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Overlapping of two truncated crisis scenarios: Generator of peaks in mean lifetimes
of chaotic transients
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Maxima of mean transient time versus driving amplitude were found for weakly dissipated Duffing oscil-
lator. In the neighborhood of peak of mean transient time an approximate power-law dependence was found.
This behavior was compared with scaling in the vicinity of crisis point and interpreted as crossing of two
neighboring crisis points which appears with decrease of driving amplitude. At this point chaotic attractor was
destroyed and chaotic transient, exhibiting a maximum in the lifetime was borned. It was shown that the peak
of mean lifetime has a regular behavior described by quadratic function.
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. INTRODUCTION y=3%+(In|ay))/|In ], ()

Transient chaotic behavior is common in the realm ofin the case of heteroclinic tangency, and
nonlinear systems. Chaotic transient behaves chaotically dur-
ing some transient time interval and then trajectory switches, y=(n|B.)/(In| B18,|?), (4)
often quite abruptly, into nonchaotic behavidk—4]. The
length of chaotic transient depends sensitively on initial conin the case of homoclinic tangency, whee,|, |3/, and
ditions. However, if one takes many initial conditions, the|az|, |B2| are expanding and contracting eigenvalues, re-

chaotic transient lengths have an exponential distributiorsPectively. In the case of unstable-unstable pair bifurcation
[5-8] crisis a faster increase of the characteristic scaling was ob-

tained[12,13.
These phenomena have been studied mostly for nonlinear
P(r)zex;{ _ L) (1) systems with sizeable dissipation.
(7))’ In this paper we will investigate mean lifetimes of chaotic
transients for the equation of a single-well Duffing oscillator:

where(7) is the mean lifetime of the transient.

In global bifurcation category of routes to chaos, the cha- X+dx+x+x3=f coswt. (5)
otic transient route, referred to as crig€s10], is the most
important route for systems modeled by various sets of dif-This equation was previously investigated in Rgi4—-16.
ferential equationgl—4]. The crisis route to chaotic attractor The system initially undergoes a period doubling subhar-
is associated with collision of chaotic attractor and unstablenonic cascade that leads to chao$a®23.0 ford=0.1 and
periodic orbit or its stable manifolid—4,9,1Q. The common =0.95. It quickly moves out of chaos with increasifig
feature of such route are homoclinic and heteroclinic orbiteand then goes back into chaotic oscillations at approximately
which suddenly appear as the control parameter is varied arid= 32.0.
strongly influence the nature of other trajectories passing
near them, as shown for example, for chaotic transients dug;, SHRINKING OF CHAOTIC REGION BETWEEN TWO
to homoclinic and heteroclinic connections leading to chaotic CRISIS POINTS
behavior in the Lorenz mod¢B,11]. ) ) _ )

For a large class of dynamical systems which exhibit cri- In this paper the systertb) was investigated for a size-

sis, Grebogi, Ott, and Yorkf9,10] obtained the scaling of ably lower dissipation {=0.014), keeping the driving fre-
the mean lifetimg 7) in the form quency fixed atw=0.95, and driving amplitude treated as

