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Recent developments provided evidence that the dimension 2 gluon condensate hA2i is important for the
nonperturbative regime of Yang-Mills theories (quantized in the Landau gauge). We show that it may be
relevant for the Dyson-Schwinger approach to QCD. In order that this approach leads to a successful
hadronic phenomenology, an enhancement of the effective quark-gluon interaction seems to be needed at
intermediate (p2 � 0:5 GeV2) momenta. It is shown that the gluon condensate hA2i provides such an
enhancement. It is also shown that the resulting effective strong running coupling leads to the sufficiently
strong dynamical chiral symmetry breaking and successful phenomenology at least in the light sector of
pseudoscalar mesons.

DOI: 10.1103/PhysRevD.71.014004 PACS numbers: 12.38.Lg, 11.10.St, 11.30.Qc, 14.40.Aq
I. INTRODUCTION AND SURVEY

Dyson-Schwinger (DS) equations provide a prominent
approach to physics of strong interactions. One of its
aspects, reviewed [1] and exemplified recently by
Refs. [1,2], consists of ab initio studies of DS equations
for Green’s functions of QCD, typically in the Landau
gauge (LG). The other aspect consists of phenomenologi-
cal DS studies (also typically in LG) of hadrons as quark
bound states, but relying more on modeling; e.g., see a
recent review [3]. Such phenomenological studies have
mostly been relying on the rainbow-ladder approximation
(RLA), where generation of dynamical chiral symmetry
breaking (D�SB) is well understood [1,3–6]. As it has
been stressed in, e.g., Refs. [3,7], RLA is the leading-order
term of a procedure [8,9] that can be systematically im-
proved towards less severe truncations of DS equations.
This general procedure provides a means to identify
a priori the channels in which RLA is likely to work
well [9]. Pseudoscalar mesons are the most notable among
those channels because of the correct chiral QCD behavior
due to D�SB and Goldstone theorem, since (almost) mass-
less pseudoscalar mesons are reproduced in the (vicinity
of) chiral limit not only by the exact QCD treatment but
also by all consistent truncations such as RLA [10].

Consistent RLA implies [1,3–6] that Ansätze of the
form

�K�p��hgef � 	4
�eff�p
2�Dab
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must be used for the interactions between quarks in both
the gap equation S	1 � S	1

0 	  for the full quark propa-
gator S (S0 is the free one) and the Bethe-Salpeter (BS)
equation for the meson (M) bound-state vertex �M; i.e.,
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Z
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Z
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where, writing schematically, integrations are meant over
loop momenta while e; f; g; h in Eqs. (1) and (2) represent
spinor, color, and flavor indices [3]. In LG, the free gluon
propagator Dab

���p�0 
 �ab���� 	 p�p�=p
2�=p2.

In Eq. (1), �eff�p2� is an effective running coupling. It is
only partially known from the fact that at large spacelike
momenta (our convention is p2 > 0 for spacelike p),
�eff�p

2� must reduce to �pe�p
2�, the well-known running

coupling of perturbative QCD. However, for p2 & 1 GeV2,
where nonperturbative QCD applies, the interaction is still
not known. Thus, in phenomenological DS studies,
�eff�p2� must be modeled for p2 & 1 GeV2; e.g., see
Refs. [1,3–6]. There one can see that the most successful
(phenomenologically) of these modeled interactions have a
rather large bump at intermediate momenta, around p2 �
0:5 GeV2 [e.g., in Fig. 1 see �eff�p

2� used by Jain and
Munczek (JM) [4] and by Maris, Roberts, and Tandy
(MRT) [3,5,6]]. In any case, successful DS phenomenol-
ogy demands that the modeled part of the interaction (1) be
fairly strong; regardless of details of the form of the
interaction, its integrated strength (for p2 & 1 GeV2)
must be fairly high to achieve acceptable description of
hadrons, notably mass spectra and D�SB [3,11].
Theoretical explanations of the origin of such a strong
nonperturbative part of the phenomenologically required
interaction are obviously much needed, either from the
ab initio DS studies or from somewhere outside the DS
approach. This is the main motivation for the present paper.

