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Chaotic behavior in lemon-shaped billiards with elliptical and hyperbolic boundary arcs

V. Lopac
Division of Physics, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia

I. Mrkonjic and D. Radic
Department of Physics, Faculty of Sciences, University of Zagreb, Zagreb, Croatia
(Received 18 December 2000; revised manuscript received 28 February 2001; published 19 June 2001

Chaotic properties of a new family, ellipse hyperbola billiatg$iB), of lemon-shaped two-dimensional
billiards, interpolating between the square and the circle, whose boundaries consist of hyperbolic, parabolic, or
elliptical segments, depending on the shape parandtare investigated classically and quantally. Classical
chaotic fraction is calculated and compared with the quantal level density fluctuation measures obtained by
fitting the calculated level spacing sequences with the Brody, Berry-Robnik, and Berry-Robnik-Brody distri-
butions. Stability of selected classical orbits is investigated, and for some special hyperbolic points in the
Poincaresections, the “blinking island” phenomenon is observed. Results for the EHB billiards are compared
with the properties of the family of generalized power-law lemon-shaped billiards.
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I. INTRODUCTION [41]. More recently, other gravitational billiards with differ-
ent wall shapes have been repoiftdd,43. The gravitational
Among various systems exhibiting chaotic behavior, thebilliard with the parabolic well42] is fully integrable, and
two-dimensional planar billiards occupy a special placethis is the only known example of an integrable billiard be-
They provided examples of chaotic behavior in the low-Sides the closed elliptical billiard. The most conspicuous
dimensional classical Hamiltonian systefis-3]. They also ~ Property of the wedge billiard is the existence, in the phase
played a crucial role in extending the subject of chaos tdPlane, of singular regions, which cannot be described by the
quantum mechanidsi—6]. In the great majority of billiards KAM theorem. Similar singularities occur also in other low-
investigated in the literature, the boundaries consist of circudimensional dynamical systerfgd]. Generally, the extent of -
lar arcs[1,7—10, or are obtained by a conformation of the chaos and the character and stability of classical orbits in
circle [11-15. Recent works examine the effects of singularPilliards are determined by the analytic form of the boundary
points in the boundarj10], the exotic boundary shapgss—  S€gments, the continuity or discontinuity of the first and
18], the three-dimensional billiard4 9], and the comparison nigher derivatives at the points where the segments meet,

between the quantal, classical, and semiclassical solutions 8d the existence and the rationality of the angles in the
the billiard problem20—26. boundary. Important effects appear when the concave bound-

A large amount of theoretical results on closed billiards is2'Y Ségments are introducdd]. The focusing properties
devoted to the understanding of orbits and their stability. Th&vere discussed in Ref45]. o .
particle moves within the boundary and exhibits specular Far from being of exclu_swely theoretpal interest, billiards
reflections on the billiard wall, with no additional forces Nave also been the subject of extensive experimental re-
present. The only integrable billiard of this type is the full S€arch. Due to the equivalence of the free particle dynamics
ellipse, including the circlg1]. At the other extreme are and the ray limit of the wave motion, the experiments were
billiards that exhibit fully chaotidergodid behavior, repre- re_ahzed yvlth the flat microwave and ultrasound cavities,
sented by the Bunimovickstadium billiard [2], the Sinai ~ With the light resonators and quantum df1$,46—51. An
billiard [3], and, according to the numerical evidence, the®xe€mplary application of the billiard theory leading to the
Robnik billiard[12] for some specific parameter choices. Be-Major technological advance is described in RES1],
tween these two extremes, depending on the billiard shap¥hereby switching from the “whispering-gallery” orbit in
and on the initial conditions, the behavior can be regular}he circular laser resonator to the bow-tie type of orb[t in the
quasiregulafin the sense of thé<AM ) theorer] or chaotic. oval-shaped resonator, the power output of the semlcpnduc—
Some results on the pseudointegrabfiangular, quadrangu- tor microlaser was enhanced by three orders of magnitude.
lar, polygonal and integrable billiards are reported in Refs.

