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Abstract

We treat spherically symmetric black holes in Gauss–Bonnet gravity by imposing boundary conditions on fluctuating metric
on the horizon. Obtained effective two-dimensional theory admits Virasoro algebra near the horizon. This enables, with the help
of Cardy formula, evaluation of the number of states. Obtained results coincide with the known macroscopic expression for the
entropy of black holes in Gauss–Bonnet gravity.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The well-known Bekenstein–Hawking formula [1]
connects area of the black hole horizon with its
entropy, i.e.,

(1)SBH = A

4h̄G
.

A considerable research effort in recent years was per-
formed in order to understand microscopic interpre-
tation of this relation. A particularly promising ap-
proach seems to be based on conformal field theory
and Virasoro algebra. In fact, it was realized by Brown
and Henneaux [2] that in 2+ 1 dimensions and after
imposing asymptotic AdS3 symmetry one can iden-
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tify two copies of Virasoro algebra and corresponding
central charges. Further analysis [3] has reproduced
Bekenstein–Hawking entropy for black holes in this
theory. More recently, several papers addressed the
problem ofD-dimensional black holes. In particular,
Solodukhin is treating [4] the spherically symmetric
black holes with the metric

(2)ds2 = γab(x) dx
a dxb + r(x)2dΩD−2,

where dΩD−2 is metric on (D − 2)-dimensional
sphere of unit radius. In this approach one considers
fluctuations of the fieldr(x) on a two-dimensional
space–time with the metricγab(x). The author was
able to identify a particular group of diffeomorphisms
under which the horizon is invariant. The Einstein ac-
tion reduces to a two-dimensional action of Liouville
type. One is able to identify a Virasoro algebra. The
aim is then to calculate the entropy from Cardy for-
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mula [5]

(3)SC = 2π

√(
c

6
− 4∆g

)(
∆− c

24

)
,

where∆ is the eigenvalue of Virasoro generatorL0 for
the state we calculate the entropy and∆g is the small-
est eigenvalue. It was shown that the corresponding
entropy reproduces BH result (1). Another approach
is due to Carlip [6–10] where one requires inD-
dimensional gravity a set of boundary conditions near
horizon. That leads to central extension for the con-
straint algebra of general relativity. Due to assumed
boundary conditions this algebra contains Virasoro al-
gebra whose existence enables one to calculate con-
formal charge and via Cardy formula (3) the entropy.
All these papers confirm that microscopic description
via conformal theory reproduces the classical BH re-
sult for Einstein gravity. The question which we want
to investigate in this Letter is if such description re-
produces the classical result also for theories which
differ from Einstein action by new terms written in
terms of products of Riemann tensors and correspond-
ing covariant derivatives. In fact, it is known that the
classical entropy differs from the BH formula in these
cases. Introduce, e.g., the (extended) Gauss–Bonnet
(GB) densities

Lm(g)= (−1)m

2m
δρ1σ1...ρmσm
µ1ν1...µmνm

(4)×Rµ1ν1
ρ1σ1 · · ·Rµmνm

ρmσm,

whereRµνρσ is Riemann tensor for metricgµν and

δ
β1...βk
α1...αk is totally antisymmetric product ofk Kro-

necker deltas, normalized to take values 0 and±1.
By definition, we takeL0 = 1 (cosmological constant
term). Notice also thatL1 = −R, i.e., ordinary Ein-
stein action. General GB action (also known as Love-
lock gravity [11]) is now given as

(5)IGB = −
[D/2]∑
m=0

λm

∫
dDx

√−gLm(g),

whereg = det(gµν) and[z] denotes integer part ofz.
Explicit expresion for the entropy of general stationary
black hole in GB theory is [12]

(6)SGB = 4π

h̄

[D/2]∑
m=1

mλm

∮
dD−2x

√
g̃Lm−1(g̃ij ),

where the integration can be made on any (D − 2)-
dimensional spacelike slice of the Killing horizon
and g̃ij is the induced metric on it. In fact, classical
expression for entropy in any generally covariant
gravity theory have been suggested [13].