control parameter.
An interesting pattern was obtained in the intervalfof
(1)=Blp—pc| " (2)  petweenf =23 andf =32, which was previously studied for
sizeable dissipation. Af=23 there is a chaotic attractor.
for the control parametep close to the critical valu@. at  Increasing the control parametér the system(5) passes
which chaotic transient is replaced by chaotic attractor. Exthrough crisis. At critical value of control parametér
pressions for the critical exponent which depend essen- =23.08 the chaotic attractor is destroyed. It is replaced by a
tially on the stability properties of basic periodic orbit, were chaotic repeller, invariant fractal set formed beyond the crisis
obtained a$12,13 [4]. Typical orbit beyond the crisis is transiently chaotic or-
bit, with well defined mean lifetime of chaotic transiekty
for a uniform set of initial conditions. Increasing the control
*Electronic address: paar@hazu.hr parameter further, an inverse crisis scenario appears at
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(b) 10 T FIG. 2. Lifetimes of chaotic transient in the interval frofn
i/ =25.1 tof=25.9 ford=0.015. Interval is segmented into three
;/ sections: chaotic transierft), chaotic attractor(ll), and chaotic
104 . i transient(lll). The two crisis points between the regions | and II,
] .. /‘b and Il and Ill are denoted &g, andf.,, respectively. For discus-
A T, ’,1’0 ,e%e .
a8 10 Ny 2t sion see the text.
V p ///
N
] N f=24.8 andf~27. The minimum af~27 corresponds to
] T f\v-u.. the lifetime smaller than the relaxation times.
10° 4 »f\\\\ Let us discuss the origin of observed peaks in lifetimes.
] . . . T . . —] As already noted, dissipation in this study is much weaker
25.1 25.5 259 than used in the previous studies of Duffing oscillgdtbt—
f 16]. Therefore, it can be expected that the dependence of

o . lifetime on the dissipation strengthwill reveal the nature of
__FIG. 1. (a) Mean lifetime (7) for control parametef in the ;s effect. From this point of view, we have performed the
interval (24.3, 30.0 at dissipatiord=0.014. Control parametéiis calculation for a slightly stronger dissipatiod=0.015, in

taken in steps of 0.1. Nature of the peakfat25.3 denoted by an . .
arrow was closely investigatedb) Magnified section fromf the same interval of as before(Fig. 2. Contrary to the

=25.1 tof=25.9 in (a). Dashed lines display an extrapolation of Situation in Fig. 1b), for d=0.015 we find at the position of
fits discussed in text. a peak atf =25.3 a narrow interval of chaotic attractor be-
tweenf.;=25.268 45 and .,=25.343 89(interval Il). The
points denoted a$;; and f;, are the crisis points of onset

=23.11. .At this crisis point the Ch"?lOtIC repelle_r 'S rgplacgdand destruction of chaotic attractor in the narrow strip. Three
by chaotic attractor, and the transiently chaotic orbits with.

well defined mean lifetime are replaced by stationary chaoti Intervals off are shown in Fig. 2: region of transient chaos
orbits (i.e., with lifetime (r)=¢). The whole interval be- 125.1, 25.26845 denoted 1, region of chaotic atiractor

wween these two crisis points is characterized by transie 5.268 45, 25.343 §2lenoted Il, and the region of transient
W WO ChISIS poInts | 1zed by '*haos(25.343 89, 25.pdenoted |l

chaos. Similarly, several additional crisis scenarios appear up Here the transitions between the regions | and Il, and

to f_:32- . o ) . . between Il and Ill can be recognized as two crisis points.
Figure 1a) displays mean lifetime of chaotic transients in These crises are due to collision of chaotic attractor and un-
the interval betweeri=24.3 andf=30.0 for weak dissipa- staple periodic orbit of period-5. The value of critical expo-
tion d=0.014, expressed in terms of the period of drivingnenty,=1.3774 was calculated using E) and the critical
force, T=27/w. Immediately above the critical point &  value of the control parametég, was obtained according to
=24.3 and below the inverse critical point &30.0, the  procedure from Ref{17]. Similar collision was observed at
mean lifetime of chaotic transient displays scaling behaviothe crisis pointf .,. In that casey,=1.3745. For both crisis
in accordance with the crisis scenaf®, decreasing from points Poincare surfaces are almost identical.
(7)=0o0 at the crisis points. Between these two crisis points To get a better understanding of the origin of the peak, we
we found chaotic transient. However, further away from thehave investigated geometrical shape of the attractor and
crisis points in the interval between them, the lifetime ofstable manifold of the period-5 orbit. In transition from the
chaotic transient displays a complex dependence on the coregion | into Il (crisis pointf;;), the left arm of chaotic
trol parameterf, instead of smooth monotonic decrease.attractor is touching the stable manifdléig. 3], i.e., the
There are three pronounced peakd at25.2, f=25.4, and collision of attractor and manifold is in accordance with the
f=29.3. The peak at=25.4 is magnified in Fig. (b). crisis scenario. Increasing further the value of control param-
Between these peaks, one observes pronounced minimaeter we enter into the region Il. For a particular value of