The ab initio DS studies showed that, in LG, the effects
of ghosts are crucial for the intermediate-momenta en-
hancement of the effective quark-gluon interaction. This
is obvious in the expression for the strong running coupling
�s�p2� in these LG studies [1,2],

�s�p2� � �s��2�Z�p2�G�p2�2; (3)

where �s��2� � g2=4
 and Z��2�G��2�2 � 1 at the re-
normalization point p2 � �2. The ghost and gluon renor-
malization functions G�p2� and Z�p2� define the full ghost
-1  2005 The American Physical Society
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FIG. 1. The momentum dependence of various strong running
couplings mentioned in the text. JM [4] and MRT [3,6] �eff�p2�
are depicted by, respectively, dashed and dash-dotted curves. The
effective coupling (18) proposed and analyzed in the present
paper is depicted by the solid curve, and �s�p2� (3) of Fischer
and Alkofer [2] (fit A) by the dotted curve. The long-dashed
curve is the fit (extrapolated all the way to p2 � 0) of the lattice
results of Ref. [29].
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propagator Dab
G �p� � 	�abG�p2�=p2 and the full LG

gluon propagator Dab
���p� � Z�p2�Dab

���p�0.
While the ab initio DS studies [1,2] do find significant

enhancement of �s�p2�, Eq. (3), until recently this seemed
still not enough to yield a sufficiently strong D�SB (e.g.,
see Sec. 5.3 in Ref. [1]) and a successful phenomenology.
Nevertheless, going beyond the ladder truncation and so
getting additional interaction strength from dressed verti-
ces, for carefully constructed dressed quark-gluon vertex
Ansätze, Fischer and Alkofer [2] have recently obtained
good results for constituent quark masses and pion decay
constant f
, although not simultaneously also for the chiral
quark-antiquark h �qqi condensate, which then came out
somewhat too large. Thus, the overall situation is that there
is progress [2,11], but that further investigation and eluci-
dation of the origin of phenomenologically successful
effective interaction kernels remains one of the primary
challenges in DS studies [3]. Here, we will point out that
such an interaction kernel for DS studies results from
combining the DS ideas on �s�p

2� of the form (3) [1,2]
and the ideas [12–16] on the dimension 2 gluon condensate
hAa�Aa�i 
 hA2i in LG.
II. CONDENSATES IN GLUON AND
GHOST PROPAGATORS

Many years ago Refs. [17–20] found in the operator
product expansion (OPE) the hA2i contributions to QCD
propagators, recently confirmed by Kondo [15]. For LG
(adopted throughout this paper), number of colors Nc � 3
and space-time dimensions D � 4, their results for gluon
014004
and ghost propagators amount to

Z�p2� �
1

1 �
m2
A

p2 �
OA�1=p2�

p2

; (4)

G�p2� �
1

1 �
m2
G

p2 �
OG�1=p2�

p2

; (5)

m2
A �

3

32
g2hA2i � 	m2

G; (6)

where mA and mG are, respectively, dynamically generated
effective gluon (A) and ghost (G) mass. The later refer-
ences [21,22] also worked out the perturbative QCD cor-
rections inducing the logarithmic p2 dependence of these
dynamically generated masses, i.e. m2

A�p
2�, to which we

will return and comment on in the next section.
These now well-established propagator contributions

(4)–(6) then suggest the importance of hA2i for the DS
approach to hadrons, where propagators, usually in LG, are
used to get solutions for quark bound states and calculate
observable quantities. Notably, see Ref. [10] for gauge-
parameter independent expressions for f
 and a general-
ization of the Gell-Mann-Oakes-Renner relation (GMOR)
that demonstrates gauge-parameter independence of the
meson mass. Still, how can hA2i influence these observable
quantities, since this condensate is not gauge invariant? It
turns out [13,14,23] that in LG, hA2i equals a nonlocal, but
gauge-invariant quantity: the minimal (with respect to the
choice of gauge) value of Aa�A�a integrated over the space-
time, indicating that hA2i in LG may have a physical
meaning. Outside LG, besides hA2i other (ghost) conden-
sates of dimension 2 appear [15]. They very likely cancel
the variation which hA2i suffers in going to another gauge,
since the physics behind all these different dimension 2
condensates in different gauges must be the same: gluon-
ghost condensation lowers the QCD vacuum energy E,
which is a physical, gauge-invariant quantity, to a stable
(‘‘E< 0’’) vacuum [23].