In this Letter we shall investigate in particular the
Gauss–Bonnet action. This action has in fact many
interesting properties:

• In D-dimensional space all terms for whichm>

D/2 are identically equal to zero, because max-
imal rank of antisymmetric tensor in such space
is D. It follows that there is always finite number
of terms in the GB action (which we already in-
cluded in the definition (5)). Termm = D/2 is a
topological term. In fact it is the original Gauss–
Bonnet term which exists in even-dimensional
spaces and which (with appropriate surface term
added) is equal to the Euler character of that space.
So, only terms for whichm<D/2 are contribut-
ing to equations of motion. It means that inD = 4
GB action is (neglecting topological effects) just
the Einstein action.

• Only GB terms have the property that resulting
equations of motion contain no more than second
derivative of metric [11]. They are also free of
ghosts when expanded not only about flat space
[14] but also about some Randall–Sundrum brane
solutions in 5D [15].

• It has a good boundary value problem [16], in
the sense that we can add surface terms such that
the action can be extremized on spaceM while
keeping only the metric fixed on the boundary∂M

(if non-GB terms are present in the action we have
to also fix derivatives of components of the metric
tensor on∂M).

• Analysis of spherically symmetric classical solu-
tions in empty space is almost as simple as for
pure Einstein case. But, unlike the Einstein case
where there was unique solution (Schwarzschild),
for general GB action there are black hole solu-
tions having more complicated global topologies
with multiple horizons and/or naked singularities
[17].

• The entropy of GB black holes can be written
(at least in stationary cases) as a sum ofintrinsic
curvature invariants integrated over a cross section
of the horizon. As far as is known only GB actions
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have this property. Interesting property that the
entropy (6) has the same form as the action (5)
can be described as dimensional continuation of
the Gauss–Bonnet theorem.

• The entropy of GB black holes is negative for
some region of parameter space. It is speculated
that this is connected with the existence of a new
type instability [18].

• It can be supersymmetrised.
• It is nonrenormalisable.

This properties suggest that GB action could be
considered as a natural generalisation of Einstein
action.

We shall investigate the entropy problem for this
action with the Solodukhin method. We describe first
the simpler case with only quadratic terms in Riemann
tensor and consider spherically symmetric black holes
with fixed boundary conditions for the fluctuating
metric. We calculate the corresponding effective two-
dimensional theory. It will be possible to find Virasoro
algebra corresponding to the diffeomorphisms which
preserve above boundary condition. Calculations of
central charge and application of Cardy formula will
determine entropy. We shall find that number of states
obtained in such a way reproduces the classical result
of Jacobson and Myers. In the Section 3 we generalise
these results to the most general GB theory. In the last
section we end with concluding remarks.

2. Effective CFT near the horizon

Now we turn our attention to particular microscopic
derivation of “macroscopic” expression (6) for entropy
of black holes in GB theory. For simplicity in this
section we putλm = 0 for m> 2. General action will
be considered in the next section. We also takeλ0 = 0
(cosmological constant), because we shall see that this
term is irrelevant for our calculation. In this case action
(5) becomes

IGB =
∫
dDy

√−g [
λ1R − λ2

(
RµνρσR

µνρσ

(7)− 4RµνR
µν +R2)].

Coupling constantλ1 is related to more familiar
D-dimensional Newton gravitational constantGD

throughλ1 = (16πGD)
−1.

Following Solodukhin [4] we neglect matter and
considerS-wave sector of the theory, i.e., we consider
only radial fluctuations of the metric. It is easy to show
that in this case (7) can be written in the form of
an effective two-dimensional “higher-order Liouville
theory” given with

IGB = (D − 2)(D− 3)ΩD−2

∫
d2x

√−γ

×
{

2λ2(D − 4)rD−5(∇r)2∇2r

+ λ2(D − 4)(D− 5)rD−6(∇r)4
− [

λ1r
D−4 + 2λ2(D− 4)(D − 5)rD−6](∇r)2

+
[

λ1r
D−2

(D − 2)(D− 3)
+ 2λ2r

D−4
]
R

(8)− [
λ1r

D−4 + λ2(D − 4)(D− 5)rD−6]}.
We now suppose that black hole with horizonis
existing and we are interested in fluctuations (or better
quantum states) near it. In the spherical geometry
apparent horizonH (a line inx-plane) can be defined
by the condition [19]

(9)(∇r)2∣∣H≡ γ ab∂ar∂br
∣∣
H = 0.

Notice that (9) is invariant under (regular) conformal
rescalings of the effective two-dimensional metricγab.
Near the horizon (9) is approximately satisfied. It is
easy to see that near the horizon first two terms in
(8) are suppressed by a factor(∇r)2 relative to the
third term (to see this just partially integrate latter and
discard surface terms) and may be neglected.

