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Polaron in the Wigner lattice
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We analyze the polaron in a Wigner lattice, i.e., the interaction of an external electron with electrons in a
quasi-two-dimensional Wigner crystal, configured on a dielectric layer with a metallic substrate. Particular
attention is paid to the dynamics of the system and to the electron-phonon interaction. The polaron wave
function and ground-state energy of the system are calculated in the extended small-polaron theory. The theory
is based on the complete set of Wannier functions, which enables us to treat also the polaron dispersion and the
first correction to the standard polaron self-energy. We also discusE-=tte Wigner phase transition, i.e.,
melting of the electron lattice due to increased electron density. The general agreement with the results
obtained previously within the Schiimger-Rayleigh perturbation theory is good, but also we found some
significant differences. The new calculations show fliathe polaron dispersion is significant at all electron
densities and in most cases it resembles the dispersion of lattice ele¢irptie critical density parameteg
for a Wigner phase transition in a high density region is close to the waks@0 predicted for a strictly
two-dimensional Wigner lattice, regardless of the dielectric layer thickn864.63-182609)02110-4

I. INTRODUCTION on.” In high T. superconductors one also uses the term
“Wigner polaron.” But in that case the electrons of Wigner
Electron-phonon interaction is by all means one of thelattice interact with the phonons of superconductor lattice
most investigated problems in the solid state physics. Starand thus behave as polardhi our model the lattice elec-
dardly it assumes the interaction of a free-like electron withtrons are deposited on a dielectric layer with a metallic sub-
the vibrations of the atom@ons) in the crystal lattice. As a  Strate (which provides charge neutraljtyand we take into
result, the electron is “dressed” by lattice phonons and recaccount only their static interaction with the substrate
ognized as a polaron. Here we are interested in a quasi-twdhrough the image potential. The dynamical screening occurs
dimensional(2D) Wigner lattice. This lattice, theoretically when an external electron, added in between the lattice elec-
predicted long ago by Wignkrnd first experimentally de- trons, interacts with lattice phonons and as a main effect
tected by Grimes and Adamss formed by electrons on a shifts them into coherent states.
dielectric layer at very low temperatures. Obviously, one can In Ref. 5, hereafter denoted as |, we have analyzed the
add an external electron among lattice electrons and ask f@olaron in the Wigner lattice within the Schiiager-
the interaction of this free-like electron with lattice vibra- Rayleigh perturbation theory, treating electron-phonon inter-
tions, i.e., for the polaron in the Wigner lattice. While the action as a perturbation. The system was the same as the one
lattice vibrations are knowh? here we wish to investigate discussed here, i.e., quasi-2D Wigner lattice on a dielectric
the properties of a Wigner polaron. There are some obvioulgyer with a metallic substrate. Recentlgef. 8 we tested
differences between this and the standard polaron problenthe theory developed in | in the purely theoretical model of a
Namely the lattice electrons are much lighter than the atomstrictly 2D Wigner lattice. Notice that within this model
so the electron-phonon interaction is expected to be mucthere is no image potential and no difference between the
stronger. Also lattice electrons will try to repel the free-like average electron-electron interaction and the screening due
(external electron rather than to attract it. In that sense thdo the positive background, which were important in . We
external electron will “hop” from one site in between the calculated thel' =0 phase transition of a Wigner lattice and
lattice electrons to another instead of “hopping” from one obtainedr.=16, wherer. is the critical, phase-transition
lattice point to another. There is another possibility for thevalue of the density parametey= 1/Jmna,. Herea, is the
external electron, i.e., it can become a regular lattice elecBohr radius and is the 2D electron concentration. The first-
tron. The critical density which divides those two qualita- principle ground-state calculatichgive r.=37+5, so we
tively different behaviors of the system can be determinedhad to reexamine our approach. We found that for a strictly
and then used as a definition for tHie=0 Wigner phase 2D Wigner lattice the electron-phonon interaction is very
transition® important and therefore cannot be successfuly treated as a
To our knowledge the problem of a polaron in a Wigner perturbation. We developed a new approach, based on an
lattice was not much investigated. A similar problem wasextended small-polaron theory, which gave us the expected
recently analyzed for a bilayer electron systém.that case resulf r ,~40.
an electron at a fixed distance from the 2D Wigner lattice The above discussion stresses great influence of the dy-
interacts with lattice electrons thus forming a “remote polar-namical screening of an external electron on the determina-
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tion of the T=0 Wigner phase transition. Clearly, the dy- term (W®® describes the-averaged electrostatic repulsion
namical screening is an essential problper seso in this  of |attice electrons in their regular sites.
article we elaborate our new approach in more detail than in - The HamiltonianH, of an external electron can also be

Ref. 8 and apply it to the more adequate model of a quasi-2[jyided into three main parts: kinetic eneryimage poten-
(i.e., perpendicularly delocalizedVigner lattice on a sub- g vim and interactiorl with lattice electrons in their regu-
strate. Besides the=0 Wigner phase transition, we discuss |gr sites. After averaging) over the perpendicular lattice
in particular the polaron localization, self-energy and disper|ectrons coordinates we find

sion and compare it with the dispersion of lattice phonons.

