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Charge-charge correlation functions in the Emery three-band model

Ivan Kupdc
Department of Physics, Faculty of Science, University of Zagreb, HR-10001 Zagreb, Croatia
(Received 13 July 1999; revised manuscript received 17 Novembep 1999

The influence of the long-range Coulomb forces on the charge-charge correlation functions has been exam-
ined in the Emery three-band model. THg=0 limit and the mean-field approximation of thg— o limit
have been studied. The intraband and interband contributions to the dynamically screened correlation functions
are found both for the interce{lmonopolg and intracell(quadrupole charge fluctuations. It appears that the
interband monopole processes are responsible for the optical interband transitions. For strong local correlations
(Ug—=), the threshold energy of these processes is found to be only slightly dependent on the bare hybrid-
ization parametetgd/Agd. The value of the threshold energy is comparable with the bare first-neighbor
overlap energygd. As expected from experimental observations and previous static, symmetry-based theoret-
ical considerations, the oxygen-oxygen charge correlation function is not screened in the tetragonal lattices, in
contrast to the oxygen-coppepd) charge correlation function. The intraband coupling of the Raman-active
phonons to thed intracell charge fluctuations becomes thus substantially screened, but does not vanish, at
variance with the predictions of the static-screening models. It is also found that the mean-field approximation
of theU — o case can explain the measured magnitude of the plasma frequency, as well as its dependence on
doping, but only in the overdoped high- superconductors.

I. INTRODUCTION the response of the interacting electrons to the external fields.
The intracell charge fluctuations are symmetrized according
In numerous highF, compounds a considerable amountto the space-group symmetry of the tetragonal lattice, and
of data related to the dielectric functian(Q,w) has been then the dielectric function is determined by using the corre-
collected during the past decati€.The optical-conductivity ~SPonding matrix representation of the random-phase approxi-
measurements provide various information’ such asathe matlon(RPA) The screened Charge-Charge correlation func-
dependence in the Drude regime, the doping dependence Bpns are found and discussed in some detail.
the plasma frequency, and the material dependence of the [N Sec. Ill we compare the obtained results with the ex-
interband absorption edge. Similarly, in the Raman experiPerimental observations. First, we reexamine the problem of
ments the electronic and ionic charge fluctuations are probedow the coupling between the electrons and the Raman-
The corresponding phonon self-energies, the electron@ctive phonons will be screened by the long-range forces in
phonon coupling constants, and the intracell charge-chargéBa;ClsO;_«. Then, the Drude and interband contributions
correlation functions will be screened yQ,w), more or  to the optical conductivity as well as the doping dependence
less, according to their symmetries. of the plasma frequencies are discussed in the context of the
The theoretical analyses of these data assume usually rétrong local correlations on the copper ions. Concluding re-
duced models suitable for the explanation of particularnarks are given in Sec. IV.
problems=13 Our purpose here is to construct a more com-
plete (but still approximatg response theory of the three- Il. THEORETICAL ANALYSIS
band model, to find the screened charge-charge correlation
functions, and to check the results against the experimental
data. The most important questions, which the simplified We consider a response of the interacting heétes hole
models fail to explain, are as follow§) The structure of the picture will be usefito the external scalar fields. It will be
interband processes as a function of the three-band-modeksumed that, besides the local Hubbard interaction on the
parameters.(i) The dynamic screening of the intracell copper ionsUy, only the long-range Coulomb interactions
charge-charge correlation functions at the optical-phonomre present. The Hamiltonian is of the form
frequencies, in particular in th&,, channel.(iii) The influ- o iext
ence of the strong local correlations on the copper ions on H=Ho+H*+H™" 1)
both the optigal corjdyctivity and Raman spectra. HOW_everHereHo is the three-dimension&BD) bare Hamiltoniar
our results will be limited by the use of several approxima-
tions: (i) To simplify calculations we study the response of
the interacting electrons to the external longitudinal long-  Ho= >, [ESd{,dns+ ES(PinePrnet PhnePyno) ]
wavelength fields. In this way, thlngitudinal dielectric No
function and the associated charge-vertex functions will be +2 {0 [ to it )d
determinedJ(ii) Another simplification is made by not con- £ “pd PxNo T Pyno) AN
sidering the short-range Coulomb interactiofis) Finally, _(nt t
the scattering of electrons on impurities and phonons is taken (Pxtv-a0 T Pyn-po) dno tH.C]
into account qnly phenomenologlcally. +E UddLTdNTdLLdNL’ )
The paper is organized as follows. In Sec. Il we analyze N

A. Three-band model
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H€ is the interaction Hamiltonian which describes the long- 2
range forces among the intercéthonopole charge fluctua-
tions: 1
- Z E E i t ot <Zo \
Hcm— lN |,,\|r ’Il,\l’ rlN ’ :
2 \N 7o' 7[RI =Ry —rp| 7R i
() 2
=

andH®is the coupling Hamiltonian which couples the ex-
ternal fields to the intercell and intracell charge fluctuations

Hexte NEI {e\/‘laXt(Q,w)ei[Q'(RN+r')_“’t]+ 7| Lgl neT H.C}.
4)
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Vectorsr, are attributed to the positions of the copper and_FIG: 1. Dependence of the tops and bottoilis andE?) of the

oxygen ions within the two-dimension&D) unit cell; thus
the index| e{d,p,py}. We shall draw here a distinction
between the 3D vectors and the 2D vectors by using, respe

tively, the upper and lower case letters. For example, th?

Bravais lattice vectoRNzEleniaiE(Rn ,n3) or the wave
vectorK=(k,k,). In this sense note that the expressi¢®)s
and(4) contain only the intraplane contributions, while in the

Hamiltonian(3) there are both the intraplane and interplane

interactions. InH, it is also assumed that the overlap inte-
grals between the neighboring layersare negligible.

