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Chaotic dynamics and orbit stability in the parabolic oval billiard
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Chaotic properties of the one-parameter family of oval billiards with parabolic boundaries are investigated.
Classical dynamics of such billiard is mixed and depends sensitively on the value of the shape parameter.
Deviation matrices of some low period orbits are analyzed. Special attention is paid to the stability of orbits
bouncing at the singular joining points of the parabolic arcs, where the boundary curvature is discontinuous.
The existence of such orbits is connected with the segmentation of the phase space into two or more chaotic
components. The obtained results are illustrated by numerical calculations of the Psiectizas and com-
pared with the properties of the elliptical stadium billiards.
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[. INTRODUCTION Sec. Il we describe the billiard and explain its geometrical
properties. In Sec. Il we analyze the stability and properties
Billiard is a dynamical system in which a point particle of some selected orbits and show the Poinctiagrams de-
moves freely within a bounded domain, changing its direcfending on the shape parameter. In Sec. IV we discuss the
tion by elastic specular collisions with the billiard walls. segmentation of the chaotic part of the phase plane and com-
Two-dimensional billiards, as paradigmatic examples ofPare the results with the properties of the elliptical stadium
chaos in Hamiltonian systems, have been extensively invedilliards. Sec. V contains the discussion and conclusions.
tigated during past decades. Among planar billiards without
additional forces only the elliptical shapg@ncluding the Il. DESCRIPTION OF THE PARABOLIC OVAL
circle) is integrablg/ 1], whereas the rectangular billiards, in BILLIARDS
spite of the regular type of dynamics, exhibit many compli-
cated properties in dependence on the side f&j8]. The
same is true for a broad class of polygonal billiards that ar
considered pseudointegralfe—6]. The growing interest for
billiards started when two ergodic billiards were discovered,
the Sinai billiard[7] and the Bunimovich stadium billiard y=
[8], with the walls consisting partly of straight segments and
partly of circular arcs. Subsequent investigations have been
concentrated around the criterion of exponential divergence s 1-x|
and the focusing properties of the billiard arcs, with the aim y== 1-6
to discover possible new ergodic billiarfi@8—11]. Contem-
porary investigations of classical billiards are mostly basedvherexe[—1,1] and 0<§<1.
on the fact that the planar billiards are only exceptionally The billiards(1) are shown in Fig. 1 for several values of
integrable or fully chaotic and that the generic case hashe shape parameté: At the pointsP(* &8,+ §) where the
mixed dynamics. Such billiards may have the parametertwo arcs meet both the boundary curve and the tangent slope
dependent boundaries with smoothly varying propertiesare continuous. The second derivative of the boundary, how-
obeying the Kolmogorov-Arnold-Mose(KAM) theorem, ever, is discontinuous and leads to the curvature radius:
but there are also billiards with singularities in the boundary
[12—27. These are reflected in the Poincaiagrams as bi- [4(1-6)%+x2]%?%
furcations with singular properties and through the segmen- R= 4(1-0)° if 0<|x|=<3,
tation of the chaotic fraction of the phase space into two or
more chaotic subdomains. In these investigations the criteria [4(1— 8)(1—|x|)+ 82132
of linear stability[1] are used to reveal the dynamical prop- R= if o<|x|<1. (2
erties of regular and chaotic orbits. The billiards have also 26(1-9)
been important in the semiclassical and quantum physics, _ _ .
since the semiclassical limit and quantal properties ard he horizontal diameter of the billiard has the length 2, and
greatly influenced by the complicated dynamics of the clasthe vertical diameter ist2, with
sical systenj23-21.
In this paper we introduce a symmetrical billiard with _ 5(4-39) &)
parabolic arcs, which we call the parabolic oval billiard. In 4(1-9) °

The boundaries of the billiard we investigate depend on
he shape parametér and are described in they plane by
he expression

2__ 2

ot 41=5)

I+

} if 0<|x|=<3,

if o<|x|<1, 1)
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(@) (b)

(c) of the particle at the moment when it crosses thexis. In
3=0.20 3=0.310102 3=0.4530818