We analyze properties of a Wigner polaron following the He=K+V™M(2)+U(p,2). (4)
basic concept of the small-polaron thedPybut without

making the approximations characteristic for this theory As in the case of lattice electrons, we shall assume the
when it deals with aratomiclattice. In that sense we apply external electron wave function to be a product of a perpen-
the canonical transformation to the Hamiltonian in order todicularug(z) and a parallely.(p) components. For the per-
obtain the small-polaron type of the external electron selfpendicular ground state(z) has a standard form:

energy, but we also calculate the first correction to this term

which could have an important role in the caseetdctron Ue(2) =203’z exp — aez), )
lattice.

The layout of the paper is as follows. In Sec. Il we define
the Hamiltonian for our system and put it in the form appro-
priate for further transformation by dividing it into dynami-
cal and static parts. The appropriate tight-binding approach i
elaborated in Sec. Ill, resulting in the closed expression fo
the total energy of the system which explicitly includes the He(p) =K|(p)+ (€™ +(Wo)+AU(p). (6)
polaron dispersion. The external electron wave function is _
given in Sec. IV as a sum over the complete set of exactlyf he z-averaged value ofi, +V'™) gives the image energy
orthonormalized Wannier functions. In Sec. V we calculate{€"") of the external electron, while treaveraged periodic
and discuss our results and compare them with those derivaptentialU can be expanded into a Fourier series, where the

where «, is the variational parameter which determines a
perpendicular delocalization of the external electron.
Dividing kinetic energy operatd( into its parallelK; and
erpendicularK, components and averaging Hamiltonian
54) with ug(z) we obtain

in 1. The conclusion is given in Sec. VI. summation is performed over all reciprocal lattice vectérs

In this expansiofW,) represents th&=0 term of electron-
Il. MODEL HAMILTONIAN electron interaction and th@-dependent term df) is
We analyze the interaction of the external electen _ iG

placed at a lateral positiop and at a distance above the AU(P)‘(;, (W(G))e™". @)

dielectric surface, with electrons of a Wigner lattice. The ] ]

Hamiltonian of this system: It contains allG#0 Fourier component§W(G)) of the
z-averaged interaction of the external electron with lattice

H=H, +H+Hq. ) electrons in their regular sites.

o ) . ) The termH,, in Eq. (1) describes the dynamical part of
is discussed in detail in I. For the sake of clarity we shallthe external electron interaction with lattice electrons. After
briefly explain the main terms, using the same notation as iReraging over it takes the standard form of the electron-

. _ _ o phonon interaction?
The termH,_is the lattice Hamiltonian. We assume that

electrons form a quasi-2D hexagonal Wigner lattice, depos- » +
ited on a dielectric layefe.g., liquid Heé of thicknessd and HeL(p):; % e Mp(aptac qp), ®
placed on a semiinfinite metallic substrate. Following the

arguments given in | we factorize the lattice wave functionwhere thez-averaged matrix elements are:

into the lateral and perpendicular part. After averaging over
the perpendicular component we find

1/2
) kcos® (k, k). 9)

1
Mkp:\/_N<W(k)>

1 2Mw
HL=Hosct (EM) + 5 (W°S). (@) The angled (k, ) is defined as the angle between the Fou-
rier wave vectork=k+G and the direction of the &, p)

The first term mode polarization.
L Notice that thez-averaging in the Hamiltoniars.(p) (6)
_ + andH¢ (p) (8) is performed with perpendicular wave func-
HOSC_EK Ep | At E) 3 tions of both lattice electrons and the external eleci{®n
Therefore thez-averaged terms in those Hamiltonians de-
describes the energy of the two phonon mopeg +,—) of  pend upon the variational parameter, which we shall de-
a Wigner lattice with frequencies,, . « is the phonon wave termine later, and upon the corresponding lattice parameter
vector in the | Brillouin zondl BZ) andakp(azp) are boson («), which was calculated and discussed in I.
operators which annihilatereate phonons. The termig'™) The total Hamiltonian(1) of our system is now trans-
gives thez-averaged contribution of an image energy and thformed into
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— —Y . stal
H(P)_HL+He(P)+HeL(P)_Hd|n+<E 5! (10) AU(ﬁ):J’dP(D\’;V(P—ﬁ)AU(P)CDW(p)

where
Han=Hosst K|(p) T AU(p) T Her(p)  (1D) =n 2, (W(G))ge(). (16

represents the dynamical part of the system, while
. HL(8)= [ dpio— o= DHeu(p)uip— )
(B =(EM)+ 5 (W) +(e"™)+(Wo) (12)

.. 0
_ _ o =2 D €M (D (aptal o), (17)
denotes the static part, which does not contain either the Kop

lattice phonon operators or the parallel coordinate of the eXynere we have introduced the “overlap” function:
ternal electron.