[27-31. Planar billiards containing a particle in the mag- Il. THE LEMON-SHAPED BILLIARDS WITH
netic field, or equivalently, the free particle motion in a ro- HYPERBOLIC AND ELLIPTICAL BOUNDARY ARCS

tating billiard, have been analyzed [i82-36. In thi . . . ¢ tamilv of
Other types of bhilliards have attracted attention in recen n this paper we investigate properties of a new family o
emon-shaped billiards. Their boundaries depend on the

years. These are the open billiards in the vertical plane, . .
where the particle submitted to the constant gravitationaﬁh""pe pgramete?, and are described in they plane by the
field bounces elastically off the billiard walls. The best- €XPr€ssIon
known billiard of this type is the wedge billiarflB7-40,

which revealed complicated variations of dynamics, known

as the “breathing chaos,” when the wedge angle is varied

V1+68(8-2)(1-x%)—1
y== 5—2 ’ @
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FIG. 1. The shape of the EHB billiard bounda(fyll line) for ()
(@ 6=1.3,(b) 6=2.0,(c) 6=5.0, and(d) §=20.0. The shape of
the GPB billiard introduced in Ref52] is also showr(dotted ling.

8=1.68 5=1.88 8=2.00

wherex e[ —1,1]. These billiards, which we call ellipse hy-
perbola billiards(EHB), contain convex hyperbolic, ellipti-
cal, or parabolic arc segments, and can be considered as a
other extension of the convex lemon-shaped parabolic
boundary

y==(1-x) @ ©
o ) ) FIG. 2. Poincareections for the hyperbolic EHB arc shageks
first introduced in Ref[52]. Convex parabolic and hyper- 5=1.005,(b) §=1.1, (c) 5=1.38, (d) §=1.68, and(e) 5=1.88,
bolic arcs have not been previously reported for nongravitaand for the parabolic aro$) 6=2.0.
tional billiards. Except for the full elliptical billiard, which is

integrable, and the elongated half-ellipgetS], there has \yith the variation ofs. The largest of these islands reflect the
been also no explicit reference to the convex billiards congyistence of characteristical stable low period closed orbits.
taining elliptical arcs. _ _ Strong dependence ofi observed in the Poincardia-

The billiards(1) are inscribed into the square of side tWo grams is due to fluctuations in the degree of chaos and can be
and are shown in Fig. 1 for several values of the shape panaracterized as the “breathing chadt0]. This degree can
rameters. Foré6=1, the_ billiard is a tlltgd square of sm{& be expressed quantitatively, by computing the fractiggs
For 6= it is the full circle, and in this limit the billiard is  of the phase plane that is filled with chaotically wandering
integrable. Also, the square limit is integrable, but many ofgrpits. It has been stressé85] that such measure depends
its properties are still being investigated classically andon the counting-box dimension and on the number of the
quantally. We concentrate our attention to the billiatls  phase-space points included in the computation. In our inves-
for 1< 6<2, when the billiard arcs are hyperbolical, and fortigation, we divide the phase plane section defined-ty
2< <>, when the arcs are e”lpt|Ca| In the limfi=2 the <x<1 and _l<UX<1 into N=10000 rectangu|ar boxeS,

billiard arcs have parabolic shape described by @5.Pre-  and for eachs take into accounh =100 000 points of cross-
liminary calculationg 53,54 have shown that the changes in

the billiard shape influence strongly the orbit structure and
the degree of chaos in the classical dynamics. These change
are reflected in the corresponding Poincdiagrams, shown

in Fig. 2 for hyperbolic and parabolic shapes in the interval
1< 6<2, and in Fig. 3, where Poincackagrams are given
for 2< <o, when the shape is elliptical. The andief the
billiard (see Fig. 4 is related to the shape parameter as

8=2.1 3=5.6 5=8.15

S A 3
—tanE. 3

The Poincaraliagrams in Figs. 2 and 3 were obtained in the
following way. Instead of presenting the coordinate and the
parting velocity of the particle at the bouncing point, we plot
the coordinatex and thex-componenty, = cosys of the ve-
locity at each point where the particle crossesxlais (Fig.