Let us briefly recall the structure of the 2D bare Hamil-
tonian for both the case wheté;=0 and the case in which
the largeUy is present. The motivation for simultaneous
treatment of these two cases is the fact that flgF—,
described by the mean-field approximation of the slave
boson approachy has the same structure as tdg=0. Con-

sequently, both physical situations will be represented by th?
same formalism, and will be the subject of easy comparison3

It was previously shown that the large; regime of the

bonding and antibonding bands, as well as the chemical potential

on the parametek ,=E) —Eg, for Ug—, 5=0.2. HereE,=0 is
hosen. The values(/tp;=1.6, 2.0, 2.4, and 3.0 estimated in the
FG analysis in HgBA#CuG, 4;, Tl,Ba,CuG;, YBa,Cu;0,, and

3, g551.1:CuQ, compounds are labeled by filled triangl&efs. 16

and 17.

the transformation-matrix element$, (L,l) and the abbre-
viations for the factors frequently used in the text. It is im-
portant to remember that, for and b which were found
relevant in the highF, superconductorgHTSC'’s by the
electric-field-gradien(EFG) analysis (see Fig. 1%’ the
matrix elementsU,(L,l) have to be used in the complete
form. Evidently, a great simplification occurs in the narrow-
band limit where the expansion daf(L,l) in terms of

toa/Apq is allowed.

The 3D bare Hamiltonian will be given on replacing vec-
sR, andk in Egs.(5), (6), (A2), and(A3) with associated
D vectorsRy andK. Now

or

three-band model can be well described by the slave-boson

approach?® The simplest formalism of this kind corresponds
to the formal limitU 4— . For the latter, the 2D bare Hamil-
tonian takes the form

Ho=Hg(\,b)+NX(b?—1), (5)
Ho(N,b)= nz [Eddzgdno"' Ep( pIn(ranU+ p;n(rpyna)]
+ nE tpd[(plno+ p;no)dna
~(PYn-ar T Pyn—be)dnotH. €. (6)

Here Ed=E8+)\ and Eszg are, respectively, the renor-
malized energies of one coppeéand two oxygerp orbitals
in the 2D unit cell, and 4= btgd is the renormalized overlap
energy. In the mean-field approximation for slave bosans,
and b are quantities which have to be determined self-
consistently by minimization of the thermodynamic potential
Q) (see Appendix B These expressions describe thg
=0 limit as well, provided thah =0 andb=1.

Ho(\,b) is the part of Hamiltonian which can be straight-
forwardly diagonalized. Although the results of this diago-

nalization procedure are well known, we put some of the
corresponding expressions in Appendix A, in order to define

Ho= 2 EL(K)L{,Lgo+NA(b?—1), (7)
LKo

with the band index € {D,P,N}. According to Eq.(2), the

Bloch energie€ (K) and the matrix elementd(L,l) are

independent ok,. In a more realistic case, whete are

finite but|t, |<[tDy], it still holds:®

EL(K)=E_(k)+O(1/mb,),

To keep a general form of the RPA equations done below,
from here on we will assume the approximate relati@)s
rather than the exadt =0 relations.

The simplest way to describe how the Raman-active
phonons will affect the electronic properties is to treat the
phonons as the external fields which will be coupled to the
holes through the Hamiltonia@#). In the Bloch representa-
tion one obtains

Ho% > D) [U(L LU, o (1Ly)
K'o'l Lik2
xeVP(Q,w)e 1LY Lok _gpr+H.CI.
©)
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HereQ'’s are restricted to the first Brillouin zor#BZ). The pM(Q,w)=x(Q,w)V(Q,w)+ x(Q,w)V(Q)p"(Q,w).
coefficientsVi*(Q,w) can be easily arranged according to (14
the irreducible representations of tba;,, group, which char-
acterize the Raman-active phonons of the HTSC's, givin
only the coupling between the phonons and the intracell’ )
charge fluctuations of the same symmetry. As can be easilyl Q). Vii(Q)=4m/Q? and
seen, this Hamiltonian shows also how an actual external

erepmd(va)r VeXt(Q!w)! V(Q)l andX(va) are the ma-
frices  which elements are respectively"(Q, w),

g h : 1 Lol
potentllal[glven byVFX‘(Q,w)—yeX‘(Q,w)] will be coupled X”'(Q’w)zv > RlLle(k,kqu)Rl 214 q.k)
to the intercell charge fluctuations. Ko Lilp
In terms of the Bloch operators, the interacting Hamil-
tonian reads as P ’ fi,(K) =1L (K+Q)
X —, (15
2 1
1 1 4me? . . :
Ho~~ > — — For convenience, the charge-vertex functions are introduced:
2 K/K//Q/ V Q’Z 0_/0_// ||V L1L2L3L4
Rit2(k,k" ) =eUy(l,L)Us (1,Ly). (16)

X Uk’(l lLl)Uk”(l ' !LZ)U:"+q/(I ' 1L3)
. : . The Fermi-Dirac functiori1+ e?lEL(K)=#17171 s denoted by
X Uk’fq’(l’L4)L1K’a-’L2K"o”L3K"+Q'<’"L4K'*Q'(T' ' fL(K).
(10) As it is previously shown in thej=0 analyses of the
three-band modéf instead of the above matrix representa-
i.e., only monopole-monopole interactions are present in théon, another one is particularly usef(liere called therK
considered long-wavelength limit of the Emery model. Ourrepresentationbecause it enables a natural separation be-
purpose here is to resolve a few simgkreit generalissues tween the intercell and intracell charge fluctuations. This rep-
related to the optical conductivity and Raman spectra. In thisesentation is very convenient in the limit of long wave-
respect note that, after omitting the short-range interactionkengths. It is connected with the first one by two
among the intracell charge fluctuations, it is impossible fortransformation matrices:
the pure electronic intracell collective modes to appear di-