— * _ ik,
lll. TIGHT-BINDING APPROACH gk(cﬂ—J dp®y(p— o) Dw(p)e™

Let us expand the external electron wave functiog(p) 11 . ) s
over a complete set of orthonormalized functiah$p). As “oN kz Pk )Pw(k'—k)e™ . (18
a complete set we can take, e.g., the Bloch functiop$p), _ _ _ S _
wherek, denotes the Bloch wave vector in the | BZ, or the Notice that in the extreme tight-binding limg (o) differs
Wannier functionsj(p— pjo), defined for each regular lat- from zero only foré= 0, which gives the diagonal part of the

. CL 0. Hamiltonian(14).
tice pointp; : The generalized matrix elements in E§7):
— — —o9ec.
wm—% wkgp)cke—; ywip—p))c;. (139 Moo =S G (MM (19

HereCKe(cj) are fermion annihilation operators in the Bloch satisfy symmetry relationM _,,(— @=exp@xé)Mﬁp(®,
(Wanniep representation, respectively. which for real Wannier functions transforms into standard
In I we have treatedti as a perturbation, s&¢(p) was  relation:M_ ,(8) =M, ().

the solution for the static periodic potential. In Ref. 8 we  The termH., () depends explicitly on the lattice coordi-

have shown that in the case of strictly 2D Wigner latticeate p]Q and the phonon operators,, a‘rp so that the

. . 1 “Yp
better results are obtained when the electron-phonon interagamiltonian(14) cannot be exactly diagonalized. In order to
tion is (partly) included in the unperturbed Hamiltonian. This diagonalize the main part of electron-phonon interaction we

latter approach is generally preferred when the electronghg|| apply the canonical transformatith:

phonon interaction plays a particularly important role. As-

suming such a situation here, we shall diagonalize the main Hgm= e’SHdmeS,

part ofH,, following the “small-polaron theory.®° In some

steps we shall generalize this theory so that we could take _

into account the specific properties of alectroniclattice, S=2 cfe; 2 X Spap—al g,

also quoting the standard approximations in the *“small- ' ©oP

polaron” approaches foatomiclattices. . oM (0)
We start by representing the electron wave functibd) sl p=e‘ wpy LT

by Wannier functions. This affects the last three terms in the @iep

dynamical part of the Hamiltoniafil1) which contain the  operatorS contains onlyé=0 term, but allG terms are

external electron coordinate. Therefore we can WHtg, i jncluded iNM ,,(0). Foratomic lattices onlyG=0 term is

(20

the second-quantized form as usually taken into account.
The transformatiori20) simply shifts the phonon opera-
: R toql ; ;
Hgin=Hosct > > C;r+5cj[KH(5)+AU(5)+HJeL(5)]- tOrs: a,,=a,p— =jC; ¢S}, while the f(_erm|on operators are
[ changed asc; = X;c¢;=c;X;, whereX; is the unitary opera-
(14 tor:
By &=(p{—pj) we denote the difference between any two _
regular lattice points. The energy terms in Efj4) can be Xj:eXF{E > SLp(aKp—ath) .
K P

written in both the direct and Fourier space as
The transformed Hamiltonia(20) takes the form

Ku(5)=f dpdy(p— HK(p)Pw(p)

1 21,2

=ny 2 S lowl (15 X[K|(&+AU(S X, X +HT. (2D

T _ T eL T
Hdin_Hosc+Z CiCjeg +Z 26 Ci+6Cj
J ]
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In Eq. (21) we have extracted thé=0 term from electron- It enables us to write the contribution from the “overlap”
phonon interactioi !, , so that this term together with a part 6#0 terms of the electron-phonon interactié®3) in the

of lattice Hamiltonian H].. gives the standard polaron transparent form:

self-energy’
eL 1 2 <Oph|Hé[|0ph>=2 go CJTI--%—&Cje_SO(&EeL(&),
6 =2 2 M0l (22
K p pr
The remaining ternH’[ in Eq. (21) describes the part of EeL(®:§ % (1+e1%9) 6%(5)' o9

electron-phonon interaction which involves electron coordi-
nates at two different lattice cell$¢ 0) and therefore in the  Notice thate®-(0)= ZESL.
tight-binding approximation is supposed to give much Finally we can write the zero-phonon average of the
smaller contribution to the electron energy than the polaromtyamiltonian(21):
self-energy(22). In standard calculations this term is usually
neglected, but in the case of electron lattice we expect that its _
contribution to the electron energy could be even more im{Op HiinlOp = (E®) +€5">, clc;+ > >, e %@
portant than the contribution from the nondiagonat#(Q) ! I o%0
terms of glectron.klnetlc and potential energy. After some X[K”(g)JFAU(gHeeL(g)]CjTMCj, (26)
manipulation we find
where(E®9 is the standard zero-phonon contribution of the

