clearly, the mutual information vanishes ifPi , j (x,y)
5Pi(x)Pj (y), i.e., if x and y are statistically independen
The precise value of the mutual information will of cour
depend on the size of the boxe, but one should try to find a
region of values fore in which Mx,y(e) does not vary ap-
preciably.

In our example of giant monopole resonances, the v
able x corresponds to the mean square radius of the pro
distribution, andy to that of the neutron distribution. Th
mutual information functions~in units of bits! are displayed
in Fig. 14, for the isoscalar and isovector oscillations. T
acceptable values fore depend on the sampling of the tim
series. Fore<0.2 fm2 the probability distribution functions
cannot be properly determined, there are many empty bo
and the calculated mutual information is not useful. F

FIG. 14. Mutual information~33! between the time-dependen
mean square radii of the proton and neutron density distributio
The two curves that correspond to isoscalar and isovector osc
tions are plotted as functions of the size of the box in the lin
embedding of the time series.
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larger values ofe the calculated mutual information chang
very slightly, practically with the same slope for isosca
and isovector modes. Of course, the principal result is
comparison between the two modes: the average amou
information that̂ r 2& of the proton density contains about th
dynamical variable of the neutron distribution is more tha
factor of 3 larger for the isoscalar mode.

Another interesting possibility is to consider the mutu
information as a function of the spatial coordinate. Instead
using as dynamical variables integrated quantities such a
mean square radii, we can follow the time evolution of t
proton and neutron densities at various points along the
dial axis~the motion is spherically symmetric!. The dynami-
cal variablesx and y will be the values of the proton an
neutron densities at each point in space, and we can plo
average mutual information of the densities as function
the radial coordinate. The results are shown in Fig. 15
addition to 208 Pb, we also display the mutual informatio
for 16 O and 40Ca. These two spherical nuclei are small
but have the advantage of containing identical numbers
protons and neutrons. In all three nuclei the mutual inform
tion of the proton and neutron density is much higher for
isoscalar mode. In fact, for16O and 40Ca, the mutual infor-
mation for the isovector mode practically vanishes, and
radial dependence is observed. It is somewhat higher
208Pb, and with some modulation, slowly decreases from
center of the nucleus towards the surface. The isoscalar m
displays a very interesting radial behavior of the mutual
formation. It is high in the nuclear volume, but there is a
a pronounced minimum at the radius that corresponds to
surface of the nucleus. This means that there is little co
lation between proton and neutron densities in the surf

FIG. 15. Radial dependence of the mutual information betw
proton and neutron density distributions. Results for16O,40Ca, and
208Pb are displayed. Solid curves correspond to isoscalar osc
tions, dashed curves to isovector oscillations.
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region, they oscillate almost independently. The mutual
formation increases again beyond the ground-state radiu
the nucleus, but in this asymptotic region the densities r
idly decrease to zero. Of course, the behavior in the surf
region is not completely unexpected. The nucleons at
surface are less bound, and the effective compression m
lus of the surface region is different from that in the volum
of the nucleus. For example, the nucleus208Pb contains 82
protons and 126 neutrons. However, due to the combi
effects of Coulomb repulsion between protons, and the P
exclusion principle, the protons occupy practically the sa
volume as the neutrons. Yet the dynamics for the two ty
of nucleons seem to be very different in the surface regi
The slowly vibrating self-consistent potentials, in which t
protons and neutrons move, do not average on the surfac
the same way as in the bulk region. It is very interesting h
the details of the underlying nonlinear dynamics emerge
the radial behavior of the mutual information function.

V. CONCLUSIONS

In the present work we have used the time-depend
relativistic mean-field model to analyze the nonlinear d
namics of giant resonances in atomic nuclei. The charac
istic properties of these collective excitations vary smoot
with the size of the nucleus, and therefore a self-consis
mean-field approach provides a consistent description
nucleon dynamics. In particular, we have analyzed the t
series of dynamical variables that characterize the g
monopole resonances: isoscalar~proton and neutron densi
ties oscillate in phase!, and isovector~proton density oscil-
lates against the neutron density!. The nucleons move in the
effective self-consistent single nucleon potentials, and
equations of motion describe the time evolution of the o
body density. Since the time-dependent potentials are ca
lated in a self-consistent way, the model of the nuclear s
tem is intrinsically nonlinear, and chaotic motion is expect
for specific initial conditions. The time-dependent model d
scribes the collective dynamics on the mean-field level, i
there are no contributions to the dissipation of collective m
tion from two-body collisionlike processes and from the e
cape of individual nucleons into the continuum.

From the time series of isoscalar and isovector monop
moments of208Pb, we have reconstructed the correspond
phase spaces. The time delays have been calculated from
average mutual information, and the embedding dimensi
determined by the method of false nearest neighbors.
reconstructed phase spaces have been represented by
rence plots. We have found that for the isoscalar mode
recurrence plot displays a pattern characteristic for reg
oscillations, while for the isovector mode it indicates no
stationarity. From the reconstructed phase spaces we
also calculated the correlation integrals and the correspo
ing correlation dimensions. As a function of the embedd
dimension of the phase space, the correlation dimensionD2
saturates at the integer value 2 for the isoscalar mode. On
other hand, a fractional correlation dimension is found
the isovector oscillations. The results confirm our conc
sions from Ref.@1# that the motion of the collective coordi
nate is regular for isoscalar oscillations, and that it becom
chaotic when initial conditions correspond to the isovec
mode.

n

a-



e
n-
, w
nc
y

d
th
re
at
co
ty
tia
th
th
tu
e

ca
,
W
to
a
fo

is-
dif-

the

Ref.
ex-
m-

en-
ral
ve
n:

pe-
m,

the

in-
6

PRE 60 319NONLINEAR DYNAMICS OF GIANT RESONANCES IN . . .
The nonlinear dynamics of giant resonances has also b
analyzed in the framework of information-theoretic functio
als. For the time-dependent one-body nucleon densities
have calculated the von Neumann information entropy fu
tionals. The Fourier analysis has shown that the entrop
the isoscalar mode contains the same information as the
namical variable. The structure is more complicated for
isovector mode, for which peaks are found both in the
gions of isoscalar and isovector eigenfrequencies. The sp
correlations have been described with a time-dependent
ditional entropy defined from a two-body nucleon densi
This function enables the study of the influence of spa
motion on temporal chaos. From the dynamical variables
characterize the proton and neutron distributions, i.e.,
mean square radii, we have calculated the average mu
information for the isoscalar and isovector modes. The av
age information that is contained in the collective dynami
variable of the proton density, about the neutron density
more than a factor of 3 larger for the isoscalar mode.
have also analyzed the mutual information between pro
and neutron densities as a function of the spatial coordin
It has been shown that, not only is the average mutual in
en

e
-

of
y-
e
-
ial
n-
.
l

at
e
al

r-
l

is
e
n

te.
r-

mation much higher for the isoscalar mode, but it also d
plays an interesting radial dependence which reflects the
ferences in the dynamics of the monopole motion in
volume and on the surface of the nucleus.

The results of the present analysis, as well as those of
@1#, have shown that giant resonances in nuclei provide
cellent examples for the study of regular and chaotic dyna
ics in quantum systems. In addition, the finite spatial ext
sion of nuclei enables the analysis of spatiotempo
behavior in nonlinear dynamical systems. And yet we ha
only examined the most simple modes of collective motio
monopole oscillations. More complicated excitations, es
cially those involving spin and isospin degrees of freedo
would certainly disclose more interesting properties of
underlying nonlinear dynamics.
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