Figs. 4c¢), 2(e), and 2g), some singularities in the phase
plane are observed which can be traced to special periodic
orbits with the singular points on the boundary as the bounc-

T 0 g points
Some typical orbits are shown in Fig. 1. The vertical di-

ametral orbit is shown in Fig.(&). It is stable and exists for
-1 . . . all values < (10—2+/3)/11=0.594 172 58. For this value
-1 0 1 -1 0 1-1 0 T the orbit is neutral. After this value the vertical orbit disap-
(d) (9) i) pears, and the tilted two-bounce orbit is boffBquivalently,
8=0.473401367 5=0.62 8=0.6666667 for 5>2/3, there exists a stable horizontal two-bounce orbit
for 6>3—1=0.7320508, and for smaller values of
s’ there is a stable tilted two-bounce orit.
0 g Next we explore the low period periodic orbits that
’ bounce at the singular poinB(* 6, 6) in the boundary.
’ Due to the different curvature radf; andR, at the singular
. . . points, the tracesTrM| of the deviation matrix{1] have
-1 0 1 -1 0 1-1 0 1 different values, depending on the directifaft, right) of

FIG. 1. The shape of the boundaffyll line) of the parabolic ~@PProaching the singular poinP(s,6). The six-period
oval billiard with some periodic orbitéhin line): (a) 5=0.20, with ~ “candy” orbit, shown in Fig. 1b), which appears a®
the vertical two-bounce orbitb) §=0.310102, with the “candy- =0.310102, has the absolute value of the trace of the stabil-
shaped” orbit;(c) §=0.453 081 8, with the “bow-tie” orbit(d) § ity matrix equal to 2 if approached from one side, and
=0.473 401 367, with the “bird” orbit,(e) §=0.62, with the trap-  smaller than 2 when approached from the other side. The
ezoidal orbit;(f) 5=0.666 666 7, with the four-period quadratic and sgme is true for the four-period “bow-tie” orbit shown in
the tilted two-bounce orbits. Fig. 1(c), appearing a=0.4530818. Thus, here we have
stable/neutral orbits, able to generate elliptic islands in the
. o Poincaresections. There is, however, a conspicuous asym-
For 6—0 and 6—1 the billiards are infinitely elongated metry in this picture, as can be discerned from the Poincare
ovals, and for6=2/3 the shape has the central symmetry.sections fors=0.310 102 and=0.453 081 8 shown in Figs.
The coordinates of the focal points of the parabolas are 2(c) and 2e), respectively. The orbit of the “bird” type ap-
F(0+[5+g(8)]) pearing at§=0.473 401 367Fig. 1(d)_] has the traces from
i ' both directions larger than 2, and is therefore unstable. Its
Poincaresection is shown in Fig.(8). Some details on these

Fx(x[0-9(9)1.0), @ orbits are listed in Table I.
with Figure Xe) shows the trapezoidal orbit, which is typical
of the parabolic arcs and has been present also in the para-
(36—2)(2—9) bolic lemon-shaped billiard18]. Here, this orbit has the
g(0)= W 5 horizontal orientation, and exists for the horizontally elon-

gated parabolic oval billiards< 2/3). These trapezoidal or-
For §<2/3 the billiard is oriented horizontallthe vertical ~ Pits are neutral, and form the series of isolated points in the
diameter is smaller than)2and for5>2/3 it is elongated in ~Poincarediagrams, as can be noticed in Fidj)2The limit-
the vertical direction. There exists a correspondence of th#d values of the lower and upper trapeze basis yare-

shapes when +6 and y, == 8%[4(1- 6)?]. The equivalent vertically
oriented trapezoidal orbits exist fér>2/3. These orbits pass
4—-45 through the focal point44). For the symmetrical billiard
5—’4_—35- (6) shapes=2/3 the trapezoidal orbit degenerates into the qua-
dratic neutral orbifFig. 1(f)]. For the same shape there ex-
Therefore, we show results on|y for the Shaﬁ%2/3, indi- ists a neutral tilted two-bounce orbit. The Poincaestion
cating where convenient the corresponding vale2/3. corresponding to this symmetrical shape is shown in Fig.