, unperturbed lattice Hamiltonia(8), calculated in Ref. 11,
Hi=2 2l oXl X2 2 and
j 6#0 L
X[ M 4 8) (B, + a1 )~ 2€l( D], €0"= €6 T K)(0)+AU(0). @
Mkp(@sz(o) The terms in the Hamiltoniaf26) do not depend explic-

(23)  itly upon the lattice coordinates and the summation gver
includes only the operatouﬁﬂr &Cj - Therefore we can diag-

Although we expect that the external eletron will be well onalize the Hamiltoniari26) if we introduce the Bloch in-
localized between lattice electronsye have made no such stead of Wannier operators, as defined in @4). It gives
assumption yet, i.e., Hamiltoniari$1) and (21) are exactly
equivalent. At this point we shall assume that the canonical : )
transformation(20) enables us to take the phonon groundgoph|Hgin|0ph>:<E053+g [58m+ ed'”(KeHCZecke- (28)
state|O,) as a good approximation for the ground state of ¢
the system. It is clearly the exact phonon ground state of thghe second term in E§28) represents the dynamical part of
Hamiltonian(21) if only 6=0 terms are taken into account. the external electron energy. In the Bloch stbkg) it is
Note that if we transform the state vectors instead of thejiven as a sum of the “nonoverlap’d= 0) contributionegin
Hamiltonian, we find that the canonical transformati@® (27) which does not depend upog,, and the “overlap”
pushes the unperturbed phonons into their coherent stategs0) contribution which depends upas, as
|0con =€%|0p, in which the main =0) part of electron-
phonon interaction gives an energy ship). . .

Now we wish to determine the corrections to the ground €(re)= >, e SI[K (8)+AU(H)+eH(§)]e .
state energy due to the contribution of variofi 0 terms. %0
First we calculate (29)

M
€. (5):
P hw,q

Obviously, e®"(k,) is real because all energy terms in Eq.

(Opt X1 X Opry = X — So( )] (29) satisfy e(— &)= €* ().

which gived? Assuming that the systefiVigner lattice+ external elec-
g tron) is in the statgOp)|x.), the total energy of the system

M (0)]2 follows from Egs.(10) and (28): E™'=ES@Y4- (E%S9 + )"

S(d=> > [1—cos{xﬁ)]L. (24 * €%"(x,), or more conveniently we can divide it into tE&

K P ho,p 2 (lattice) and E®" (external electront interaction contribu-

tion:
After lengthy but straightforward calculations we find the

next needed average Et=EL 4 E®L(4,), (30)

Ty, icp! T
<Oph|xj+&szk % [e pJMKp(&)(aKD—i_a—kp)]loph) EL:<Eim>+%<Wee>+<EOS(>, (31)

:e*So(é’)EK Ep (1—e <9 e,'\fp(ﬁ). ECY (ko) = (&™) + (Wp) + €3+ 9" c,). (32
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IV. POLARON WAVE FUNCTION

In order to calculate the energy of the external electron in
the [0, |xe) state of the system we first have to determine
the wave function of the Bloch state,). Following I, we
put

—i _ 0 ikepQ
U (P)= JN; @, (p—p))e'" e, (33)

Although we assume thdpke(p) depends explicitly on,,

the wave function(33) satisfies the Bloch theorem for any
<I>Ke(p). We also need the corresponding Wannier function:

1 ‘
wlp) = 2 2 . (p—p))e e, (34)

Notice that the Fourier components #y(p): FIG. 1. 2D hexagonal lattice with primitive vectoesh. Full

_ _ circles represent regular positions of lattice electrons and empty
Yw(K)=gn(retG) = 1+ C) (39 circles the most probable positions of an external electron. Also
are not the Fourier components of a single functiep (p) shown are reciprocal lattice vectodsB and the irreducible part of
e

because in Eq35) we have the same wave vectes=rin ¢ | BZ, determined by the special poirts X and.J.
the subscript and in the argument of the functibp. Par-
ticularly, if we assume tha@Ke(p) does not depend upon

K., it would represent the true Wannier functiof(p)
=(I)Ke(p), as discussed in I. _ _ _
The functions¥,(p) should be normalized, which gives which for x.= k also gives the Fourier transfor(85) of the

in the direct and in the reciprocal space, for aqy Wannier function.
The coefficientC,. in Eq. (38) follows from the normal-

ization condition(36) or (37):

@, (K)=n2mwa2 C, > e Mexp — o2 k?2),
e e e | e

S e[ dpdiip-00up -1, (@39

n% |® (k+G)|?=1. (37) Jro,

To this point we have made no assumption about the ex- ¢/ -2=% =ik > exq — (6+5,—§)¥402]

ternal electron wave function. It is uniquely specified in ) T

Bloch (33) or in Wannier (34) form by the tight-binding

function @, (p). Following I, we expect that the external —4mnoly, exq — oi(k+G)?]
G

electron, being repelled from the regular lattice sites, is lo-
calized somewhere around the two points in each lattice cell (39
where it has a minimum potential ener(fig. 1), so we can
write The dimensionless coefficied,, is given in bothé and G
expansions. At some specifie values it happens that the
P, (p)=C, 2 b (p—9). (39) leading terms in one expansion are canceled so one should
€ € € use another expansion to precisely deterntirje