rectly in the Raman response. 1 1 1 0
Af==| 1/2 -1/2 1],
B. Random-phase approximation 2 12 —-1/2 -1
The linear response of the electronic system can be for-
mulated by using the observahléKULzmQ(,. To find the 1 1 1
time dependence of its expectation value in the presence of _ _ _
: PE , : B=(1 -1 -1],
the external fields, the ScHimger picture can be used, in
which we have 0 1 -1
P ATB=BTA=1. (17)
11— (W [Lik oL ok ol W) =(WI[LikoLok+ o HIW)
ot 1Ko=2K+Qa 1Ko =2K+ Qo ( ’ ) The following induced densities become relevant:
11
where| W) is the perturbed ground-state wave function equal pTd(Q,w) = Z BV|p:nd(Q,w), (19
[

to the sum of the unperturbed of#,) and the correction
|oW), which contains contributions of all orders in perturba- yith the intercell charge transfer, the intracell charge transfer

tion. Here of the pd symmetry(usual notatiom,;, see Appendix @
t B + and the intracell charge transfer of the symmetry 8,4 or
KV L1k oLk +qol W) =(WolLikol 2 + ol W) B,g) corresponding tov=1, 2, and 3, respectively. The

fields which couple directly to these densities are
+<5\I,|LIK0L2K+Q0|"I,O>' P y

(12) ViXt(Qrw) = E AvlvleXt(Ql (1)) . (19)

Using Eq.(12), it is possible to express the Fourier transform !

of the induced charge density on therbital as According to Eq.(10), the only nonvanishing term in the
new Coulomb matrix is

) e .
Q=g X X Ukl LU, o(l.L2) .
fo bk Vi Q=2 AV (QA/,=8,18, 1V1u(Q),

X (WL Lo gol ). (13 ' (20

For the Hamiltonian(1), the induced densities are given by with V;(Q) =4=/Q?%. In spite of this restriction oW, (Q),
the RPA matrix equation which is of the form the interplay between the intercell and intracell charge fluc-
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tuations will occur in Eq(14) due to the off-diagonal terms  ceptibility matricesy(Q,w) and y(Q,w) in some detail. In

in the susceptibility matrix? The matrix takes the form the next paragraph we turn to a more detailed discussion of
these functions.
Xow (Q@)=2 Byxi (Qw)B/,,, The symmetry oR"'(k,k’) determines the symmetry of
n’ X (Q,w) and influences the way in which these elements
1 of the susceptibility matrix will be screened in the RPA. The
= > Rtle(k,k-FQ)RL,ZLl(k—f—q,k) leading term in Taylor series expansion

_v Ko LiL, v
REY (k+ g, k) ~REY (K, K) + G- Vi RES (K7 K)o —i - -
21) (28
is entirely sufficient for the long wavelengths. For the nearly

where the charge-vertex functions are rearranged into onfg@!f filled bonding band only those charge vertices
monopole ¢=1) and two quadrupoles=2 and 3 terms, R5" (k,k’) are interesting in which. or L' are equal tdD.
which are given by The explicit form of leading contributions to all these verti-
ces in the limit of long wavelengths are given in Appendix
C. Here we only notice the followingi) The intercell charge

transfer in the interband channel is characterized?b';/(k

: i LL’ ’
The RPA equations which we consider here are thus of théLq’k)oc_q’ as me_nt|oned abovéil) All R (k.k") elements
form are antisymmetric at least for one among the symmetry op-
erationsx=y, Xx— — X, or y— —Yy. The consequence of first
PTld(Q:w):lev(Q:w)V(sXI(Q:w) observation is that, althoygrilntiéris proportionalqé, the in-
terband correlation functiow; (Q,w) becomes important
+ X1 (Q 0)V11(Q)pIQ.w). (23  inthe RPA, because itis multiplied by Q?, and therefore
will be important in the explanation of the high-frequency
_ ) . properties of the three-band model. Similarly, the charge
C. Dielectric function fluctuations will not be coupled with other two fluctuations
In the longitudinal approach, the dielectric function fol- because of the symmet(yi). Therefore the unscreened sus-
lows from the Dyson equation for the screened monopoleceptibility matrix can be decomposed into two submatrices:

monopole interaction rewritten in the form
X11(Q,w)  x1AQ,w) 0

()~ (K+Q)
“ho—E(K+Q+EL(K)+i7’

R';"'(k,k’)=2l B, R (k.k"). (22)

Y Vu(Q) X(Qo)=| x21Q®) x2Qw) 0
Vi(Q,0)=—=—=. 24
ll(Q (1)) S(Q,w) ( ) 0 0 X33(Q,w)
From Eqgs.(7), (10), and (20), it straightforwardly follows (29
that On the other hand, the screened susceptibility matrix
5 5 X(Q,w) is diagonal by definition27). The corresponding
V11(Q,0) =V11(Q) + V11(Q) x11(Q, @) V11(Q, ), @5 elements are
~ _X11(Q:w)
and Xu(Q-w)—m,
=1 am 26 ~ V11(Q)
e(Qe)=1= 5 xuQe). (26) X2AQu0) = x2A Q.0) X2 Q) TS X1l Qo).
Note that in the presgtr;rt long-wavelength formalism there is T3 0,0) = xa1 Q). (30)

the interband termy;; (Q,w) in the dielectric function
[LiL,=DP, PD, DN, andND in Eq. (21)], in addition to It is important to note that both the intraband and inter-

the usual intraband On)E—‘Tfa(LQw) (LiL,=DD). Since all  pand contributions in all these functions are entirely de-
associated charge verticB’sVl %(k+q,k) are proportional to  scribed by parameters of the starting bare Hamiltonian, as in

q, the term Xilnlter(Q,w) was hidden in the q=0 a recently given analysis of the dielectric properties of the

considerationg>*3 dipolar crystal$? There is no need for phenomenological
Not surprisingly, the transformation of the RPA E¢®3)  parameters commonly used in the description of the inter-
into the diagonal form band term€32* But, unlike in the dipolar crystals, the
Lorentz-Lorenz form of the interband contribution to the di-
prQ.0)=X,(Q ®)VI(Q,0) 27) ﬁ:gg{;c function does not appear in the present three-band
leads to the same structure ofQ,»). Herey,,(Q,») are Evidently, for one interested in the Raman-active

the screened charge-charge correlation functions. Let us nophonons, the functiong,»Q, o) andyss(Q,w,) are impor-
consider the elements of the unscreened and screened st®nAt, wherew, is the phonon frequency. The resyg0)
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clearly explains that both function§(i2”2“a(Q,wo) and Of EQs.(30) is thatl thepp charge correla.tion function does
~intr o not suffer screening, even in the static, long-wavelength
X33a(Q’w°.) remain f|n|te,. angl that .the measured phonon"mit, in contrast to the intercell charge correlation function
self—energ|es(the!r anomalies in particulprare presumably which will be totally screened out and the intraband part of
related with the intraband processes. the pd charge correlation function which will be mostly

screened in this limit. It is previously shown that, even when
the short-range forces are taken into account, the off-
Let us first see the limit of theveak splittingA,.=E,  diagonal termsV,, (Q), »=3 or »'=3, remain zerd?!