For g2hA2i, LG lattice studies of Boucaud et al. [12]
yield the value 2:76 GeV2, compatible with the bound
resulting from the discussions of Gubarev et al. [13,14]
on the physical meaning of hA2i and its importance for
confinement. This value gives (6)mA � 0:845 GeV, which
will turn out to be a very good initial estimate for mA;G.

As for the contributions OA�1=p
2� and OG�1=p

2�
in Eqs. (4) and (5), one expects a prominent role of
the dimension 4 gluon condensate hFa��F

a��i 


hF2i, which, contrary to hA2i, is gauge invariant [24].
References [18,19] showed that the OPE contributions of
dimension 4 condensates were far more complicated [20]
than found previously [17]: not only many kinds of con-
densates contributed to terms / 1=p2, but for many of them
(gauge-dependent gluon, ghost, and mixed ones) there has
been no assignment of any kind of values yet. Terms /
�1=p2�n �n > 1� were not considered at all. Thus, at this
-2
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point, the only practical approach is that the contributions
OA�1=p

2� and OG�1=p
2� in Eqs. (4) and (5) are approxi-

mated by the terms / 1=p2 and parametrized, i.e.,

O A�1=p
2� 

CA
p2 ; OG�1=p

2� 
CG
p2 ; (7)

where both CA and CG are, in principle, free parameters to
be fixed by phenomenology. Still, we should mention that
the effective gluon propagator advocated by Lavelle [25]
would indicate CA  �0:640 GeV�4 for the following rea-
son: for LG and D � 4, the contribution which this gluon
propagator receives from the so-called ‘‘pinch diagrams’’
vanishes, and its [25] OA�1=p2� contribution

�hF2i
A �p2� �

34Nc
�shF
2i

9�N2
c 	 1�p2 �

�0:640 GeV�4

p2 (8)

stems entirely from the gluon polarization function in
Ref. [18], provided one invokes some fairly plausible
assumptions, like using equations of motion, to eliminate
all condensates except hF2i. (The quark condensate h �qqi
could also be neglected [25].) Since Ref. [26] indicates that
the true value of �shF2i is still rather uncertain, and since
Refs. [19,20] make clear that Lavelle’s [25] propagator
misses some (unknown) three- and four-gluon contribu-
tions, we do not attach too much importance to the precise
value CA � �0:640 GeV�4 [24,25] in Eq. (8), but just use it
as an inspired initial estimate. Fortunately, the correspond-
ing variations of CA still permit good phenomenological
fits, since we will find below that our results are not very
sensitive to CA.

There is no similar estimate for CG, but one may sup-
pose that it would not differ from CA by orders of magni-
tude. We thus try CG � CA � �0:640 GeV�4 as an initial
guess. It will turn out, a posteriori, that this value of CG
leads to a remarkably good fit to phenomenology.
III. COUPLING ENHANCED BY THE
GLUON CONDENSATES

Having set the stage, we are now ready to propose that
m2
A � 	m2

G / hA2i leads to the enhancement of �eff�p
2� at

intermediate p2. To derive the running coupling exhibiting
this property, let us first recall the aforementioned pertur-
bative corrections to OPE results (4)–(6). In Eqs. (4), (5),
and (7), gluon and ghost renormalization functions are
parametrized by the coefficients mA, CA, and CG, which
are constants at the tree level but develop momentum
dependence through the perturbative corrections. To see
this, we note that the generic forms of the ghost and gluon
renormalization functions including OPE contributions
and perturbative QCD corrections [21,22,27] can be writ-
ten as