In order to preserve th€, symmetry of the hexagonal From now on we shall assume that delocalization param-

Wigner lattice when the overlap of the tight-binding func- elero,,=oe does not depend_u_pa@, SOCI)Ke(p) will de-
tions is taken into account, instead over two lattice pointsPend upork, through the coefficient39). In | we have used
we actually have to sum over six lattice poftés,|  the Bloch function with theo () dependence determined

=1,2...6 which form the hexagon around each lattice from the behavior of an external electron in a static periodic

electron(Fig. 1). The potential energy of the external elec- Potential. This dependence was rather smooth, which also
tron is nearly harmonic around these points so wé put _ustifies our assumption. The same assumption was also suc-
cessfully applied in Ref(8).

b (p):exq_p2/20i ), The Wannier function?"(p) is shown in Fig. 2. For,
¢ ¢ =100 A we put the(optimum value 0,.=16 A (Fig. 3.
where o, is the lateral delocalization parameter which we With the same parameters and fer=0 we also show the

e

shall determine later by the variational calculation. tight-binding function ®, _o(p) and the Bloch function
Now we can find the Fourier transform df, (p): ¥, ~o(p), which takes a simple form:

2

2 e i(Kkt0)g
T
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0.15
c 0.10
S ]
B =
5 <
o < i
g 0.05
] d=20A
d=
1 d="100 A
0.00 —
T T T T T
2 1 0 1 3 ]
(11 P/, [10] 0.20 ..

FIG. 2. The Wannier wave functiod" (full line) compared ]
with the tight-binding functior®, _, (dotted ling and the Bloch 0.15 7
function (arbitrary scalg \Ifke:o (dashed ling Also shown is the i
electron density ¥, _o|* (dashed-dotted line The functions are
shown along the two different directiop$0] and[11] of a Wigner
lattice and full circles represent regular positions of lattice electrons

o,/ry

0.10

in these directions. 0.05 ‘
0.00 ey —
1 S g o 1 s o 100 1000 10000
Vo _o(p)=—= > TWV(p—p%)=—=> &, _o(p—p?). ;
Kefo(P) \/N j (P p; ) \/N ;i Kefo(P Y ) rO(A)

FIG. 3. Relative spreadz./ry ando./r of an external elec-

tron wave function as a function of,), for three different thick-

As expected, wave functions have zeros at the regulafessesd of a dielectric layer(liquid He). Dotted lines represent
positions of lattice electrons. Notice tha¥?“V(p) and corresponding values derived in I.

<I>Ke:0(p) are almost the same at the first maximum, but

further from that pointd (p) decreases exponentiall We stress that this intuitively expected behavior was derived
. W ) P S0 p ) P .y With qnly one parqmeterde), determined uniquely by the
while ¥¥(p) oscillates in order to satisfy the orthogonality yariational calculation.

requirement. These oscillations decay showing local maxima
(minima) at points that are equally separated from the neigh- V. RESULTS AND DISCUSSION

boring lattice electrons. Precisely at those pofiftg _o(p) Knowing the external electron wave function we can cal-

has also maxima, but fok,=0 they are all of the same culate the electron energy as a function of a Bloch wave
intensity. The corresponding density of the external electrovector «,. Let us first calculatey,(8) which enters either
|‘I’Ke:o(P)|2 is well localized between the lattice electrons. directly or throughM () in various energy terms:

1 -
Ol D=5 > exocixc!,  exg—oi(k+G)%4] D, codd (— K + K2+ Gl2)]
K &

K' — K

XE 2 eXF[—(ﬁ’+S‘,_S|)2/40_§]ei(s|/+s|)(lc+(3)/2
|

K

Z| P~

> €%%mmolCIFCl, | > exl— ok —G')2— (k' — k+G' —G)?2]
K G’

Xz 2 ell(K' +G")g/— (k' —k+ G’ ~G)s]
Y
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To calculateg,.. () we have to sum over wave vectors the results are then compared with the first-principle calcu-
k' and over direct §') or reciprocal G’) lattice vectors. lations which determine separately the ground-state energies
Whether we shall sum ove¥ or G’ depends upow, and  of the 2D electron lattice and the 2D electron gas as func-
ro: for 2o./rg< (>)1 the expansion ovep’(G') con- tions of electron density. The crossing point between those
verges faster, respectively. The summation aweis trans-  curves can be taken as the definition for the critical density
formed into integration in a standard way and it must beparameter and the improved variational Monte Carlo calcu-
performed over the whole | BZ. To obtain various energylations giver .= 37+ 5. Similar values are derived from dif-
terms we have to sum again ov@rand overx. Due to the  ferent theories with different melting mechanisms, but some
symmetry, the summation over could be performed over calculations also predict significantly lower valtésEvi-

the ir;jreducibile part of the | BZ only in the casec.=0, .., dently, the definite answer is yet not given and one could
in

for ey . even expect that various melting mechanisms could act to-
gether to destroy the Wigner lattice.
A. Delocalization parameters Following the theory developed in |, we can calculage

by comparing the ground-state energy of the external
electron added in between the lattice electrons, with the
chemical potentiak, of a perfect Wigner lattice. This com-
parison will show whether the external electron will become