—Eg<<tpq, whichis characterized by thed “dimerization”  Therefore the functiofys«(Q, ) will be screened in Eq14)
gap. The magnitude of the gap is proportionaligy, and itS  peither via the off-diagonal terms of the susceptibility matrix
wave vector is equal ta-(2#/a,27/a,0). It is convenient ¢ of the Coulomb matrix.

to reduce this problem additionally by omitting both the in-  Ajthough in the static limit the intraband part of the

terband contributions related to the nonbonding band and thgharge correlation function does not disappear in general, it
pp charge fluctuations. The susceptibility matrix takes NOWegn pe shown from

Susceptibility matrix

the form
X11(Q,0)  x12Q, )
W)= , 31 ~i i 4m
M= Qo) xadQuo) ey X2 (Q=00=xz Q=00+ =570
which is common for all models with site-energy dimeriza- intr intr
tion. Although the differencei?—v? is a complicated func- Xxz1 (Q=00xz1Q~0,0) (34
tion of A4, the factorA 4 can be easily recognized in it,
due to the relation that in two particular cases it will. First, in the weak-splitting

limit A,4—0 the vertexRS°(k+q,k) and thus the function

o o o . Xm13(Q~0,0) are negligible. Similarly, for thestrong-

Thus it will vanish in the limitA ,;— 0. Two charge vertices splitting limit Apg>tyg follows RED(k+q,k)~R?D(k
DP DD H : ~ ~

F\r)ll' (dk_fJfrq,k) an(cj:j_ R (k+(]3,k), wrxch are propo"rtlonalhto +q,k) andy¥(Q~0,0)~ ¥ Q~0,0)xQ2. This means

this difference, disappear fgr—0, Apg—0 as well, sothat 41 in the strong-spliting limit, with the static screening

tk(ui_vi):_ApdukUk- (32

the expressiori31) reduces to included, the susceptibility31) takes the form which is
i known from the previougj=0 analysis of the three-band
(Q.0)= X1 (Q,w) 0 @3 modef P * 4
RO 0 Q)
After eliminating the nonbonding band, closing the dimeriza- 0 0
tion gap makes the bonding and antibonding bands appear as }(o,o)z( inter ) ) (35
two parts of a single square-lattice band with twice the origi- 0 X227 (0,0

nal Brillouin zone. It turns out also thal'(Q,w)=p" Q
*(2mla,2m/a,0),w], and only one kind of the charge fluc-

In the three-band model the above decoupling occurs in There are numerous measurements on the HTSC’s the

the Apq—0 limit indeed. But, in contrast to the simple mod- eqits of which are closely related to the questions discussed
els with the site-energy dimerization, here the lattice doe, ihe |ast section. We shall put now some of these questions
not undergo the unit-cell transformation, since the symmetry,, ihe experimental context. We shall first discuss the
of the lattice is not changed fdx,4=0 and thus the original R5man-active optical phonons in the Y@a,0,

symmetry of the whole crystal is retained. The above weaknateriald® and then examine some details of the optical-
splitting consideration explains the fact that the Vert'cesconductivity spectré.‘3

RPP(k+q,k) and RSP(k+q,k) describe those interband
and intraband processes of the electronic system in which the
dimerization potential dissipates an extra momentum A. Raman-active phonons

+h(2m/a,2mla,0). The Raman-active optical phonons represent a powerful

we?l—hi/?/i'lnisge d?r?]r;rﬁ)zea;ﬁ)cnogzgfrei n a_rréoreagljseg?rgelsfgrpe z%)S’robe of the electronic system at optical frequenéis the

' ) PP TP TRy "~ materials with two molecules CyOper primitive cell
Several new terms |_p(,,,,/(Q,w) appear in th!s case. Since (\ Ba,Cw0,_,, M=Y, Eu, Gd, for example several
the symmetryx=y is broken, some off-diagonal terms Raman-active phonons are found. To treat the effect of the
X (Q,0), v=3 or v'=3 become finite, leading possibly g|ectronic system on one of these phon¢etsaracterized by
to the coupling between the intercell apg intracell charge  ;, andQ, in the tetragonal latticéswe start with the Hamil-
fluctuations, and to a more complicated form of the screenegynian
pp charge correlation functiogss(Q, ).