2(k). Figure 21) gives an example of the Poincasection for
IIl. DYNAMICS OF THE PARTICLE IN THE PARABOLIC the vertically elongated oval8>2/3, in this case equivalent
OVAL BILLIARD to the horizontal shape depicted in Figi)2
The consequences of the singular “candy-shaped” orbit
When the shape parameter is varied, the properties of there more closely inspected in Fig. 3. In FigaBthe enlarged
parabolic oval billiard drastically change. Figure 2 shows thepart of the Poincarsection from Fig. &) is shown. There
Poincaresections for different shapes. As explained 22], exists clearly the invariant curve separating the two regions
these diagrams are area conserving and are obtained by plat-the phase plane. The elliptic island seen on this figure is
ting the coordinate and thex componenw, of the velocity — due to the six-periodN orbit shown in Fig. ). Figure 3c)
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(b) ()
8=0.31010205

FIG. 2. Poincaresections for

(9) (h) the parabolic oval billiard. The

8=0.473401 8=0.55 positionx andx component of the

velocity v, of the particle when

crossing thec axis are shown. The
range on both axes [s-1,1]. (a)
6=0.02; (b) 6=0.2; (¢) ¢
=0.310102 05;(d) 6=0.33; (e
6=0.453 081 8;(f) 6=0.455;(g)
6=0.473401;(h) §=0.55; (i) &
=0.59417258fj) 6=0.62;(k) &
=0.666 666 7{l) 5=0.7320508.

() (k) ()
8=0.62 8=0.6666667 8=0.7320508

shows in more detail another region of the Poincsgetion IV. SINGULAR PROPERTIES OF THE PARABOLIC OVAL

for §=0.310102. It zooms in on the point singularity corre- BILLIARD AND COMPARISON WITH THE

sponding to the six-period “candy-shaped” orbit seen in Fig. ELLIPTICAL STADIUM BILLIARD

1(b). As soon ass increases above this value, theorbit

disappears and gives birth to stable elliptic islands corre- The results presented in Sec. Il reveal the important ef-
sponding to the six “candy-shaped” orbit, which can be ob-fects of the singular boundary points on the billiard dynam-
served in Fig. &). ics. The calculated Poincadiagrams show that for almost

TABLE |. Properties of some singular orbits in the parabolic oval billiards.

Direction Equivalent
of value
Orbit Period 6<2/3 approach ™ Stability 6=2/3
Tilted 2 2/3 Lr 2 Neutral 2/3
two-bounce =0.666 666 7 =0.666 666 7
Quadratic 4 2/3 lr 2 Neutral 2/3
=0.666 666 7 =0.666 666 7
“Bird” 4 (2/15)(6- \6) | 2.57 Unstable J(2/3)
=0.473 401 367 r 4.28 Unstable =0.816 497
“Bow-tie” 4 (6—22)I7 [ 2 Neutral 2(y2-1)
=0.4530818 r 1.88 Stable =0.828 427
(“Hour-glass”)
“Candy” 6 (4—6)/5 | -0.33 Stable 264
=0.310102 r 2 Neutral =0.898979
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(a) (b) (c) Parabolic oval
5=0.310102 5=0.310102 5=0.310102

. RN 0.0005
05§
0.4 “‘ 1 0.0000
0.3
0.2 ———ili'} _4 0005

02 00 0.2 0.3002 0.3100

FIG. 3. Strongly magnified part of the Poincasection ford
=0.310 102 containing the elliptical invariant point and the invari-
ant curve separating the two domaittk) the N-orbit responsible
for the elliptic point shown in@); (c) strongly magnified part of the
Poincaresection fors=0.310 102 containing the point correspond-
ing to the “candy-shaped” orbit.

