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We develop a theory describing propagation of spatially and temporally incoherent light in noninstantaneous
nonlinear media, and predict the existence of modulation instability of ‘‘white’’ light. We find that the modu-
lation instability of white light is fundamentally a collective effect, where all the temporal frequencies partici-
pate in the formation of a pattern, and self-adjust their respective contributions.
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Optical wave packets in linear media have a natural t
dency to broaden as they propagate. In nonlinear media
broadening in space~diffraction!, or time~dispersion!, can be
balanced by self-focusing effects. Consequently, soliton
waves that do not change their shape during propagatio
can form@1#. Another phenomenon closely related to solit
formation is modulation instability~MI !: the spontaneous
breaking of a uniform wave followed by the formation of
pattern~a train of solitonlike beamlets/pulses!, which occurs
due to the interplay between diffraction/dispersion and n
linearity @2–5#.

Until recently, all experiments on solitons and MI in an
known system were performed with fully coherent wa
packets. However, in 1996 solitons made of quasimonoc
matic partially spatially incoherent light were demonstra
@6#. One year later, self-trapping of a white light beam em
ted from an incandescent bulb, that is, from a spatially a
temporally incoherent source, was observed@7#. The key re-
quirement for self-trapping of a random-phase~incoherent!
wave packet is that the nonlinear response of the mediu
slow compared to the characteristic time of the random fl
tuations upon the beam. The medium must be unable to
low the fast variations~in time and space! of the random
speckled patterns, but respond only to the time-averaged
tensity pattern@8#.

Several theories formulating the propagation of incoh
ent light in noninstantaneous nonlinear media have been
posed@9–12#. There are three formally equivalent theori
that capture all the essential physics involved: the cohe
density function theory@9#, the modal theory@10#, and the
mutual coherence function theory@11#. However, these theo
ries analyze quasimonochromatic light, i.e., beams that
temporally coherent@9–11,13#, and cannot describe ‘‘white’
light solitons, such as those generated with the light emi
from a bulb@7#.

In this paper, we develop a theory describing propaga
of spatially and temporally incoherent light in noninstan
neous nonlinear media; a general theory that accounts fo
evolution of both temporal and spatial incoherence proper
of the light. In particular, we utilize the theory to investiga
the stability of a temporally and spatially incoherent beam
uniform intensity, and predict the modulation instability
white light. We show that the frequency spectrum direc
1063-651X/2002/66~3!/035601~4!/$20.00 66 0356
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affects the strength of the instability~nonlinear gain!, and
can destabilize or stabilize the beam. We find that MI
white light is fundamentally a collective effect, where all th
temporal frequencies participate in the formation of a p
tern, and self-adjust their respective contributions.

Light propagates in the nonlinear medium that respo
only to the time-averaged intensityI. The time average is
taken with respect to the response time of the materialtm ,
which, in photorefractives, can be as long as 0.1 s@7#. The
wave equation for the electric fieldE(x,y,z,t) is

“~“•E!2¹2E1
1

c2

]2

]t2
D50, ~1!

whereD5@n0
212n0dn(I )#E. The linear and nonlinear part

of the refractive index aren0 and dn(I ), respectively. For
simplicity, we assume that bothn0 anddn(I ) do not depend
on the frequency of the light. We analyze the case where
nonlinearity is in temporal steady state,]dn(I )/]t50.

Consider a light beam from an incoherent source, whic
propagating along thez direction @7#. Let v0 be the central
frequency of the spectrum,v0;1015 s21. The corresponding
wave number~wavelength! in the medium isk05v0n0 /c
(l052p/k0). If the relative increment ofdn(I ) is small
over a few wavelengthsl0, then u“(“•E)u is negligible in
comparison to the nonlinear term 2n0dn(I )c22u]2E/]t2u.
This approximation is certainly valid for incoherent MI an
solitons. Assuming the light is linearly polarized@7#, the
electric field can be described by the complex amplitu
Ẽ(x,y,z,t)5(1/2p)*0

`dvEv(x,y,z)eikvz2 ivt, where kv

5n0v/c. The coherence properties of the light are describ
by the mutual coherence function@14#

G~R1 ,R2 ;t!5^Ẽ* ~R2 ,t2!Ẽ~R1 ,t1!&

5
1

2pE0

`

dvGv~R1 ,R2!e2 ivt, ~2!

where t5t12t2 . Gv denotes the mutual spectral densi
InsertingẼ in Eq. ~1! @“(“•E).0, and]dn(I )/]t50], and
approximatingu]2Ev /]z2u!ukv]Ev /]zu, leads to

¹'
2 Ev12ikv

]Ev

]z
1

2dn~ I !kv
2

n0
Ev50. ~3!
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Let us defineẼv5Evei (kvz2vt), and the correlation function
Jvv851/2p^Ẽv8

* (r2 ,z,t)Ẽv(r1 ,z,t)&, where r1, and r2 de-
note two points from the same cross section of the be
Equation ~3!, rewritten for the correlation functionJvv8
reads

]Jvv8
]z

2 i ~kv2kv8!Jvv82F i

2kv
¹'1

2 2
i

2kv8

¹'2
2 GJvv8

5
i

n0
$kvdn@ I ~r1 ,z!#2kv8dn@ I ~r2 ,z!#%Jvv8 . ~4!