To conclude, whenever the regimg =0 is in question,

the resultg30) can be used. Especially valuable consequence H="Hy+HC+HE P4 HPh (36)
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TABLE I. The electron-phonon coupling constants and «, for five Raman-active phonons of
YBa,Cu;0;. According to the EFG analysiRef. 16, the average ion charges 3, 2, 1.54, 1.641.71,
—1.72,-1.72, and— 1.52 for, respectively, Y, Ba, Ql), Cu(2), O(1), O(2), O(3), and G4) ions are used
in the calculation. The frequencies are from Ref. 5.

o[cm 1] ay ap ap, a; a3
Aqg Bal 132 1.94 2.23 2.25 0.15 —-0.01
Cu(2)t 150 1.59 1.72 1.70 0.15 —-0.01
0(2)1 0(3)1 440 ~139  -201 -203 0.32 0.01
o(1)r 500 —2.04 —1.69 —1.68 —-0.18 —-0.01
B, 0(2)1 0(3)] 340 0.00 049  —0.56 0.02 0.52

Here H®P" is the coupling Hamiltoniar(9) shown in the for five Raman-active phonons are given in Table |, obtained
vK representation, with the fieldg®*(Q,») expressed in with the aid of the Ewald method and the point-charge ap-
terms of the phonon operatoaéQ, andHP" is the phonon proximation. In the calculation the average ionic charges
Hamiltonian estimated in the EFG analysis are u$®dThe procedure of
calculationa, can be found in Ref. 8. The accuracy of this
thzﬁwoaIQayQ. (37)  calculation can be illustrated by comparing the calculated
value eapxllrd—rpx|2~2 V/A with the corresponding ex-
'erimentally estimated values 1.3 V/A and 1.53 V/A re-
ported in Ref. 25.As shown in Table I, it is confirmed that
the Raman-active phonon at 340 chis of thepp symme-

There are a few questions which have to be addressed he
First of all, the orthorhombic distortion of the lattices mixes
up the symmetried\;4 andB, 4, so that in the superconduct-

ing compounds YB#u;0;_ (where the data given in try (i.e., Byg) and all the other of thed symmetry @),

Table .l are takenall the cons_|dered phonons and the reI'With 1 in 15 accuracy. At this level of approximation, the
evant intracell charge fluctuations belong to the representaé

. oupling Hamiltonian(38) can be used in the orthorhombic
tion Ay. Consequently, to employ reasonably the results o Ba,CLLO d I
receding section in these compounds, the rate of this admix- 87 —x COMPOUNTS, as Wet.
Fure has o be estimated. As arqued t;elow for the phono The influence of the interacting electrons on the phonon
. . : ' 9 ' P roperties can be summarized by showing the phonon self-
this admixture is of order 1/15. Second, the electron-phono nergies
coupling will be also affected by the electronic interband
excitations. But, until the characteristic energies of the exci- ~lc |27intr
tations are significantly larger than the phonon energy, these 2(Q o) =[G, %1 Q. o), (40
corrections are expected to be negligible and only the intrawhere the arguments of the electron-phonon coupling con-

band processes are relevdmthich are of theA,q or Byg  stants are suppressed, the interband tegfi§(Q,w,) as
symmetry, according to E¢(C1)]. Third, to describe cor- \ye| (see the corresponding diagrams shown in FigSami-

rectly the screened electron-phonon coupling constants in thgrly, the screened electron-phonon vertices can be written in
Aig channel, it is necessary to throw away the static screenne form

ing, as discussed above.

Finally, we find ~
Y G,RYP(k+q,k) =G, ROP(k+q,k)

1
Hel_ph%\/_ﬁé G,(K+Q,K)RPP(k+q,k) V1(Q)

DD
8(Q,wo) Rl (k+qak) ’

+Xg]Ir%Q!w0)
XD, 0,Dko(@ug+al o). (38)

=~ DD _ DD
As it was previously showf the leading contribution to the GsRs "(k+0.k)=GsRs "(k+a.k). 1)
electron-phonon coupling constad,(K+Q,K) for the  Note that for the case of strong splitti@,R5° (k+q,k)
Raman-active phonons does not depend on the wave vectorg.GzR?D(k+q K)/&(Q,wo) holds, with the further simpli-

In the ionic model of the electron-phonon coupling the result. ° “~ . .
P ping fication G,=0 and2,(Q,0)=0 in the static limit. Clearly,

h ea, Vi
G,(K+Q,K)= VZMIOQ’OUZ(IO’V)h’d—r 2 (39 5, NO.: O + Q..___Q o

Px GzRz GR; GoRy G:R: G:R2 R, R Gz2R2

is obtained. HereM, is the mass of one among the ions

involved ande,(ly,v) is the corresponding normalization
constant[structure of the constarg,(ly,v) for a few ex-
amples can be found in Ref. 112The dimensionless con- FIG. 2. The phonon self-energiés,(Q,w,) and the screened
stantsa, and a3 can be easily found for each phonon modeelectron-phonon coupling constaisR>° (k +g,k) of the Raman-
of interest, by usingy, =2 A, «,. The values ok, and«, active phonons in the tetragonal lattices.

GsRs G3R; GsR3 GsR3

3
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if the assumption of static screening were true, the electron- The corresponding macroscopic dielectric function can be
phonon coupling for thé\,4 phonons would be exclusively obtained by using the dynamic, long-wavelength limit of Eq.
given by the interband channélshich are neglected in Egs. (42). In the intraband term of4(Q, ) it is convenient to
(40) and (41)]. This in particular means that all th&, use the following long-wavelength expansion of the Bloch
phonons would exhibit a normal behavior, the hardening oenergies:
the frequencies when the temperature decreases, regardless
of the superconducting ordering. The experiments however
Qeny this simplified scenario. Specifically, the measurements Ep(K+Q)~Ep(k)—# 2, v,(K)q,
in YBa,Cu;0;_ had shown that th&,4 phonon exhibits in a=x\y
the superconducting phase the anomalous softening of the 72
frequency with the decreasing of temperattine contrast to - E E Yas(K)0u0
all other phonons for which this effect is significantly 2m Sy pSy TP
smaller, but does not vanish. b

In conclusion, the expressiori40) and (41) incorporate +o +O(1mg). (43
most of the arguments mentioned in the previous discussions
of this topic;®**?but, as mentioned above, underline a fur- Hereu ,(k) is the group velocity of electrons ang,5(k) is
ther one, that in order to describe the effect of the supercorthe static Raman-vertex functiéf.Similarly, in the corre-
ducting ordering on the phonon self-energies and to estimatsponding interband term the expansions of the charge verti-
the screened electron-phonon vertices, the dynamic screeges(C2) and(C3) are useful.
ing (at w=wg) has to be taken into account. This will lead  Let us first briefly consider the anisotropy of the plasmon

to a finite changeS3(Q,we)—3(Q,we) *Xoy?%(Q,wp)  dispersion for the cas®= (dy,dy,d,). Then follows the de-
_;(izrgra,n(Q,wo) in particular, in accordance with the experi- tailed comparison of the macroscopic dielectric function with

ments, and in contrast to the previous conclusions based &He experimental datthe case wher®=(q,,0,0) orQ

the static-screening mod®l(Here the indices ands stand =(0ay ’O_) will be assumejl .
for the normal and the superconducting phase, respectively, '€ dispersion of 3D plasmons,(Q) can be easily