4). The resulting plot is area conserving, while at the same Es¥
time, the numerical integrations, which would be necessary b)
for the length-of-arc Birkhoff coordinates, are avoided. The

most conspicuous feature of the obtained Poincéagrams FIG. 3. Poincaresections for the elliptical EHB arc shapés
is a number of elliptical invariant points, surrounded by qua-s=2.1, (b) §=5.6, (c) §=8.15, (d) 6=12, (6) §=30, and(f) &
siregular islands, whose area, shape, and boundary change000.

016214-2
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(@ (b) () (d)

FIG. 6. Selected orbits for which the orbit stability is explored:
(a) vertical two-bounce orbit(b) tilted two-bounce orbit(c) rect-
angular orbit, andd) trapezoidal orbit typical fos=2.

power-law lemon-shaped billard fami{aPB) billiards, de-
scribed in Ref[52]. Section VI contains final discussion and

FIG. 4. Characteristic angles and orbit parameters for the par(_:onclusmns.
ticle motion in the lemon-shaped billiard.

B (v

lll. ANALYSIS OF STABILITY OF ORBITS AND
ing thex axis. For such choice, the rationgN =10 and the SINGULAR REGIONS IN THE POINCARE DIAGRAMS

resglts forqqass are close to the convergence limit. The ' The stability of a periodic billiard orbit can be determined
sultingQeassin dependence od are shown in Fig. 5. Besides om0 ting the deviation matrd,, o, whose trace is the
the fluctuations that can be described as the “breathingiiarion for stability. The orbit is stable M, o <2, un-

chaos,” one notices several values®#t which the chaotic  gpe for|M, o/>2, and has neutral stability iV, o
fraction has a local maximum. We point out the maxima near— o \vjith this method, the stability of orbits has been ana-
6=1.7,6=21, 6=5.6, 6=8.1, 6=12, and6=21, and as-  |yzed for a number of billiard shapd4,7]. The deviation
sume that they result from some bifurcation event at the cormatrix for a periodic orbit of periodh is

responding shape. For example, the maximumsat8.15
occurs when the area of several elliptical islar(dsrre-
sponding to triangular and quadrangular periodic oybis
rapidly shrinking to negligible proportions. However, be- ) o _ ) _ )
sides elliptical invariant points and their surrounding ellipti- Wherem;  is the matrix with unit determinant given in the
cal regions, the Poincamections for some values @fcon- ~ APpendix. Here, we analyze the two-bounce orbits and the
tain singular regions, characterized by hyperbolic points. Théectangular four-bounce orbit, as well as the special continu-

interesting question is how these regions relate to the orb@utS T?m']lytr?f trafJeTOtl_dal O][ti;;{s 'Ejhat.otc_curs fé:'t.z' Furt.her .
structure and stability, and whether such points can be regcralls ot the calculation ot the deviation matrix are given in

: ) . the Appendix.
sponsible for the sudden increase in the calculafed; at In the EHB lemon-shaped billiards there are two types of
some values ob.

. ) two-bounce orbits: the vertical two-bounce orlfig. 6(a)]
In the next few sections, we explore the properties Ofand the tilted one[Fig. 6b)]. Vertical has bothX- and
some billiard orbits, as follows. In Sec. Il we investigate the y_ efiection symmetry, as well as the cent@lsymmetry.
criteria of stability for some selected orbits. Special attentionre tilted orbit has oﬁly theC symmetry. The rectangular
is paid to two of the hyperbolic orbits and their Poincare ot [Fig. 6(c)], consisting of two horizontal and two verti-
diagrams. Section |V is devoted to the quantum solutions fogg] segments, ha¥, Y, andC symmetry. In EHB billiards,
billiards (1) and to the statistical analysis of the obtainedga)| of these orbits exist in the whole rangecB<co.
quantal spectra. In Sec. V the properties of the EHB billiard - The billiard arcs fors=2 have parabolic shape. This bil-
(1) are compared with those of the family of the generalizedjard has been discussed in RE52], as a special case of the
generalized power-law lemon-shaped billiard fam(iGPB).