If we make reparametrizations

(10)φ ≡ 2Φ2

qΦh

, γ̃ab ≡ dφ

dr
γab,

where

Φ2 = 2ΩD−2

(11)× [
λ1r

D−2 + 2(D− 2)(D − 3)λ2r
D−4],

andq is arbitrary dimensionless parameter, the action
(8) becomes

(12)IGB =
∫
d2x

√−γ̃
[

1

4
qΦhφR̃− V (φ)

]
.
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This action can be put in more familiar form if we
make additional conformal reparametrization:

(13)γ̄ab ≡ exp

{
− 2φ

qΦh

}
γ̃ab.

Now (12) takes the form

IGB = −
∫
d2x

√−γ̄

(14)×
[

1

2

(�∇φ)2 − 1

4
qΦhφ�R+U(φ)

]
,

which is similar to the Liouville action. The difference
is that potentialU(φ) is not purely exponential but is
given with

U(φ)= (D − 2)(D − 3)ΩD−2

× [
λ1r

D−4 + λ2(D − 4)(D − 5)rD−6]
× dr

dφ
exp

{
2φ

qΦh

}
.

Action (14) is of the same form as that obtained from
pure Einstein action. In [4] it was shown that if one
imposes condition that the metric̄γab is nondynamical
then the action (14) describes CFTnear the horizon.1

We therefore fixγ̄ab near the horizon and take it to be
metric of static spherically symmetric black hole:

(15)ds̄2
(2) ≡ γ̄ab dx

a dxb = −f (w)dt2 + dw2

f (w)
,

where near the horizonf (wh)= 0 we have

(16)f (w)= 2

β
(w −wh)+O

(
(w −wh)

2).
We now make coordinate reparametrizationw → z

(17)z=
w∫

dw

f (w)
= β

2
ln
w −wh

f0
+O(w−wh)

in which 2-dimensional metric has a simple form

(18)ds̄2
(2) = f (z)

(−dt2 + dz2),
and the functionf behaves near the horizon (zh =
−∞) as

(19)f (z)≈ f0e
2z/β,

1 Carlip showed that above condition is indeed consistent bound-
ary condition [20].

i.e., it exponentially vanishes. It is easy to show that
equation of motion forφ which follows from Eqs.
(14), (18), (19) is(−∂2

t + ∂2
z

)
φ = 1

4
qΦh

�Rf + fU ′(φ)

(20)≈O
(
e2z/β),

and that the “flat” trace of the energy–momentum
tensor is

−T00 + Tzz = 1

4
qΦh

(−∂2
t + ∂2

z

)
φ − fU(φ)

(21)≈O
(
e2z/β),

which is exponentially vanishing near the horizon.2

From (20) and (21) follows that the theory of the
scalar fieldφ exponentially approaches CFT near the
horizon.

Now, one can construct corresponding Virasoro
algebra using standard procedure. Using light-cone
coordinatesz± = t ± z right-moving component of
energy–momentum tensor near the horizon is approx-
imately

(22)T++ = (∂+φ)2 − 1

2
qΦh∂

2+φ + qΦh

2β
∂+φ.

It is important to notice that horizon condition (9)
implies that r and φ are (approximately) functions
only of one light-cone coordinate (we take it to bez+),
which means that only one set of modes (leftor right)
is contributing.

Virasoro generators are coefficients in the Fourier
expansion ofT++:

(23)Tn = 8

2π

8/2∫
−8/2

dz ei2πnz/8T++,

where we compactifiedz-coordinate on a circle of cir-
cumference8. Using canonical commutation relations
it is easy to show that Poisson brackets ofTn’s are
given with

i{Tn,Tm}PB = (n−m)Tn+m + π

4
q2Φ2

h

(24)×
(
n3 + n

(
8

2πβ

)2)
δn+m,0.