Generally speaking, the scattering of electrons on impuri-found by considering the real part @f(Q,w). When the

ties as well as the compatibility of the charge verticesPl2SMon energiesw, (Q) are smaller than the bare inter-

RPP(k+q,k) and the superconducting order parameter mayand  absorption — edge E,—u, the — susceptibility
g - e by b tted in th t
also have a large impact ™Y Q, wo) %€ If these depen- X! (Q.,2) can be omitted in the equation

dences were brought intB5(Q,w,) a complicated expres-
sion would be obtained, which cannot be fitted to the experi- Re{e(Q,wp)}=0 (44)
mental data in any meaningful way.

in the first step. Furthermore, in this energy range it is ex-
B. Optical-conductivity measurements pected that Re..(Q,w)}~e... By using the limit%;—0,

To compare quantitatively the expressi(@6) with the ~ ©ne obtains a highly anisotropic dispersion

optical data, it is necessary first to incorporate the relaxation

processes in the analysis, at least in a phenomenological

way. Two damping terms will be used here for this purpose, w2|(Q)m

> ,=nh/7 for the intraband processes (s the usual relax- P ExMyx Q2

ation time which includes the scattering of electrons on im-

purities and phononsand?;, for the interband oneévhich

describes, for example, the phonon-assisted interband 2 Qﬁ

processes’ Moreover, it is necessary to include #Q, w) = p'Q2+Q '

the contributions of all other interband transitions for the ” +

bands which are not involved in the considered three-band

model [see the terme..(Q,w) in Eq. (42)]. Finally, it is  exactly as expected for the 2D conductors. Hemg,J ~*

essential to resolve the origin and structure of the anomalous 2a°t54/(A%A ) is the mass scale which in the strong-

mid-infrared contributions to the optical conductivity. splitting limit coincides with the diagonal components
Our analysis of the optical data is evidently superficial inof _the 2D  reciprocal-electron-mass  tensor{},,

sense that the mid-infrared contributions are not taken inte= V4me®n./(mye..) is the frequency of classical plasma,

consideration. But, all other contributions are treated satisand Q= (dy,dy,0), Q, =(0,04,). The effective concentra-

factorily and might be used as a basis for further analyses dfon of conducting electrons,, is defined here by

the optical data. At this level of approximation the relevant

form of the microscopic dielectric function is

4me’n, qi+0;

(45)

Myy 1

Ne=——3 2 (=) %0 fo(K). (46)
41 . Ko

2(Quw)=e.(Qu)~ L IX1Quw. Ty

inter For the indexa € {x,y}, the macroscopic dielectric func-
+x11 (Qw,23)]. (42)  tion reads as
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@ o)—end o Y (100 ho—i%, 3 ' '
€(Q0y ,w)=ex((,,w)— — n (a)
a a My "¢ fo (ﬁw)2+2§
o—r————— == — — — — — — —
47 I b 2 w3
o N ——Ri7(k" k) fp(k) £ La,,Sr,,Cu0,
L=N,P V Ko &ka K’ =k ~ s ‘2120.3CV
- — 0.2
y 1 — 01
ho—E (K)+Ep(k)+i3, 10 005
1 0 05 Fnergy (ev) 1 15
hw—Ep(K)+E (K)+iZ,) @0
At the level of approximation used in E¢5), the real part S ' '
of ¢(q,,w) takes the usual Drude-like form (b)
PR VI 1 ) S 7
“ T Mo P (hw)2+ 32 K /1
A
. _ -5 F . YBa,Cu,0,,
The frequency of the in-plane plasma motion can be thus // '
expressed in terms of three adjustable parameters ] La,Sr,,Cu0,
my,/m, and 7 (or 3,): _100 A !

2

m Q5
Q%)= —Vyhe— — 172
Myy €

(49

Energy (eV)

FIG. 3. The real part of the dielectric function as a function of

relaxation timer=3, /% (a) and mass ration,,/m (b). The param-

Note that the frequenc§) o= 4 me?/ (MV,o), which is intro- eters which satisfactorily fit the measured détmg-dashed curves,
duced here as the frequency-scale parameter, has in tf@m Refs. 2 and Bare:m,,~1.4m, &..=4 [@] my~1.4m, o.
La, ,SKCuO, compounds the valudQy~3.8 eV [V, 4 2,=005 eV [curve A in (b)]; mg~0.4m, £.=3, X,
=a2c/2]. =0.05 eV[curve B in(b)].

The imaginary part ok(q,,») determines the real part

of the optical conductivityr,,(w). Since in the hole picture YBa,Cu;O4.,« compounds. The results are shown in Figs.