®) © The s_pecial fc_qusing property of t_he parabolic bou_ndary re-
I D sults in a family of trapezoidal orbits. One of them is shown
in Fig. 6(d). In the Poincaresections, they are visible as two

\.\/\_ straight lines betweeix|=0.25 and|x|=1 at »,=0 [Fig.
I J\/\V"'\N 2()].
—— EHB

In Table I, the intervals o6 in which the orbits are stable,
unstable, and neutral, respectively, are given and the values
of the trace of the deviation matrix in dependencedare

also shown in Fig. 7.

The typical feature of the Poincagections for interme-
FIG. 5. Classical chaotic fraction measuyg,s for the EHB  diate values of are large regular regions surrounding ellip-
billiard in dependence o@ (thick line). The corresponding result tical invariant points. However, at some values of the shape
for the GPB billiard[52] is also showr(dotted ling. parameter, conspicuous is the presence of singular regions

M n,orb— Mopn—1Mp—1pn—2---My 1Mq g, (4)

g(class.)
o
[6)]

0.0 — — —
1 2 3 4 6 8 10 20 30 40
5 3 5
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TABLE I. Existence and stability of orbits and the traces of the f g h
corresponding deviation matrices. Symlisk (v,h) stands for the
direction, vertical, and horizontal, of the orbit segments, respec-
tively. Following identities are valid:riq=\2pq/R—1, 7pq=
—2pg, T3a=\2IR=py/R? pn=12(5-1)I8, Spn=(5-2)p,
+2, andR=+4/(6—1).

Orbit Existence (™)
and stability
2-bounce unstable
Vertical 1< o< ot 166
(6—1)?
"~ 1)\2 2
Tilted 1< <oo; 4 4(6-1) Al
&26—-1)
2-bounce stable
1.236<6<2:
unstable 6€1nT1,) 2+ (T2nT3,)?

Rectangular ~ 6=1.035,1.236,  +(73n72,)2— 2(724+ 72,)
2,5.068 : neutral 4+ 4711,71,( 7o, Tan+ T3, T2n)
Otherwise: stable
Trapezoidal 6=2: 2
neutral

1.0 -0.5 0.0 0.5 1.0

FIG. 8. The Poincaresection for 5=21.013. Invariant curves
and invariant elliptical regions denoted by letters correspond to the
and singular points. Here, we discuss some details of th@llowing periodic orbits:(a) tilted two bounce(b) triangular, ()
Poincaresections foré=21.013 ands=1.72 871. rectangular(d) 10-legged star(e) hexagonal(f) 14-legged star(g)

The Poincaresection for§=21.013 is shown in Fig. 8. octogonal(h) pentagonal, andi) 8-legged star.

Invariant points and large ellipticdKAM) regions corre-

spond to the closed periodic orbits: two-bounce tilted orbit,above is surrounded by a region that has clearly the elliptical
some polygonal orbitgtriangular, rectangular, pentagonal, shape, although it is filled with irregularly dispersed points
hexagonal, and octogonaind some special types of starlike making part of the chaotic sea. Around a regular point one
orbits of periods 8, 10, and 14. Now we pay attention towould expect a resonant belt at the border of the elliptical
the singular point situated at the  position region. Detailed inspection of Fig. 8 shows that such reso-

P5(0.3075057,0.2939 228). An enlarged part of the Poinhant structure can also surround a region in whose center is a

caresection around this point is shown in Figa® Thisisa hyperbolic point. In the present case it reflects the motion of
hyperbolic point and corresponds to the motion along a fivethe particle along a periodic star like orbit haviMgymme-
legged star withy symmetry, shown in Fig. (®). This orbit  try, of a very high period, shown in Fig.(§. The corre-

is highly unstable, as is confirmed by the calculationsponding resonant belt consists of six islands, visible in Fig.
of the trace of the deviation matrix, which givesNrg  10(a). One of the six islands is shown enlarged in Fig(t}0
=—7.27000. It is interesting to follow this orbit around the phase plane.