036222-2



OVERLAPPING OF TWO TRUNCATED CRIS . .. PHYSICAL REVIEW E 68, 036222 (2003

v(nT)

2.6 2.7 28 29 3.0
x(nT)

FIG. 4. Poincare sections displaying portion of chaotic attractor
in collision with stable manifold of period-5 orbit dt=f.,=f,
=25.349 64 atd=0.014 456. Position of unstable period-5 orbit is
marked by@.

This collision can be recognized as transition from the region
Il into 11, i.e., the crisis.

Lowering the dissipation strengtl the crisis pointsf .,
andf., are moving towards each other, i.e., the region Il is
narrowing. Particularly interesting is the value of dissipation
strength associated with the collision of crisis poinfs (
=f.»). In that moment, the region Il disappears and we can
state that the regions | and Il are in collision. Numerically,
we found that the collision of crisis points appears tbr
=0.014456. Figure 4 displays chaotic attractor and stable
manifold at the point of touchingf&fo ="f;,). As seen,
there is a simultaneous collision of the left and right arms of
the attractor with the stable manifold.

For the control parametéslightly smaller than 25.349 64
(Fig. 4), the left arm of the attractor collides with the stable
manifold, resulting in destruction of attractor, in accordance
with the crisis scenario. Similarly, fdrslightly higher than
25.349 64, the right arm of attractor collides with stable
manifold leading again to destruction of the attractor. Thus,
the existence of chaotic attractor is associated with a particu-

: . . lar value of control parameter. Additionally, we can argue

2.6 2.7 28 2.9 3.0 that an additional lowering of dissipation can cause disap-
x(nT) pearance of chaot_|c attractor. _ _ _ _

As seen from Fig. 3 the density of points differs in depen-

FIG. 3. Poincare sections displaying portion of chaotic attractod®NC€ 0N position on chaotic attractor. This density is de-

in collision with stable manifold of period-5 orbit. Position of the Créasing with increase of Lyapunov exponent. o
unstable period-5 orbit is marked i@. (a) f=", (b) f=25.3, (c) In the next step we performed the calculations of lifetimes

f=f,, atd=0.015. for dissipation halfway between the two cases considered,
i.e., ford=0.0145(Fig. 5). In this case too, there is a narrow

ol ¢ ithin th ion If£25.3). the chaoti region of chaotic attractor, and the interval was segmented
control parameter within the region If £ 25.3), the chaotic into three sections: I, I, and Ill. However, with respect to the

attra(_:tor and stable manifold are displayédg. _3(b)]' This previous case, the interval Il of chaotic attractor is reduced.
consideration reveals the nature of geometrical changes ¢f particular, the crisis point.; = 25.333 70 has moved more
chaotic attractor. With increase of control parameter the lefiqyards higher values than the crisis poigi=25.349 15.

arm of attractorthat has touched the unstable periodic 9rbit  \we note that the calculated results exhibit fluctuations
is moving away from the stable manifold. Simultaneously,around the scaling curves. This is in accordance with general

with increase of control parameter the right arm of attractoippservation of fluctuations associated with crisis scenario
is approaching the stable manifdlgig. 3(b)]. With a further  [18,19.

increase of control parameter the right arm is approaching As seen, small changes in dissipation strergjiead to
the stable manifold, and fdr=f, they collide[Fig. 3¢)]. ~ small changes in the critical values of crisis points. Assum-
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FIG. 5. Lifetimes of chaotic transient in the interval from FIG. 6. Lifetimes of chaotic transient in the interval from
=25.1 tof =25.9 at dissipatioml=0.0145. For discussion see the =25.1 tof=25.9 at dissipatioi=0.0142. Labeld ., andf, are
text. attributed on the basis of linear extrapolation. For discussion see the
text.