Clearly, if uv2v8u/v0@1/v0tm , then Jvv8(r1 ,r2 ,z).0.
Since v0 is of order 1015 Hz, and tm.0.1 s, 1/v0tm
;10214. Hence, Jvv8(r1 ,r2 ,z) differs from zero only if
uv2v8u/v0 is extremely small, e.g., of order 10212 and
smaller. Therefore, iftm@v0

21, Eq. ~4! can be integrated
over v8 to yield

]Bv

]z
2

i

2kv
@¹'1

2 2¹'2
2 #Bv

5
ikv

n0
$dn@ I ~r1 ,z!#2dn@ I ~r2 ,z!#%Bv~r1 ,r2 ,z!, ~5!

where Bv(r1 ,r2 ,z)5*0
`dv8Jvv8(r1 ,r2 ,z). Note that the

term i (kv2kv8)Jvv8 vanishes upon integration. By compa
ing the definition of Bv with Eq. ~2!, it follows that
Bv(r1 ,r2 ,z)5Gv(r11zk,r21zk), i.e., Bv(r1 ,r2 ,z) is the
mutual spectral density evaluated at two points from
same cross section of the beam. Since the time-average
tensity is I (r ,z)51/2p*0

`dvBv(r ,r ,z), Equation~5! is an
integrodifferential equation describing the evolution~in thez
direction!, of the mutual spectral density.

Up to this point, the treatment is general and applicable
the analysis of a variety of problems associated with
propagation of white light in noninstantaneous nonlinear m
dia, from white light solitons@7# to interaction collisions
among such solitons~which have not been explored yet!, and
to the exciting possibility of coherence control and ‘‘coo
ing’’ driven by interactions among multiple incoherent so
tons. This formalism can also be used to study the possib
of pattern formation upon an incoherent beam of white lig
in either single-pass systems~again, never observed as o
yet! or in cavities@15#. All of these cases cannot be studie
with any of the established incoherent soliton theories
general conclusion arising from evolution equation~5! is that
the combined spatial and temporal coherence propertie
light determine the evolution of the beam. This has an
portant implication on the self-trapping of white light; it im
plies that a particular intensity profile of a soliton can
achieved only with proper spatiotemporal correlation sta
tics of the light. This idea is underpinned by the impact
spatiotemporal coherence properties of a uniform beam
the MI process, which can be regarded as a precurso
soliton formation.

In the rest of this paper, we study the stability of an inc
herent beam of a uniform intensity. We consider a (111)
dimensional~D! system, and investigate the evolution of t
03560
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mutual spectral density expressing it asBv(r ,r,z)
5Bv

(0)(r)1Bv
(1)(r ,r,z), whereBv

(0)(r) denotes the incoher
ent beam of a uniform intensity, andBv

(1)(r ,r,z) describing
small perturbations. The coordinates in the~111!D system
arer 5(x11x2)/2, andr5x12x2. At the onset of the insta-
bility, and as long as perturbations are small,uBv

(1)(r ,r,z)u
!uBv

(0)(r)u. The nonlinear index change isdn(r ,z)
5dn@ I (0)#1h(r ,z), whereI (0)51/2p*0

`dvBv
(0)(0). h(r ,z)

denotes small changes in the refractive index correspon
to small perturbations, h(r ,z)5k/2p*0

`Bv
(1)(r ,0,z)dv,

wherek5]dn(I )/]I evaluated atI (0). Equation~5! can be
linearized

]Bv
(1)~r ,r,z!

]z
2

i

kv

]2Bv
(1)

]r ]r

5
ikvk

2pn0
Bv

(0)~r!E
0

` H Bv8
(1)S r 1

r

2
,0,zD

2Bv8
(1)S r 2

r

2
,0,zD J dv8. ~6!