An interesting feature is noticed in the Poincaiagram Its full complexity is reflected in the intricate pattern in
for 6=21.013. The unstable hyperbolic point describedwhich the orbit reappears as a part of boundary lajf€ig.
10(c)], not only of the hyperbolical poinPs, but also of

14 14 several other fixed points of elliptical type.
----- VERTICAL
10 | —— TILTED 110 @ (b)
—— RECTANGULAR ;
6| 16
0.35
2
-2
0.15 L ’
P 0.26 0.30 0.34

1éé;éé%éé101o 4|0 76 100_6 B
FIG. 9. (a) Strongly magnified part of the Poincasection for
FIG. 7. The dependence @of the trace of the deviation matrix §=21.013 containing the hyperbolic poirih) The five-legged star-

for the vertical two-bounce orbitdotted thick line, tilted two- like orbit responsible for the hyperbolic point shown (@. (c)
bounce orbit(full thick line), and for the rectangular orbtull thin Stable periodic orbit of a high period, responsible for the belt of
line). invariant islands surrounding the hyperbolic point showrain

016214-4
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(@) (b)

03 ¢

-0.1 : P ke 1 . i d .5
0.1 0.3 0.20 0.22 -1 0 1

FIG. 10. (@) The belt of invariant islands corresponding to the
orbit shown in Fig. ). (b) The enlarged picture of the lowest
lying of the six islands shown ifa). (c) The reccurrence of the
invariant islands due to the orbit shown in FigcPin different
parts of the Poincarsection foré=21.013 in EHB.

Another important feature of the described singular point
is illustrated in Fig. 11, where we show the enlarged portion
of the singular region in the Poincamot for §=21.013,
along with those for two neighboring values of the shape ~'Zig 05 0.0 0.5 1.0
parameter. One clearly observes the inversion of the small ]
regular triangular region revealing the existence of the FIG. 12. The Poincarsection for6=1.72871. The hyperbolic
blinking island’ phenomenon, analogous to the one de-2nd elliptical points correspond to periodic orbits shown in Fig. 13.
scribed for the standard map by Zaslavskyal. [44].

The other example of singularity is the periodic tilted €"9Y Spectra are based on the method of Rid] for solv-
two-bounce orbit fors=1.72871. The corresponding Poin- INg the Schrdinger equation
carediagram is shown in Fig. 12. The hyperbolic point ob- 52
served atP,(0,0.805151) results from the periodic tilted - V2y=EV, (5)
two-bounce orbifFig. 13a)] and is surrounded by three is- 2m
lands, arising from theN-shaped orbit of period GFig. ) o - ) )

13(b)]. Each of these islands has a resonant boundary |aygy|th Dmchl_et b_oundary conc_imons, acc_:ordlng to wh|ch the
due to the motion along the trajectory shown in Fig(c}3 ~Wave function is _expa_nded in th(_a basis of spherical Bessel
The singular point in Fig. 13 is immersed in the chaotic seafunctions of the first kind],(kr) with even». The calcula-
Also in this case, the “blinking island” phenomenon is tion performed for_a number of values éfin the interval
found (Fig. 14). Here, however, the bouncing point after 1.1<6<100 000_ gives for each calculated shape an energy
300000 bounces still remains within the interval of the S€quence containing between 900 and 1500 levels. The spec-
length Ax=3.5x 10", Therefore, this orbit can be practi- tra obtained in this way are analyzed statistically. The calcu-
cally considered stable, as is confirmed by the calculation ofated level spacing sequences are then unfolded by using the

the trace of the deviation matrix, which isMip=0.94734. ~ Method of French and Wor{§7]. The resulting histograms
are fitted to the Brody, Berry-Robnik, and Berry-Robnik-