ing linear extrapolation of positions of crisis poirtg, and
f.o to the first case ofl=0.014 where no chaotic attractor is X ) -
present atf~25.3, we have calculated the values fof, Af=.0.039 15, and the points on the right-hand §IdéCQﬂO
fCZ! Y, and InB (Table D The Corresponding curves are the rlght fOI’Af=0003 16. Fod=0.0142 the pOmfcl has
drawn in Fig. 1b) (dashed lines There is a crossing of two Moved behind the poink,, the two curves in Fig. 5 have
curves, i.e., of scaling corresponding to two crisis scenariod?@rtially overlapped. For the points of overlap the lifetime of
At the position of crossing of two curves there is a maximumchaotic transients was calculated from the relation

of lifetime in Fig. 1(b). This is more clearly seen from the

calculations atd=0.0142(Fig. 6), which is still on the cross- 1 1 1

ing side, but closer to the point of crossing. In accordance =-—+

with the previous discussion the two crisis points are closer (r) (m)
to each other and the crossing of two scaling curves gives a

higher maximum, which will further increase towards theusing values from both curves. Results obtained in this way
point of crossing. However, in Fig. 6 there is some differenceare displayed in Fig. Tdashed ling

of the shape of calculated peak in comparison to the shape of Let us more closely investigate the structure of the peak in
peak obtained by overlap of two scaling curves. Let us conthe mean lifetime distribution, concerning the essential topic
sider Fig. 6 taking into account that the change of dissipatiomf this investigation.

leads to a shift of critical valuef;; andf.,. As a starting Numerical procedure used in obtaining Figs. 6 and 7
point, let us assume that the change of dissipation leads toshows a pattern which resembles at the first sight a singular
shift of critical values, without any significant influence on structure. In order to clarify this issue a higher resolution
the shape of curves. Accordingly, the values of lifetimes ofcomputation was performed in the neighborhood of mean
chaotic transients from Fig. 5d&0.0145) have been lifetime peak. To this end the resolution was increased
changed in such a way that the points appearing on the left-

hand side of the critical valuk.; were shifted to the right for

(m2)" ®

6

10" +
TABLE I. Critical values of control parametdrand of param- E
etersB and vy in the power-law formuld2). For the first two rows 105 4
the near-lying crisis parameters arouind25.3 were used to deter- 3 ‘i
mine parameters in the power-law formu. For dissipationd A 104 ] .
=0.0140 andd=0.0142 chaotic attractor dt~25.3 disappears. [ “,./ ”\v:j"‘\‘
The values given in the last two rows are determined by a straight- v 3 1 7 . LY
forward linear extrapolation of the cases fde=0.0150 andd 10 3 “
=0.0145. 5 4 _—
10" 4
d fe1 fe Y1 Y2 Ing;, Ing, 101
0.0150 25.26845 2534389 1.3774 13745 55 3.7 25 1 f| |f 155 259
0.0145 25.33370 25.34915 1.3815 1.3809 5.3 35 c2 ‘et
0.0142 25.37285 25.35231 1.3840 1.3847 5.2 34
0.0140 25.39895 25.35441 1.3856 1.3873 5.1 3.3 FIG. 7. Lifetimes of chaotic transient in the interval frofn

=25.1 tof=25.9 atd=0.0142. For discussion see the text.
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“ N Here,f, denotes the value of control parametat which the
S b o escape rate achieves a minimum valug i, -
E 1% oo /0% Inserting into Egs(7) and(8) the parameter values from
=) o @gqfvo o?éﬁ% Table | for dissipation strengtti=0.0142, we obtained
a \\\io 036%
v ey et 1
- B0 m ~0.000 025 1.7(f — 25.35252. 9)
- This theoretical prediction is rather close to the fit to the
§ computed data in Fig. 8lashed ling
g 25350 25352 25354 25.356