2 Higher derivative terms in (8) make contribution to (21)
proportional tof (∇φ)2 ≈ o(exp(2z/β)).
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To obtain the algebra in quantum theory (at least
in semiclassical approximation) one replaces Poisson
brackets with commutators using[ , ] = ih̄{ , }PB, and
divide generators bȳh. From (24) it follows that
“shifted” generators

(25)Ln = Tn

h̄
+ c

24

((
8

2πβ

)2

+ 1

)
δn,0,

where

(26)c = 3πq2Φ
2
h

h̄
,

satisfy Virasoro algebra

(27)[Ln,Lm] = (n−m)Ln+m + c

12

(
n3 − n

)
δn+m,0

with central chargec given in (26).
Outstanding (and unique, as far as is known) prop-

erty of the Virasoro algebra is that in its representa-
tions a logarithm of the number of states (i.e., entropy)
with the eigenvalue ofL0 equal to∆ is asymptotically
given with Cardy formula (3). If we assume that in
our case∆g = 0 in semiclassical approximation (more
precisely,∆g � c/24), one can see that number of mi-
crostates (purely quantum quantity) is in leading ap-
proximation completely determined by (semi)classical
values ofc and L0. Now it only remains to deter-
mine∆. In a classical black hole solution we have

(28)r =w =wh + (w −wh)≈ rh + f0e
2z/β,

so from (10) and (11) follows that near the horizon
φ ≈ φh. Using this configuration in (23) one obtains
T0 = 0, which plugged in (25) gives

(29)∆= c

24

((
8

2πβ

)2

+ 1

)
.

Finally, using (26) and (29) in Cardy formula (3) one
obtains

(30)SC = c

12

8

β
= π

4
q2 8

β

Φ2
h

h̄
.

Let us now compare (30) with classical formula (6),
which in present case is

(31)SGB = 4π

h̄

∮
dD−2x

√
g̃

(
λ1 − 2λ2R(g̃ij )

)
,

where g̃ij is induced metric on the horizon. In the
sphericaly symmetric case horizon is a(D − 2)-
dimensional sphere with radiusrh and R(g̃ij ) =

−(D − 2)(D − 3)/r2
h, so (31) becomes

SGB = 4π

h̄
ΩD−2

[
λ1r

D−2
h + 2(D− 2)(D− 3)λ2r

D−4
h

]
(32)= 2π

Φ2
h

h̄
.

Using this our expression (30) can be written as

(33)SC = q2

8

8

β
SGB,

so it gives correct result apart from dimensionless
coefficient, which can be determined in the same way
as in pure Einstein case [20]. First, it is natural to
set the compactification period8 equal to period of
Euclidean-rotated black hole,3 i.e.,

(34)8= 2πβ.

The relation between eigenvalue∆ of L0 andc then
becomes

(35)∆= c

12
.

We shall see in the next section that this relation holds
for general GB theory, i.e., for arbitrary values of
coupling constants.4 One could be tempted to expect
this to be valid for larger class of black holes and
interactions then those treated so far.

To determine dimensionless parameterq we note
that our effective theory given with (14) depends
on effective parametersΦh and β , and thus one
expects thatq depends on coupling constants only
through dimensionless combinations of them. Thus
to determineq one may considerλ2 = 0 case and
compare expression for central charge (26) with that
obtained in [7], which is

(36)c = 3Ah

2πh̄GD

,

whereAh = ΩD−2r
D−2
h is the area of horizon. One

obtains that

(37)q2 = 4

π
.

One could also perform boundary analysis of Ref.
[7] for GB gravity (see Appendix A). This procedure

3 We note that our functions depend only on variablez+, so the
periodicity properties in timet are identical to those inz.

4 For pure Einstein gravity this relation is implicitly given in [7].
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gives∆ = Φ2
h/h̄ which combined with (26) and (35)

gives (37).
Using (34) and (37) one finally obtains desired

result

(38)SC = SGB.

3. General Gauss–Bonnet gravity

InD > 6 Gauss–Bonnet action has additional terms
and general action was given in (5). Using spherical
symmetry one obtains effective two-dimensional ac-
tion given now with

IGB =ΩD−2

[D/2]∑
m=0

λm
(D − 2)!
(D − 2m)!

×
∫
d2x

√−γ rD−2m−2[1− (∇r)2]m−2

× {
2m(m− 1)r2[(∇a∇br)

2 − (∇2r)2
]

+ 2m(D− 2m)r∇2r
[
1− (∇r)2]

+mRr2[1− (∇r)2]
(39)− (D − 2m)(D − 2m− 1)

[
1− (∇r)2]2}

.

After partial integration5 and implementation of hori-
zon condition(∇r)2 ≈ 0, (39) becomes near the hori-
zon approximately

IGB = −ΩD−2

[D/2]∑
m=0

λm
(D − 2)!