Brody statistical distributions. The Brod%8] is an empiri-
IV. THE QUANTUM BILLIARD cal distribution characterized by the parameidgr, which is,
although lacking the fundamental explanation, widely used
The billiard (1) can also be considered as a quantal sysas a numerical value to be compared with the classjgal.
tem. Here we present the results of the quantum-mechanica@he Berry-Robnik distributioi59] depends on a single pa-
calculations for the energy spectra. Computations of the enrameterqgg, (identical to the parametgr, in [59]) and is

(@ (b) ©) (@ (b)

8=20.8 3=21.013 3=21.2
0.30 | = 7
. /{I
ops L P L
029 031 029 031 029 031

FIG. 13. (a) The tilted two-bounce orbit giving rise to hyper-
FIG. 11. Enlarged parts of the Poincasections for(a) & bolic points visible in Fig. 12(b) The N-shaped orbit of period 6
=20.8,(b) §=21.013, andc) §=21.2, illustrating the “blinking  and(c) a higher resonance of this orbit, corresponding to the ellip-
island” phenomenon with the reversal of the orientation of the tri-tical islands and their resonant belts, respectively, visible in Fig. 12,
angular region with the variation af. for §=1.72871.
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@ (®) © creasing afterwards. In the intervakld<5, the qjass COM-
L o A o pare well with the Brody and Berry-Robnik results. Fér
0.8 brETE e I e s >5 classical results are closer to the Berry-Robnik-Brody

: i e values ofq.

In an overall comparison between the classical and quan-
tal fluctuations, there are no serious discrepancies, except
near the value5=8, where the classical result exhibited a
0.76 Com e by Bl sl local maxirr)um due to the bifurcation and singular points in
T 0. 0.0 -0.2 0.0 -0.2 0.0 0.2 the Poincarediagram. This occurs probably because our

o, ) quantal calculation is not able to follow all the localization

FIG. 14. Enlarged parts of the Poincasections for(a & effects for cases where the classical behavior is singular. It
=1.71,(b) 6=1.72871, andc) 5=1.75, illustrating the “blinking ;14 pe desirable to obtain a greater precision in the quan-
island” phenomenon. tal calculations, and our investigations are now being ex-

considered exact in the semiclassical limit. Before the semiJEenOIed in this direction.

classical limit is reached, more appropriate is the Berry-

0.80 |

Robnik-Brody distribution. It depends on two parameteys, V. COMPARISON OF THE ELLIPSE HYPERBOLA
and w, and was explicitly derived ifi60]. Prosen and Rob-  BILLIARD (EHB) WITH THE GENERALIZED POWER-
nik, who first introduced this type of the statistics in the form LAW LEMON-SHAPED BILLIARD  (GPB)

of the cummulative distributiofi61], conclude that the pa-
rameterw reflects the degree of localization of the wave
function, whereas) is assumed to be the quantum analogue (1 y|d

. : . . y==(1—[x|% 6)
of the chaotic fractionyg,ssin the classical phase plane.

More details and definitions concerning the methods O.fas the generalization of Eq2). This billiard we call the

spectrum calculations and statistical analysis can be found IB ; .
. eneralized power-law lemon-shaped billia(@PB). The
£5pzec?t(r]a gfe Eengbiﬂzzrsdesm|;h|e:i;esjtjal;str?; S::ﬁ:?%?gs :grr thetwo families (1) and (6) have in common the lemonlike
. . B TH . . . .
Brody distribution,qgg for Berry-Robnik distribution, and shape of the billiard, inscribed into the square of side 2. The

: S . lemon angle is in both families determined by the shape
o By ol oy it are Show, in SePe" parameters as in E0.(3. Bolh bilarcs have the same
but exhibit. identical fluctuations with the variation of the’square Iimitlwhe.n5=1, lan.d the parabolic arc _shape for
h 16t Results of the th tatisti Il show th =2. They differ in the limit6=«, where GPB is a square
shape parametel. Results ot the three statsics all Snowihe 5,y FHB'is the circle. The difference of shapes is visible in
same global behavior, having largest values aro8ad..7,