1
f W~O.OOO 027 1.7(f — 25.35322.
FIG. 8. Escape rate of chaotic transient{¢}} on lin-lin scale

for interval of control parameter froni=25.349 tof=25.3575 . . o
with stepAf=0.0001 at dissipatiod=0.0142. For discussion see This leads to Cpnclusmn tha_t the Peak of mean lifetime
the text. has a regulatnonsingulay behavior which can be well rep-

resented by a quadratic function. A seemingly singular shape
in Figs. 6 and 7 is a consequence of insufficient resolution
because the quadratic maximum is not visible on the scale
used in the figures.

(10

20 times Af=0.0001). The results of calculation for the
escape rate {#) was presented in Fig. 8The maximum of
mean lifetimg( 7) corresponds to the minimum of escape rate
1K 7).) From this higher resolution computation, it is evident
that the pattern of the escape réate., of the mean lifetime ) ] )
is in fact regular, with the presence of some local oscillations FOr chaotic attractor in a narrow interval of control pa-
[18,19. rameter, with crisis points at both ends, we have found in the
On the other hand, the use of E@) as an estimate for Same interval t_he appearance of a p_eak c_Jf Ii_fetir_ne of chaotic
observed lifetimes would suggest that the peak displays Hansient that is born with decreasing dissipation after de-
escape rate is a superposition of two escape (&jemd that  Weak dissipation, was explained in the framework of over-
the values ¥/r;) and 1{r,) approximately satisfy the Iapplng crisis scenarios, i.e., crossing of two enq crisis
Grebogi-Ott-Yorke scaling2), the total escape rate in the Points. It is noted that this may provide a mechanism for
neighborhood of minimum value (), was approxi- appearance of local maximum at each interval of chaotic

mated by the second order Taylor expansion attractor having crisis points at both ends, that is, shrinking
with decreasing driving amplitude. The peak height is largest

Ill. CONCLUSION

where

5

4

_ yi(y1i—1)
B1

(feg—fo)7172
f=1f,

Y2(y2—1)
" B2

(fo—fe2) 7272,

(@)

®)

just following destruction of chaotic attractor and gradually
decreases with further decrease of dissipation strength. Thus
the interval with singularity 7)= at dissipation strength
above the value of control parameter corresponding to the
crossing of two crisis points is replaced by a finite maximum.
A general scheme of this effect is illustrated in Fig. 9. This
mechanism can lead, in general, to multiple peaks in lifetime
at weak dissipation. In the log-log plot these peaks are dis-
played as an approximate piecewise linear function, which
can be interpreted in the framework of Grebogi-Ott-Yorke
scaling.

To our knowledge, the pattern of multiple peaks in life-
time has not been reported so far in the literature, probably

(v,

ff,

cl 'c2

ci =f<:2

£ f f 1

c2 ¢l c2 ‘¢l

FIG. 9. Schematic presentation of crisis point crossing mechanism for generation of peaks in lifetime of chaotic transient with decreasing
dissipation strengthl.
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because these peaks are associated with weak dissipationpdel with more complex Coulomb dissipation, containing
while most of previous investigations have been performedhe sgnk) and sgnk?) terms. Previously, bifurcation dia-

at sizeable dissipation. o grams of that model have been investigated in R26].
We have presented the pattern of peaks of lifetime forgy qying lifetimes of chaotic transients in that model, we

Duffing oscillator with linear dissipation, which is widely t,,nq a qualitatively similar pattern of peaks as in the case of
used as a model for studying nonlinear phenomena. In Ordeﬂ)uffing oscillator

to gain some additional evidence on possible generic nature
of peaks of lifetime, we have additionally investigated a N.P. thanks T. Tel for useful discussion.
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