Z�p2� �
1

rA0 �p
2� �

rA2 �p
2�

p2 �
rA4 �p

2�

p4 � � � �
; (9)
014004
G�p2� �
1

rG0 �p
2� �

rG2 �p
2�

p2 �
rG4 �p

2�

p4 � � � �
; (10)

where rA0 �p
2�, rA2 �p

2�, rA4 �p
2�, etc., are the terms of mass

dimension 0, 2, 4, etc., for the gluon case, and rG0 �p
2�,

rG2 �p
2�, rG4 �p

2�, etc., are the terms of mass dimension 0, 2,
4, etc., for the ghost case. For example, the terms of the
dimension zero, up to one loop, are

rA0 �p
2� �

��pe�p
2�

�pe��
2�

�
�
; (11)

rG0 �p
2� �

��pe�p2�

�pe��2�

�
�
; (12)

where � and � are, respectively, gluon and ghost anoma-
lous dimensions. The perturbative corrections for the
Wilson coefficients of dimension 2 have also been calcu-
lated for the pure Yang-Mills case by Boucaud et al. [27]
(for the gluon propagator) and Kondo and collaborators
[21,22] (for both the gluon and ghost propagators), and
since they imply that

rA2 �p
2�

rA0 �p
2�

� 	
rG2 �p

2�

rG0 �p
2�


 m2
A�p

2� � 	m2
G�p

2�; (13)

we write the renormalization functions as

Z�p2� �

��pe�p
2�

�pe��
2�

�
	� 1

1 �
m2
A�p

2�

p2 � CA�p2�
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; (14)

G�p2� �

��pe�p
2�

�pe��
2�

�
	� 1

1 	
m2
A�p

2�

p2 � CG�p2�

p4 � � � �
: (15)

The perturbative corrections for the Wilson coefficients of
dimension 4 and higher have not been calculated yet, but
we introduced also the notation

rA4 �p
2�

rA0 �p
2�

� CA�p
2�;

rG4 �p
2�

rG0 �p
2�

� CG�p
2�; (16)

to point out the correspondence of Eqs. (14) and (15) with
the relations (4)–(6) and (7). The latter differ from the
former just by the absence of the slowly varying logarith-
mic p2 dependence in mA�p

2�, CA�p2�, CG�p2�, and
�pe�p

2�, and of the dots denoting terms of dimension larger
than 4.

Regarding the perturbatively generated prefactors
[�pe�p

2�=�pe��
2� to the powers of 	� and 	�], the forms

(14) and (15) are consistent with the corresponding forms
given by Eqs. (12) and (13) and also (14) in Ref. [28] and
by Eq. (41) in Ref. [2]. For Nc colors and Nf quark flavors,
-3
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FIG. 3. The momentum dependence of the gluon renormaliza-
tion function Z�p2�. The solid curve is our result (21). The
densely dotted curve is the ab initio DS result (fit A) from
Refs. [2,32]. As in Fig. 2, both the ab initio DS result and our
Eq. (21) are plotted for � � 5 GeV. The other curves pertain to
some recent lattice results [29,33–35]. The ones that agree with
the ab initio DS result [2,32] very well are those of Leinweber
et al. [33] [their Eq. (5.14), depicted here by the sparsely dotted
curve], and Eq. (3) of Iida et al. [34] (dash-dotted curve) fitting
the lattice data of Ref. [35]. The third lattice result for Z�p2� is
displayed by the long-dashed curve. It corresponds to Eq. (3) of
Ref. [29], which is the fit (extrapolated all the way to p2 � 0) to
the lattice data of Ref. [29]. For all lattice results, the renormal-
ization condition Z��2� � 1 is imposed at � � 5 GeV.
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FIG. 2. The momentum dependence of the ghost renormaliza-
tion function G�p2�. The solid curve is our result (22). The
dotted curve is a result of the ab initio DS study [2]. Concretely,
it depicts the fit A in Eq. (41) of Ref. [2] evaluated at � �
5 GeV, for which value the dotted curve agrees rather well (in
the displayed momentum range) with the long-dashed curve,
representing Eq. (4) of the lattice Ref. [29], renormalized at � �
5 GeV. Our result (22) is therefore plotted for the same value of
�.
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the anomalous dimensions of the gluon and ghost propa-
gator are, respectively, given by � � �	13Nc �
4Nf�=�22Nc 	 4Nf� and � � 	9Nc=�44Nc 	 8Nf� (see,
e.g., Ref. [2]). This ensures �� 2� � 	1. The definition
of the strong running coupling constant, Eq. (3), together
with Eqs. (14) and (15), thus gives