Now we are ready to calculate the perpendicutgrand
lateral o, delocalization parameters from the variational
principle, by minimizing the total energy of the systég0)

n |Its grj]round Stfgttfppha."‘ﬁz 0). In faﬁt we ha}é)e to mf|n|m|z§ localized as one of theN+ 1) regular lattice electronsu|
only the part ofE which contains the contribution from the """ i fofer 1o stay delocalized as a polarop(

external electron, or, as denoted in I, the chemical potentlaﬁﬂe)_ In the last case the lattice potential can no longer trap

of the external electron: the external electron, so in our approgeh= u. indicates
the beginning of the lattice melting and we take it as a defi-
nition for the critical density parameter.
= (€™ +(Wp)+K|(0)+AU(0) + 5"+ €"(1,=0). As in I, we shall first extract théws) term from bothy

(40) andu, . Here(W3) is a part of an average electron-electron

interaction{W,), which depends only upon the properties of

The first two terms depend only upam., the third term a dielectric substrate. This extraction can be done analyti-
depends only upowr, while other terms depend upon both cally, so the renormalized quantitie@,Q:Me—(\/\/S) and
parameters, which means that the minimization procedurg,’_:m—ﬂl\/g) can be compared much easier, as shown in
should be performed simultaneously. Fig. 4.

Calculated perpendiculanz,=\/3/2a, and lateral o In the high-densityregion, Fig. 4a), the crossing of the
spread of the external electron wave function are shown o,/ andu| curves determines the critical lattice paramefer
Fig. 3, together with the corresponding values derived in Ifor the T=0 Wigner phase transition. This happensr gt
The a, values are almost the same in both cases as a conse-36 A for d=20 A, rc~38 A for d=100 A, andr§
quence of the same shape of the image potential which.43 A for d=c. [Notice that for 2D hexagonal lattice the
mainly determines the perpendicular delocalization. The NeWensity parameter; is practically the same asy(A):r
o, values are generally somewhat larger because they a0 99z 4(R), ie., re~ré(A).] Interestingly enough, all

derived from the_electro_n energ(yﬂ,_O) which contains th? these calculated critical parameters are close to the value
electron-phonon interaction, and it was not the case in I_g7 opioin o for the strictly 2D Wigner lattidelt seems
However, forr,>20 A the external electron still remains

Il localized b he lati | that the image potential caused by the substrate and the per-
well “localized between the lattice electronsoe{ro  hangicular spreading of the electron wave functions have no
<0.22,Az./r(y<0.14), which was also demonstrated in Fig.

he el localization is i b o179 essential influence on thE=0 Wigner phase transition in
.2' T e electron localization Is Important becaasgosterion o high-density region. As compared with our results de-
it verifies the tight-binding approach.

rived in I, we find significant difference between the
_ N curves ford=20 A and almost no difference fai=—co.
B. Wigner phase transition Here the consistent treatment of the electron-phonon interac-

The optimum values o, and o, determine the proper- tion gives higher polaron energies in the presence of a strong
ties of the external electron in the ground state of the systenimage potential §=20 A) thus giving higheru, values
From those properties we shall first try to determine the critithan in 1.
cal density parametar, for the T=0 Wigner phase transi-  In thelow densityregion, Fig. 4b), our results are closely
tion, i.e., the transition from an electron solid into an electronrelated to those derived in I. The curves and x| have the
gas due to increased electron density. There was a considesame asymptotic behavior and the crossing point is not
able interest for this problem in the last few years. Similarlysharply defined. A detailed inspection gives the crossing only
as in the classical Kosterlitz-Thouless melting thetbrgome  for thed=20 A curves at,=~1200 A. Ford=100 A the
theoretical approaches explain ffies0 Wigner transition as  curves become practically the same fgr>2000 A (within
driven by the spontaneous generation and dissociation of dighe numerical errgr and for d=< there is definitely no
location pairst* Other approaches calculate, e.g., the changerossing. We can conclude that at very low densities we shall
in energy due to the point defecfspr use self-consistent have a Wigner lattice fod=o and a 2D electron gas fa
Hartree-Fock® or density-functiondf theory. The calcula- =20 A. This is expected because at low electron densities
tions are usually performed for the strictly 2D electrons andand for thin dielectric films the image potential of a dipole

pe=E°(1,=0)
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FIG. 4. (a), (b) Renormalized chemical potential of an external
electronu,, (full lines) and of a Wigner latticg:, (dashed linesas
a function ofry. The scale for is linear in the high density region
(@, and logarithmic in the low density regiofb). The w(ro)
curves on(a) are almost the same for=100 A andd=« and are
both above the correspondird=20 A curve.(c) Tight-binding
terms:e3" (full lines), €9"(0) (dashed lings andeS- (dotted lines.
The €%(0) curves ford=100 A andd=« are indistinguishable
and lie below the correspondirdy=20 A curve.