At z50, the initial perturbations can be Fourier decompos
into a set of modes, h(r ,0)51/2p*2`

` daeir aĥ(a)
1c.c. From the structure of Eq.~6! it follows
that each of these modes grows exponentially,h(r ,z)
51/2p*2`

` daeg(a)zeir aĥ(a)1c.c., where g(a)5gR1 igI

denotes the complex-valued growth rate@3,4#. If gR.0,
small perturbations get amplified while propagating alonz
and the beam becomes unstable. From the connection
tweenh(r ,z) andBv

(1)(r ,r,z), we construct the solution o
Eq. ~6!: Bv

(1)(r ,r,z)5Mv
(1)(r ,r,z)1Mv

(1)* (r ,2r,z),
where Mv

(1)(r ,r,z)5*2`
` eg(a)zeiarLv

a(r)Av(a)da. Here

k*0
`dvAv(a)5ĥ(a), Lv

a(r) @Av(a)# describes the spatia
coherence properties~power spectrum, respectively! corre-
sponding to a particular spatial modulation defined bya, and
by definitionLv

a(0)51.
By insertingBv

(1) in Eq. ~6!, and after Fourier transform
ing from the (r ,r) space, to the inverse (a,K) space, Eq.~6!
takes the form

S g2
iaK

kv
D L̂v

a~K !Av~a!

5
ikvk

2pn0
F B̂v

(0)S K1
a

2 D2B̂v
(0)S K2

a

2 D G E
0

`

dv8Av8~a!.

~7!

Here, F̂(K)5(1/2p)*2`
` F(r)eiKrdr. Equation~7! is now

divided by (g2 iaK/kv), then integrated overK, andv. The
boundary condition*2`

` L̂v
a(K)dK5Lv

a(0)51 is applied,
and implicit integral relation forg(a) is obtained

215E
0

`E
2`

`
dvdK

kvk

2pn0

ig1
aK

kv

H B̂v
(0)S K1

a

2 D2B̂v
(0)S K2

a

2 D J .

~8!
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Physically, B̂v
(0)(K) is a real, symmetric bell-like shape

function @e.g., a Gaussian, or a Lorentzian@3## with some
characteristic widthK0(v), which may depend on the fre
quencyv. Further analysis of Eq.~8! shows thatg is either
pure real or pure imaginary, and that ifg5gR is a solution,
theng52gR is a solution as well. Thus, if Eq.~8! has a real
solutiong5gR for at least one value ofa, the beam will be
unstable.

Analyzing ~numerically! the functional dependence o
g(a) for white light, we first observe that the most importa
result from the temporally coherent MI analysis@3,4# is re-
produced, with a similar logic. For white light MI to occu
the nonlinearity must exceed a threshold imposed by the
gree of spatial coherence. Decreasing the spatial correla
distancel s(v)52p/K0(v) @e.g., by multiplyingl s(v) with
some constant smaller than 1], makes the beam more st
Eventually, when the spatial correlation distance becom
smaller than a specific~threshold! value, the input beam be
comes stable and all perturbations are suppressed in a
ion similar to incoherent MI in temporally coherent system
@3,4#.

However, incorporating the spectral densityB(v) into in-
coherent MI also adds several, new, very important featu
The first finding is that the stability properties directly d
pend on the~temporal! spectral width of the light. This is
significantly different from all previous studies of incohere
MI @3,4#, where the spectrum of the light had no effect on t
MI process. To introduce a more convenient parametrizat

B̂v
(0)(K) is written asB̂v

(0)(K)52pI (0)B(v)b̂v
(0)(K), where

B(v) is the normalized power spectrum of the unifor

beam, andb̂v
(0)(K) is the normalized function describing th

spatial coherence properties for each frequencyv. To facili-
tate meaningful predictions, we use the parameters from@4#:
n052.3, kI (0)50.0006, a central wavelength of 500 nm
vacuum. To model the dependence of spatial correlation
tance on the frequency, considerK0(v)5K0@11s(v
2v0)/v0#, where the slopes determines whetherK0(v)
increases or decreases withv; the constantK050.01k0. The

spatial coherence is described by b̂v(K)
5@A2pK0(v)#21exp@2K2/2K0(v)2#, and the spectral den
sity is chosen to be B(v)5@A2pDv#21exp@2(v
2v0)

2/2Dv2#. Figure 1 shows the gain coefficientg(a) as a
function of transverse wave number, for three different sp
tral widths: Dv/v052%, 5%, and 10%, and for two dif
ferent types ofl s(v) dependences. The inset in Fig. 1 sho
the dependence of the spatial correlation distancel s on the
~temporal! frequencyv. For s51.2 (s521.2), l s decreases
~increases! with increasing frequency, and the maximal ga
gmax decreases~increases! with the increase ofDv. We find
~numerically! that there exists a critical valuescrit.0, such
that for s.scrit (s,scrit), the beam is stabilized~destabi-
lized! by the increase of its spectral widthDv. Thus, the
spectral width directly affects the MI threshold, although t
impact of the temporal coherence of the beam on the~in!sta-
bility is not as critical as the influence of the spatial coh
ence.
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From the studies on incoherent MI in temporally cohere
systems, we know that each temporal frequency has its
maximally destabilizing perturbation@3,4#. Simply project-
ing this result to temporally and spatially incoherent MI m
erroneously lead to the thought that each frequency wo
~in the linearized regime! create its own pattern. But in fac
the physical reality is much more fascinating. The MI
temporally and spatially incoherent wave systems is a fun
mentally fully collective effect;all frequencies participate in
all spatial modulations, thereby determining the growth r
g(a) corresponding to each spatial modulation. Con
quently, they collectively determine the perturbation with t
highest gain,g(amax), and collectively participate in this
perturbation, which prevails whenz becomes sufficiently
larger thang(amax)