(D − 2m− 2)!

×
∫
d2x

√−γ rD−2m−2
{
m(∇r)2

(40)− m

(D− 2m)(D − 2m− 1)
Rr2 + 1

}
.

If we define

(41)Φ2 ≡ 2ΩD−2

[D/2]∑
m=1

mλm
(D − 2)!
(D − 2m)! r

D−2m,

5 Notice that

2rn
[
(∇a∇br)

2 − (∇2r
)2]

= 3nrn−1∇2r(∇r)2 + n(n− 1)rn−2(∇r)4

+Rrn(∇r)2 + surface terms.

and make a reparametrization (10), the action (40)
becomes

(42)IGB =
∫
d2x

√−γ̃
[

1

4
qΦhφR̃− V (φ)

]
,

which is of the same form as (12) (the only difference
is the exact form of the potential which is unimportant
in this calculation). Now one can repeat the analysis
from (12) to (30) in previous section without a change
and obtain for the entropy the expression (30), where
Φh is now given by (41) evaluated at a horizon. It
only remained to show that also in the general case
the entropy (6) andΦh are related as in (32). For
spherically symmetric metric (2) where horizon is a
(D − 2)-dimensional sphere with radiusrh one can
show that (6) can be written as6

SGB = 4π

h̄
ΩD−2

[D/2]∑
m=1

mλm
(D − 2)!
(D − 2m)!r

D−2m

(43)= 2π
Φ2
h

h̄

the same as in (32). Finally, using the same arguments
as in previous section one obtainsSC = SGB.

4. Conclusion

In this Letter we have calculated entropy of
D-dimensional spherically symmetric black holes in
Gauss–Bonnet gravity. The method used asymptotic
conformal symmetry of the effective two-dimensional
action near the horizon [4]. This makes it possible to
find via Cardy formula number of microstates. The
obtained relation for the entropy coincides with the
macroscopic formula [12].

It would be desirable to investigate if this result
pursues also in other interactions. It would be also of
interest to treat a more general class of stationary black
holes. Such questions maybe also addressed by Carlip
methods [7]. This could also help to understand better

6 In fact, it is obvious that the last term in (40) is minusmth
Gauss–Bonnet density (4) for the (D − 2)-dimensional sphere with
radiusr , i.e.,

Lm = (D− 2)!
(D − 2m− 2)!ΩD−2r

D−2m−2.
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the relation of two methods and the question of their
eventual equivalence (some progress in this direction
was recently done in [8]). In fact, some of these
questions will be addressed in a separate publication.
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Appendix A

Eigenvalue∆ of L0 can be calculated by boundary
analysis previously applied for Einstein gravity by
Carlip7 [7]. It is a contribution to the boundary term
of the Hamiltonian

H [ξ ] =
∫
H

Q[ξ ] + · · · .

HereH denotes the(n − 2)-dimensional intersection
of the Cauchy surface with the horizon, and the
(n− 2)-formQ is equal to

Qa3···an[ξ ] = − ∂LGB

∂Rabcd

ηab∇[cξd]ε̂a3···an,

ηab is the binormal to theH, andξa is the vector field
to which corresponds generator of diffeomorphisms
H [ξ ]. Boundary and integrability conditions are fix-
ing deformations to lie in “r-t” plane andξa =Kρa +
T χa , whereχa is approximately Killing near the hori-
zon (determined byχ2 = 0), andρa = −∇aχ

2/2κ .
ScalarsK, T are connected byK = χ2χa∇aT /κρ

2 ≡
Ṫ χ2/κρ2. Then one can calculate

J [ξ ] ≡
∫
H

Q[ξ ]

(A.1)=
∫
H

(
λ1 − 2λ(n−2)

2 R
)(

2κT − T̈

κ

)
ε̂a3···an .

7 We use here the notation of Ref. [7] where possible.

One can show analogously to [7] that Fourier compo-
nentsTm of T lead to generatorsJ [Tm] whose Dirac
brackets satisfy again Virasoro algebra. Eq. (A.1) then
gives us

h̄∆= J [T0] =
∫
H

(
2λ1 − 4λ(n−2)

2 R
)
ε̂a3···an

=Φ2
h.

Comparison with (35) gives (37). All details will be
given in a separate publication [21].
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