(electron + image layer dominates so it can prevent the
formation of the electron lattic¥
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FIG. 5. Energy of the external electrdre, as a function of the
electron wave vectok, taken along thé'X andI'J direction of the
| BZ in units of a reciprocal lattice parametgg=4//3r,. The
curves are shown for three lattice parameters and for three He lay-
ers. Thed=20 A curve forr,=3000 A is 10 times enlarged.
Full lines: A e, with electron-phonon term; dashed linése¢, with-
out electron-phonon term; dotted lines: free-electron curves
eo(rce) =h2k2I2m.,

electric layer leads to a weaker electron-electron
interactiort! and therefore to greater (less negativetight-
binding contribution. However it also leads, e.g., taer
phonon contributior® which (partly) explains the “mixing”

of energy curves with differend-values on Figs. @) and
4(b).

Notice that|e®"(0)|<|e3", valid at all given electron
densities, ensures good convergence for the tight-binding ex-
pansion. This expansion is expected to converge when the
electron-phonon interaction dominates the electron kinetic
energy'® In our case it holds because we take into consider-
ation only lower electron densities{>20 A). Moreover,
this density region also covers the critical density for The
=0 Wigner phase transition.

C. Polaron dispersion

Together with the ground-state energy, one usually wants
to calculate the polaron dispersidf(x,), which deter-
mines, e.g., the effective mass and the energy bandwidth of
the external electron. This term is usually hard to calculate,
and in | we have determined the dispersion of the external
electron in a static periodic potential of a Wigner lattice,
neglecting electron-phonon interaction. One of the main mo-

To demonstrate the influence of the typical tight-bindingtivations for this article was the inclusion of this term.
contribution on the external electron energy we show on Fig. Figure 5 shows the calculated external electron energy

4(c) separately the termel”, €"(0), andeg". Thinner di-

measured from the bottom of the energy bandd (s,.)
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=E®Y(k,) — E®Y(0)= €"(x,) — €9"(0). Theinfluence of the
electron-phonon interaction is clearly seen from the compari-
son of the dispersion curves with and withaft(8) term.
The Aeg(k.) curves without this term show much less dis- E
persion, resulting in an energy band much narrower than in 210" 4
the case of a free electron. As expected, the external electron, wio® I
coherently “dressed” by phonons, has much larger effective 0.000
mass than the free electron. However, with the nondiagonal
electron-phonon contribution included, the total dispersion
significantly increases. It means that the standard self-energy

5x10°
4x10°

3x10°

0.006

term (22) is not as good aproximation for the electron- = 0.004

phonon interaction in the Wignéelectron lattice as it hap- El ]

pens to be in the standafdtomiq lattice, so the correction 0.002 ]

to the standard self-energy cannot be neglected. Notice that ]

the curves representing the dispersion of an “undressed” 0.000 4

electron in a static periodic potenti@Fig. 5 in ) fall in

between the two types of curves shown here. 0.200
The comparison between the high-density, <30 A) 0.150 -

and the lower densityrq=300 A) parts of Fig. 5 demon-

strates the influence of the substrate. At high electron densi- 0.100 1

ties the dispersion is mainly determined by the direct 0,050

electron-electron interaction so it is almost independeit of

At lower electron densities, as a consequence of the image 0.000

potential, the dispersion depends upon the dielectric thick-
ness. Notice that the curves withosf(8) term show
greater dispersion fo_d=20 A than Tord:oo_ LOWer. d FIG. 6. Frequenciegin eV) of lattice phonons as functions of
VaIL.JeS mean grea_ter_lnﬂue_nce of th? image potential in Comthe phonon wave vectae taken along thé”X andI'J directions of
parison with a periodic lattice potential, so the external elecihe | BZ, in units ofg,. The curves are shown for the samand
tron moves relatively more freely in the lateral direction. o values as in Fig. 50 Thd=2s curve atr,=3000 A is 4 times
But whene®( ) term is included, lowed values also mean lowered. Full linesw, mode; dashed liness_ mode.