the absorption is characterized <0, one obtains

RE{70a( @)} =71z (0 )}

3-6. Note that, instead of the parametggsandA ,4 used in

the previous sections, here we show the results in terms of
the mass ration,,/m and the bare interband absorption edge
E,—u. Good agreement is achieved for,,/m=1.4, E,
—n=175 eV, ande,=4 in La ¢Srh,Cuo, and for

m s, Q(z) mxx/m=0.4,_Ep—,u=1_.5 ev, andsw=3 in YBa,CuyOg o.
:_Vpcne—zﬁ— The conclusions of this comparison are as follows.
Mhyx (hw)?+37 47 The typical experimental value of thgn-plane plasma
p 2 energy in the superconducting 4.3 Sr,Cu0, compounds is
+ Z l —R&D(k’,k) 7Q,~0.8 eV (see Fig. 3, in a significant departure from
LSNPV o 0K, K=k the standard free-electron val{eorresponds ton,,/m=1,
% —0Z5fp(k) 1
[hw—Ep(k)+E (k)]?+32
® 08
+—Im{e..(q,,)}(©<0). (50 .
477 ; *
» 0.6
The first term in Eq(50) is the Drude term. The second one ™
describes the contribution of the interband transitions from %0_4
the bonding band into the nonbonding and antibonding G
bands. Finally, the third one describes all other interband
transitions. According to the presumptions of the three-band 0.2 .
model, for3,—0, the interband transitions start at the bare
interband absorption eddgé,— . In general, Rgr,,(w)} 0 :
will depend on the fourth adjustable parameer as well, 0(;35 1

and, at higher energies in particular, on the structure of
IM{&..(q )}

The expressiong8)—(50) will be now compared with the
optical data measured in the J3SrCuQ, and

FIG. 4. Plasma frequency as a function of the dopship the

caseUy=0 (my~1.4m,e,=432,=0.05 eV). The experimental
points (filled diamond$ are from Ref. 2.
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A /YBazCuJOﬁ1
9
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% 05
©
(x 50)
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Energy (eV)

of the EFG analysis, when considering the different HTSC
families, imply the increase of the band width., the de-
crease of the mass ratiwhen T, raises(Fig. 1). The results

of the present analysis, shown in Fighg point at the same
conclusion, but note that the estimatif, (3tpy and 4.5

for YBa,CuOgg and Lg gSKy,CuQy, respectively are
shifted to the higher values.

The question which remains is hdd,; depends on dop-
ing. Experiments reveal two different dependences, the hole-
like (found in the underdoped and the optimally doped com-
pounds and the electronlikgin the overdoped materidls
characterized respectively i), /96>0 andd€d,/95<0
(see the experimental data from Ref. 2 shown in FjgFér
Uy4=0, the plasma frequenc{49) depends on the doping

FIG. 5. The interband contributions to the optical conductivity only through the variation of the chemical potential, giving

of the three-band model 3,=0.1 eVE,—u=15 eVm,,
~0.4m). TheD—N (D—P) contribution corresponds to the tran-
sitions between the bonding and nonbondiagtibonding bands.
For clarity the intensity of th® — P contribution is multiplied by
50. The experimental dataotted curve are from Ref. 3.

g-=1, Vpane=1-4, andX,=0 in Eq. (49)], which is ex-

pected to bei(),~3.4 eV at the dopings=0.2. Such a
large reduction ofi (), is ascribed primarily to the large, .

This energy also depends on the mass ratio, but,Xfor
<0.1 eV, it is practically independent &f;. It can be no-
ticed here that botlﬂgI and Ré¢e(q,,w)} are complicated
functions of the mass ratio, though for the narrow baés,

in the strong-splitting limit of the three-band mopehe has
the simple relationy,,,(k)~m/m,, cosk-a, which leads to
the linear dependandegpcm/mxx. Interestingly, the results

YBa,Cu,0, (a) |

5. (10°Q7'em™)

XX

S = Y W e W

Energy (eV)

La, Sr CuO, (b)

2=0.1 eV
0.2

XX

5. (10°Q"'em™)

Energy (eV)

FIG. 6. Optical conductivity of the three-band modefith the
fermion-boson contributions suppresksad a function of mass ratio
(@) and dampingb). For simplicity 2,=2%,=3 is assumed. The
values of the adjustable parameters aBg;,—u=1.5 eV, X
=0.1 eV, my,~m (curve A andm,,~0.4m (curve B in (a); E,
—u=175 eV,m,~1.4min (b). For clarity the typical measured
data are also showfuotted curves, from Refs. 2 and. 3

rise to thed(), /36<0 behavior for the entire range of in-
terest 0<6<1, as shown in Fig. 4. In th&j—o limit,
however, the mass ratiom,,/m and the product
My, /My, (k) both are dependent ah As mentioned above,

all dependences ofn,,/my,,(k) on &6 cancel out in the
strong-splitting limit. In a general case one usually assumes
that these ones will be finite but negligidféThe extensive
analysis of the mean-field approximation has shown, in this
respect, that the mass rafioearly proportional td~2) has
two qualitatively different behaviorgm,,/d6>0 (for the
wide bandsAD;<4t3,) and dm,,/3s<0 (for the narrow
bands,AD;>4t),) 2" Thus the only way to explain in the
mean-field approximation the experimental observation at
small dopings thav(), /d6>0 is to consider the strong-
splitting limit.X® This is also in contrast with the conclusions
of the EFG analysis which support the opposite picture of
wide bands. When considering the interband terms, it is es-
sential to stress that the expressid®) excludes the possi-
bility of dipole-active intracell electronic collective modes
(e.g., Frenkel excitonswhich are present, for example, in
dipolar crystalg?

We now turn to the structure of the incoherent interband
contributions to Rfor () }. Two of these contributions are
explicitly calculated here. They are attributed to the transi-
tions from the states on Fermi level to the states of nearly the
same wave vector in the antibonding and nonbonding bands
(in Fig. 5 they are labeled bp—P and D—N, respec-
tively). For the wide bands anBl,~0 the result is a broad
continuous spectrum which starts at the bare absorption edge
E,— . However, if, is finite, the absorption edge will be
moved to lower energies, exactly as one expects for the
phonon-assisted interband transitiGhs is important to no-
tice here that the coherence factoR}°(k’ k)/dok! |/ —k
«uZ—v? is responsible for a significant decline of tie
— P contribution. In the wide band reginisee Eq(32)] this
contribution almost disappears, as can be seen in Fig. 5. This
apparently means that at energies larger than 2.5 eV the
spectrum Rfr,.(w)} is mostly associated with Ifa..(w)}
rather than with two abovementioned interband transitions.

In the Uyg—oe limit we obtain E,— u to be nearly con-
stant and of the order df);, in the broad range ok (see
Fig. 1). This qualitatively agrees with the experimental evi-
dence that at not too large dopings the value of the absorp-
tion edge is only slightly material dependérit.