Elliptical stadium
(c) 8=0.25v=0.25 (d)

all values of§ the phase space is divided into separate do-
mains which do not overlap. This is verified by numerical
calculations up to 10bounces. For special irrational param-  FIG. 4. (a) The Poincaresection for the parabolic oval billiard
eter values corresponding to the orbits bouncing at the sinwith §=0.25.(b) Some typical orbits for the parabolic oval billiard
gular points, there is a strong numerical indication that ther@resented ina). (c) The Poincaresection for the elliptical stadium
exist special closed invariant curves securing this separatiomilliard with §=0.25 andy=0.25.(d) Some typical orbits for the
However, the segmentation is present also for other paranglliptical stadium billiard presented ifc).

eter values. The orbits become sticky and do not leave their

areas within the phase plane. N Those shapes can be reduced to one-parameter families in
~ Here it should be stressed that the billidig can be con-  many different ways. For instance, for=1— & one obtains
sidered as a special case of a larger family of billiards whichy family of Bunimovich stadium billiards. In all cases the
arise when the two pairs of symmetrical arcs are appended fbyrizontal diameter is equal to 2.
the vertices of the I’eCtangle, in such a Way that the tangent If 6= v, the Straight Segments and e”|pt|c arcs meet at the
slope is continuous, and the curvature is discontinuous. Th@ertices of a square of sides2the same as in the parabolic
most familiar of such billiards is the Bunimovich stadium o4 pilliard. In Fig. 4 we compare the PoinCaection[Fig.
billiard [8] with straight segments connected by circular arcs4(g)] and some periodic orbits from different segments of the
The next subfamily are the oval billiards of Benettin and pnase plangFig. 4(b)] for the parabolic oval billiard with the
Strelcyn[12], examined also by Hen and Wisdon{14],  corresponding Poincarsection [Fig. 4(c)] and the orbits
who discovered in these billiards the existence of the sepgrig. 4(d)] for the elliptical stadium billiard. In the right up-
rating invariant curves for some special types of singulaher angle of Fig. @) one notices one of the orbits that were
orbits. _ . __ called pantografic in Ref29], and which are a generaliza-
Furthermore, there is the two-parameter family of ellipti- tjon of the “candy-shaped” orbit. As is seen from Fig(c
cal stadium billiards that were first introduced by Donnaynot only pantografic orbits, but also other types of orbits

[10] and which were also treated in Refd1,28-30. We  ¢ontribute significantly to the overall dynamics in the ellip-
investigated systematically a broad shape range of this famjc5| stadium billiard.

ily of billiards [31]. We have found that the dynamics of this

billiard is extremely rich, ranging from limiting integrable

cases and simple mixed behavior obeying the KAM theorem, V. DISCUSSION AND CONCLUSIONS

through the fully ergodic billiards for certain parameter

ranges, to the mixed phase-space properties with strongly In summarizing the results presented in the preceding sec-
enhanced segmentation of the phase plane. In our analydions, we can draw the following conclusions. The two-
we used the parametrization of the shape of the ellipticaflimensional parabolic oval billiard introduced in this work

stadium where the boundary is described as offers a new possibility for exploring the effects of the dis-

continuities in the curvature radius on the structure of the
y=*y if 0<|x|<5, phase space. We have calculated analytically the deviation

matrices of the main lowest periodic orbits and performed

5 extensive numerical calculations of the Poincaestions.
x|=8\%

y=*y\/1-| o if o<|x|<1, (7)  Our results show that for all values of the shape parameter
1-4 the phase plane is segmented into separated domains with

complex fractal structure. Properties of the parabolic oval
wherexe[—1,1], 0sd<1 and O<y<w. As stressed in billiard are in some details similar to those of the elliptical
Refs.[10,11], the possibility of ergodic behavior is present if stadium billiard, but exhibit also significant differences. This
the ratio of the two semiaxes is<l(1— 8)/y< 2. confirms that the important modifications in the billiard dy-

036202-4



CHAOTIC DYNAMICS AND ORBIT STABILITY INTHE . .. PHYSICAL REVIEW E 66, 036202 (2002

namics are introduced when the curved boundary segmenstanding of complicated dynamics in the mixed systems that
are replaced by straight lines. are out of reach of the KAM theorem.

In the light of the recent interest in exploring quantal re-
percussions of the classical chaos in the parameter-dependent
mixed Hamiltonian systen|4.9,27,32,33 the parabolic oval
billiard opens numerous possibilities for calculating the level
density fluctuations, wave functions, and localization phe-
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