lower influence of this term so altogether we find a lower

dispersion. As expected, the competition between the imagglectron-phonon interaction into the diagonal part of the
potential and the polaron self-energy mainly determines thg-ansformed Hamiltonian. It transforms the unperturbed pho-
behavior ofu(ro) andAeq(xe) curves. non states into the coherent states and dresses the external
Further insight into the polaron dispersion one can obtairelectron by virtually excited phonons thus giving the polaron
by comparing it with the dispersion of lattice phonons, whichself-energy. The lattice is supposed to be initially in the
is shown in Fig. 6. Although calculated from quite different ground statéwithout real phonon excitatiorand we discuss
equations, the polaron and the phonon dispersions are of thBe properties of a polaron in the extended small-polaron
same order of magnitude and give similar bandwidths. Cleagheory. We have also treated a nondiagonal part of the
exception is in the very low density regiony&3000 A),  Hamiltonian very carefully in order to determine precisely
where ford=o phonon curve has a particularly high and for the ground-state energy of a system as well as the polaron
d=20 A polaron curve has a particularly low value. In that dispersion relation. Instead of standard tight-binding varia-
density region for botd=20 A andd=100 A one finds tional functions we used a complete set of Wannier functions
d/ro<1 which implies strong influence of the image expanded in a suitable way over the one-parameter tight-
potentiat' and therefore significant difference from the  binding functions in both the direct and the Fourier spaces,
= case. It explains the phonon curves, while to understando that possible corrections to the wave function can be eas-
the polaron curves one has to analyze the behavior of thiy added in the appropriate space. We performed the sum-
polaron Debye-Waller factdBy( ) (24). From Eqs(19) and  mation over the reciprocal as well as over the direct lattice
(9) we find SO(®~<W(k))2/w;°;p. Lower phonon frequen- vectors without anya priori restrictions, but the two param-
cies (w) are accompanied by weaker electron-electron intereters determining the polaron perpendicular and lateral
action (W) so we usually obtair§y<1 for the first neigh- spread show that the polaron remains well localized between
bors. But for particularly low phonon frequencies as tbr lattice electrons for,>20 A.
=20 A (Fig. 6), we find S,>10, which drastically reduces Notice that the Wannier functions were already used in

the polaron bandwidth. the theory of Wigner lattice in order to descritegular lat-
tice electrong?® In fact, in an analytical approach one has to
VI. CONCLUSION make a decision whether to describe lattice electi@nby

the tight-binding(Wannie) functions, using, e.g., the effec-
We have analyzed the interaction of an external electromtive Hartree-Fock interaction, dii) to underline their col-
with electrons in a quasi-2D Wigner lattice on a dielectriclective behavior and treat them as phonons. In the first case
layer with a metallic substrate, using the standard unitaryne takes into account the electron exchange but ignores the
transformation which incorporates the main part of thecorrelation effects and in the second case one fully accounts
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for the electron correlation but neglects electron exchangeproportional to the inverse of a 2D electron concentration
We have adopted the second approach because for well 19~ 1/r3), as in the case of free 2D electrons. However, the
calized lattice electrons the correlation effects are crucialrelatively large energy bandwidth is much more due to the

Using the Gaussian-type wave functions for latticécorrection of the polaron self-energy than to the corrections
electrond’ we have estimated that the exchange energy evegs the kinetic energy or a static periodic potential.

between an external and lattice electrons can be neglected. |, 5 wide density region we have found the polaron and
There still remains a problem of phonon anharmonicity. Ity,q |attice phonons in a similar energy range, suggesting that

seems that these effects are not important for the Wigne

lattice atr &>20. but various approaches still do not give a
clear answef:?! Of course, all the effects can be taken into
account in the first-principle numerical calculatiof,but
then we lack a simple physical picture.

The comparison with our previous wdrlenables us to

determine the differences in the treatment of an electron*

phonon interaction between the Sdtlimger-Rayleigh and

An external electron could become localized at a lattice site
or vice versa. Within our melting theory, elaborated in detail
in I, such processes define tHe=0 phase transition of a
Wigner lattice. Following this theory we have used the cal-
culated ground-state energy of the system to determine the
critical density parametens, at which the phase transition
occurs. At high densities we have obtained a narrow interval

small-polaron approaches in this rather complicated systen®f critical parameters (36r.=<43) belonging to a large in-

According to a general ruf those two approaches become

terval of dielectric thicknesses (20 fd<). In our previ-

closer for a larger coupling parameter. In our system th@us work we have applied the theory as described here to

coupling is proportional to the electron-electron interaction
Since this interaction becomes weak in the presence of
strong image potentiglsmall thickness of a dielectric layer

the strictly 2D Wigner lattice and obtained=40 in good

agreement with the predicted resujt=37+52 Obviously,
this result gave strong support to the present work. In the low

d), we have found much better agreement between those twdensity region we have found a phase transition dor

approaches for the electron ground-state energy indthe
— than in thed=20 A case.

=20 A, in agreement with the simple physical consider-
ation that a strong dipole field could destroy the Wigner

We have found that the dispersion of the polaron energyattice!® For d— the Wigner lattice remains stable at low
band is strongly influenced by the image potential. When itelectron densities and at those densitieg=(1000) it was
becomes negligible, the width of the energy band is roughlyalso experimentally detectéd.
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