21. This means that, even in the linea
ized regime,all frequencies exhibitthe sameMI pattern.
Physically, this occurs because the propagation of all tem
ral frequency constituents of the light is entangled by
unique index of refraction ‘‘seen’’ by all of them. Mathemat
cally, this is embedded in Eq.~6!, since this equation, al
though linear, is an integrodifferential equation, and e
tangles all frequency constituents. This leads to anot
intriguing consequence. Since different temporal frequenc
tend to be modulated at different spatial periodic pertur
tions, the spectral densityAv(a) of a particular spatial
modulation isnot a simple replica of the spectral densi
B(v) of the incident beam, but is determined also by t
dependence of the spatial correlation distance onv, l s(v).
From Eq.~7!, we find the relative spectral density of a pa
ticular spatial modulation, defined asAv(a)/Av0

(a), to be

Av~a!

Av0
~a!

5

E
2`

` B~v!aKĥv~K,a!

gR
21a2K2/kv

2
dK

E
2`

` B~v0!aKĥv0
~K,a!

gR
21a2K2/kv0

2
dK

, ~9!

FIG. 1. The nonlinear gain coefficientg as a function of spatial
wave numbera. The plots correspond to widths of the power spe
trum Dv/v052%, 5%, and 10%. The arrows indicate the increa
of Dv. The lower inset shows the spatial correlation lengthl s(v),
the solid~dashed! curves correspond tos51.2 (s521.2), respec-
tively.
1-3
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BULJAN, ŠIBER, SOLJAČIĆ, AND SEGEV PHYSICAL REVIEW E66, 035601~R! ~2002!
where ĥv(K,a)5b̂v
(0)@K1(a/2)#2b̂v

(0)@K2(a/2)#. This
feature is shown in Fig. 2, which displays the ratio from E
~9! for the spatial wave number that is most unstable~has the
highest gain!, amax. Here, the spectral density of the inp
beam is rectangular@B(v)/B(v0)51#, and different plots
correspond to different dependencesl s(v) ~see the inset in
Fig. 2!. To summarize this important result, we find that t
spectral density of any periodic perturbation adjusts itsel
such a way that it is commensurate with the periodicity.

FIG. 2. Relative spectral densityAv(amax)/Av0
(amax) evalu-

ated at the spatial wave number of highest gainamax. Different
graphs correspond to different dependences of the spatial cor
tion distancel s on the frequencyv, shown in the inset. The param
eters that definesl s(v) is s521.2, 0.0, 1.55, and 1.9~bottom to
top!.
v.

nd

.

ve

tt.
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All of these theoretical predictions can be observed
perimentally. These experiments should use light from
incandescent bulb passed through a spectral filter to con
the frequency bandwidth, and through an adjustable spa
filter ~to control the spatial coherence!. The incoherent beam
should be collimated, sent through a polarizer to keep
polarization only, and launched into a noninstantaneous n
linear medium~a photorefractive crystal, or a nematic liqu
crystal!. The output should be spatially high-pass filtered~to
remove the nonmodulated portion of the beam! and moni-
tored simultaneously by a camera and a spectrum analy
Then, the nonlinearity should be varied from zero to t
maximum available value, while the modulation depth of t
monitored pattern, and the reading of the spectrum analy
should be sampled for a series of values, below and ab
the MI threshold. More specifically, the reading of the spe
trum analyzer at zero nonlinearity and at high~above thresh-
old! nonlinearity should be compared, to reveal the results
Fig. 2: that the MI process determines the spectral densit
exponentially growing perturbations.

In conclusion, we have formulated the theory of wh
light propagation in noninstantaneous nonlinear media,
layed out the scope and general findings of the theory. M
specifically, we predicted the existence of modulation ins
bility of white light, and extracted its features. We ha
shown that the temporal spectrum directly affects
strength of the instability~nonlinear gain!, and that the in-
crease of its width can destabilize or stabilize the beam.
have shown that the MI of such a wave packet is fundam
tally a collective effect in which all the temporal frequenci
together participate in determining the spatial modulation
the highest gain. Consequently, the spectral density of
perturbation adjusts itself in a true collective fashion.

This research was supported by the Niedersachsen-Is
Research Co-operation Program, the Croatian Ministry
Science, and the Israeli Science Foundation.
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