. i . Fig. 1. As § approachese, the EHB billiards are more simi-
fluctuating for intermediate shape<10, and slowly de- lar to the circle, while the GPB billiards resemble to a bil-

liard of the stadium type, owing to two nearly straight

In Ref.[52], we have introduced the billiard family

1.0 =

MY parallell-situated boundary segments. Dynamically, these
- MJ ™ differences are reflected in the existence of the eight most
05 \r«umw elemeptal onv—periqd Qrbits, those determined by a single
 rony « bouncing point. While in EHB only four of thertthe tilted
(@) EHB | | semmv-nommiicenony | - cusssion two-bounce, triangular, rectangular and hexagpeaist, in
0.0 ‘ ‘ P P GPB also the remaining fouf‘bird,” “bow-tie,” “hour
2 3 4 6 8 10 20 30 40 glass,” and “candy-shaped” orbitcontribute significantly
8 8 d [53,54.

10 Another comparison may be of interest, concerned with

the description of the billiard boundary in the polar coordi-
natese andr. The equation for the EHB reads

0.5
[menenes BERRY-ROBNIK
T PERRv-ACENKCRRORY L CLASSIGAL I’2( o—2 S|nz§0) +2r |Sin QD| — 6= 0, (7)
0.0 e e
4 6 5 8§ 10 =20 5 30 40 giving the solution
FIG. 15. Results of fitting the computed level spacings of the V(6—1)%+(26—1)coge—1—coSep
quantal billiard to theoretical distributions, giving the valueswgf r= ) (8

obtained with the Brody statistical distributigfull thin line), qag (6-2)+2cose

obtained with the Berry-Robnik statistical distributicdotted thick ) ) ) ) )

line), andq obtained with the Berry-Robnik-Brody statistical distri- Which may be readily used with the numerical algorithms
bution (full thick line), in comparison with the classical chaotic Pased on the polar coordinalé?]. The equation for GPB is
measurd],ss(dotted thin ling, in dependence on the shape param-

eter s: (a) for EHB; (b) for GPB. r°lcose|®+r|sing|—1=0 9

016214-6
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and has no explicit general solution, therefore the methods Finally, we compared the results for the EHB billiards
designed for polar coordinates cannot be directly applied. with those for the GPB billiards considered in RE52].

In Fig. 15b) we show for GPB the results fa,ssand  They have in common the lemonlike shape and are both
the corresponding values @jg, ggr, andq, obtained by inscribed into the square of side 2. The shape parameter in
fitting the calculated spectral level densities to the Brodyboth is connected with the billiard angle in the same way. In
Berry-Robnik, and Berry-Robnik-Brody level spacing distri- EHB, a smaller number of orbit types contributes signifi-
butions, respectively. This figure should be compared withcantly to large regular regions, especially 2 where the
the corresponding Fig. 18 for EHB. For direct comparison boundaries are elliptical. In GPB more orbits appear, but
of Qelass iN two types of billiards, in Fig. 5 we have also they are less stable and contribute to the chaotic fraction in

plotted the values),ssObtained for GPB. the phase plane. Faf>2, this results ingg,ss vValues con-
spicuously larger in GPB then in EHB, thus, generally, GPB
VI. DISCUSSION AND CONCLUSIONS billiards are more chaotic than EHB billiards with the ellip-