PRB 61 CHARGE-CHARGE CORRELATION FUNCTIONS IN TH.. .. 7003

Furthermore, note that in thed =0 case Eq(50) gives APPENDIX A: ABBREVIATIONS
only one kind of the interband contributions among the three
bands(the D— P andD—N ones. These contributions, to-
gether with the associated Drude contribution, obey som

conductivity sum rulegsee Fig. 6. In the strong-splitting 1 1

limit of the Uy— o case the integrated intensities of both of Ep(k)= 5 (Egq+Ep) — /—(Ep— Eq)2+1t2,
these contributions are proportional to the ratibm,, and 2 4

thus toé. They will be negligible for small dopings, pointing

The diagonalization of the Hamiltoniai®) leads to the
(faollowing Bloch energies:

at the significant role of the fermion-boson excitatigasso- 1 1 S

ciated with a new absorption edge which is of the order Ep(K)=5(BatEp)+ \7(Ep—Ea)"+ i
AD).™® Under such conditions the latter excitations will be

responsible almost for entire weight of the complete inte- En(k)=E,, (A1)

grated intensity of the three bands. For the wide bands how-
ever, even folly—, it is expected that former two contri- Which are attributed to the bonding, antibonding, and non-
butions will take a large share of the total integratedbonding bands, respectively. The associated Bloch operators
intensity, again with the measurable signals in the experiare
mental s(;))ectra. In the energy range of intefese Fig. 1the
energyA 4 is larger tharE,— u, so it is natural to generalize 1 - -
Eq. (50 'i)n such a mannepr that ia..(Q,w)} includes also Lla: \/_ﬁ ; e Rn2| e’ r'Uk(L'I)IEU' (A2)
the fermion-boson contributions. All expressions given here
will be thus valid concomitantly for both considered limits. The transformation-matrix elemenits (L,l) are as follows:
Finally, note that although two thresholds at nedly
—w and ADy are expected fobJg—o, the measured mid- Ui(D,d) Uy(D,py) Uk(D,py)
infrared absorption edge at nearly 50 meV obviously cannot U(P,d) Ul(P,p,) Uy(P,p,)
be understood in the framework of the above model.
Uk(N,d)  U(N,py)  Uk(N,py)

Ue  vUe oV
=| —vx WU WVl (A3)
0 —vi Ul

IV. CONCLUSION

In conclusion, we have presented the calculation of the
dielectric function in the Emery three-band model. In the
static strong-splitting limit our results reduce to the ONeSare the following abbreviations are used:
known from numerous previous analyses. Beyond this limit

the most important results are the followin@. For U4=0,

with the short-range terms in the Coulomb matrix omitted, U= Eq—Epk) ,
only the incoherent electron-hole transitions appear in the \/[Ep(k)—Ed]ertE
interband channel of the optical conductivity. If the strong

local correlations are taken into account, there is another ty
threshold energy associated with the fermion-boson excita- K= ="
tions. For the parameters of the considered model estimated VIEp(K) —Eg]?+ 15
in the EFG analysis, the ratio between these two thresholds is

2-3, in strong contrast with the ratio between the measured b
interband and mid-infrared thresholds, which is about(dp. Uk—ﬁ'

The magnitude of the plasma frequencies and their doping

dependence measured in the overdoped compounds can be tye
guantitatively explained in the three-band model provided Vk:ty_k'

that the large Uy is present. The holelike behavior
Q136> 0 found forU y— o strongly contrasts the conclu- 1
sions of the EFG analysigiii) The pp charge correlation tye=—2itpgsin=k-ay,
function in the tetragonal lattices will be screened only by 2

the corresponding short-range interactions, while pu
charge correlation function becomes dynamically screened
by the long-range interactions. As a consequence, the intra-
band contribution to the self-energy of thg; Raman-active
phonons will .be smalllbut finite, and thus sensitive to the t,= |txk|2+|tyk|2- (A4)
superconducting ordering.

1
ty=—2i tpdsin§k~a2,

APPENDIX B: SELF-CONSISTENT EQUATIONS
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acknowledged. model (5) can be written in the form



7004 IVAN KUPCIC PRB 61

DD _
Q=3 [Ep(k)~ u]O[ n—Ep(K)]+NA(b*~1). RYP(k+ag.k)~e,

o

(B1) [A1g]RE® (k+a,k)~e(uf—vf),
For.the doping o_f conduc(’ging p_Iane%and if the unrenor- [Blg]RgD(kJrq,k)wev§(|uk|2—|Vk|2), (C1
malized energy differenc& is given, the parameteys, A,
andb follow from three integral equations: RTP(k+0,k) ~q- Vi RTP(K K) [k —k
1 0Q ea%d Ui~ vi
— =146, ~ sink-a,,
N o 2 BBl & "
140 [A1g]REP(k+0,k)~ —2eyuvy,
N I\ , PD 2 2
[B1glRs " (k+a,k)=~euwy(|U*—|V]?), (C2
10Q
< ——=0, (B2 RYP(k+0,k)=q- VieRY (K’ K)o =,
N db
as reported earliéf:**%The boundary shape of the bonding _ eaty 2Uy sinlk- 2 co 1 K.a
and antibonding bands faf=0.2 is shown in Fig. 1 in the En(k)—Ep(k) ty G SIhy K-8 COS; K-8y

main text as a function od&gd. The nonbonding band coin-
cides with the leveE,. 1 1

—dy sinik.al co§k-a2

APPENDIX C: CHARGE-VERTEX FUNCTIONS
RYP(k+0,k)~q- Vi RYP(K',K) | =,

In the limit of long wavelengths the leading term in the

, ND ~_

verticesR:- (k+q,k) can be found by using EqéL6), (28), [B2g]Rs " (k+0,k)~ =2ev,UyV. (C3)
(A3), and(A4). For the nearly half filled bonding band the The corresponding irreducible representations of Ehg
following vertices are important: group are also indicated.
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