L . . tical boundary arcs. For hyperbolic arcsc5<2, the ggjas

_In sumarizing the results presented in the previous Seg,eg oscillate, and the comparison depends strongly on the
tions, we stress the followmg conclusions. The b'”"'?m.j. fam-yetails of the shape. The overall agreement between classical
ily (EHB) examined in our paper offers a new possibility of and quantafjy,ssvalues is satisfactory, but for more precise

transit_io_n from the square billiard to the gir_cular billiard. comparison the improved computations of the energy spectra
Examining the classical parameters describing the Chao“ﬁ/ould be beneficial

fraction in dependence on the shape parameter, one dlscoversIt was not possible to establish a direct connection be-

tEe t:rea_thni\g clhaosf p;}henzmenon,_ with local maxima in e the billiard angle and the appearance of bifurcations
the classical value of the characteristic paramefgis at 5 singularities in the Poincamiagrams. It is however

some shapes. Those are connected with the singular regiofi, + mentioning that in the EHB billiards a significant sin-
and hyperbolic points occuring in the Poincaliagrams, gularity appears for the shape parameterl.72 871, which

corresponding to selected orbits. 'I_'hey are hyperbolic anNfiosely, but not precisely, corresponds to the billiard angle
generaly unstable, but can be practically considered stable —27/3

the transport is extremely slow. The examination of the cri-

teria of stability was performed for selected cases, and con-

firms this conclusion. Such points exhibit the special prop-

erty called the “blinking island” phenomenon, observed ACKNOWLEDGMENTS

previously in some nonbilliard Hamiltonian systems. Discussions with A. BjelisV. Danani¢ H. Makino, and
The quantum billiards with the same boundary have beemn). Robnik are gratefully acknowledged.

investigated, resulting in the quantum analogues of the value

of chaotic fractiong.,ss for EHB, obtained by fitting the

calculated spectral fluctuations to the Brody, Berry-Robnik, APPENDIX

and Berry-Robnik-Brody level spacing distributions. All

three distributions exhibit the same type of fluctuations, al- The deviation matrix for a periodic orbit is given by ex-

though, as has been previously known, the absolute valuggession(4), wherem; , is the matrix with unit determinant

cannot be expected to be the same. [1]
|
_ sin(a) L Pik _ Pik
sin(ay)  sin(a R sin(a;)sin(ay)
m; = _ _ _ . (A1)
_ Pik |, Sin(ay) N sin( ;) _ sin(ey) Pi k
Ri Rk Ri Rk Sin(ai) Sin(ozi)Rk

The symbolR; denotes the curvature radius at the bouncingorbit closes with the tangent on the billiard boundary at the
point P;(X; ,Y;i) bouncing pointP; (Fig. 4).
For the two-bounce orbits the deviation matrix is

C[(6-1)2+25x71%7
O 8(6—-1)2

: (A2) M= (mg 2. (A3)
Both bouncing angles at@= 7/2. The lenght of the seg-

pi k is the length of the orbit segment between the bouncingnents isp=2 for the vertical, angp=\2(25—1)/6 for the

points P; and P, and «; is the angle which the departing tilted two-bounce orbit. The curvature radius is=R

016214-7
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—-1)/6 for the vertical and R=(26—-1)[28(26
—1)]1¥3[4(6—1)?] for the tilted orbit.
The deviation matrix for the rectangular orbit is

MA,rect: (m2,1m1,0)2- (A4)

All four bouncing angles aree= /4. The curvature radius
for all bouncing points ifR=+/6/(6—1), and the lenghts of
the horizontal and vertical segments, respectively, @re

= \2(6—1)/s and p,=[28(6—1)—2]/(5—2). The de-

viation matrix for the trapezoidal orbit fof=2 is

PHYSICAL REVIEW E 64 016214

My trag= Mo,aM3 2N, 1My o. (A5)

This orbit is characterized by coordinatesand — 1/x,, with
0.25<|xo|<1. The sinuses of the bouncing angles are
sin(a0)=sin(a3)=1/(1+4x§) and singy)=sin(ay)=2%,/(1
+4x3). The curvature radiuses aRy=Rz=(1—4x3)%?%2
and Ry=R,=(1—4x3)%?(16x3). The orbit segments are
po.1=p23=[(14xG) +x01%, p12=2(1-x5), and p3o=2
—(1/83).
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