�s�p
2� � �pe�p

2�
1

1 �
m2
A�p

2�

p2 � CA�p2�

p4 � � � �

�

�
1

1 	
m2
A�p

2�

p2 � CG�p2�

p4 � � � �

�
2
: (17)

Neglecting the p2 dependence in the coefficients mA,
CA, and CG, as well as the higher terms in the denomina-
tors, we finally get

�s�p2�  �pe�p2�
1

1 �
m2
A

p2 �
CA
p4

�
1

1 	
m2
A

p2 �
CG
p4

�
2


 �eff�p2�

� �pe�p2�ZNpe�p2�GNpe�p2�2; (18)

depicted in Fig. 1 by the solid line [for the parameter values
(26), discussed below]. The suggestive abbreviations

ZNpe�p2� �
1

1 �
m2
A

p2 �
CA
p4

(19)

and

GNpe�p2� �
1

1 	
m2
A

p2 �
CG
p4

(20)

for the factors giving the deviation of Eq. (18) from the
perturbative coupling �pe�p

2�, stress that our approxima-
tions amount to assuming that nonperturbative (Npe) ef-
fects are given by the OPE-based results of Refs. [15,17–
20], which in our present case boil down to Eqs. (4)–(6),
and by the parametrization (7).

Our final expression (18) for the running coupling, to be
used in phenomenological calculations below, does not
depend on the renormalization scale �2 explicitly,
although Z�p2� and G�p2�, appearing in the intermediate
steps, still do. Namely, the same approximation applied to
the gluon and ghost renormalization functions (14) and
(15) gives

Z�p2� �

��pe�p2�

�pe��2�

�
	� 1

1 �
m2
A

p2 �
CA
p4

; (21)

G�p2� �

��pe�p
2�

�pe��
2�

�
	� 1

1 	
m2
A

p2 �
CG
p4

; (22)

plotted in Figs. 2 and 3 as our G�p2� and Z�p2� [again for
the parameter values (26)].

In our figures we also plot some results of lattice and
ab initio DS studies. Namely, before we turn to our main
goal, i.e., exploring whether our running coupling (18)
014004-4
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leads to successful phenomenology when used in quark
gap DS and bound-state BS equations through Eq. (1), we
will first comment on the comparison of our gluon and
ghost renormalization functions with some other results. In
particular, recent Tübingen results of SU(2) lattice gauge
simulations [29–31] and of ab initio DS studies [2,32]
agree with each other well for G�p2� and quite reasonably
for Z�p2�. This is seen in Figs. 2 and 3. (Also, the results in
the most recent Tübingen lattice reference [31], which
however does not give the corresponding fitting formulas,
are after proper renormalization somewhat lower than the
results of Ref. [29] plotted in Figs. 2 and 3, and thus agree
somewhat better with the displayed ab initio DS results
[2,32].) As can be seen in Fig. 3, there are some other
lattice results [33–35] for the gluon renormalization func-
tion which agree with Z�p2� from the DS approach [2,32]
even better, but they do not give the ghost renormalization
function. Thus, Tübingen lattice results [29–31] are pres-
ently of particular interest, because they give both Z�p2�
andG�p2�. Admittedly, there is a caveat: while the ab initio
DS studies [2,32] do not have problems with reaching low
momenta and in fact make strong statements about the
asymptotic behavior in the p2 ! 0 limit, the lattice data
[29] do not reach very low momenta. The lowest data point
forG�p� as well as ��p� in Ref. [29] is at p2 � 0:36 GeV2,
so that one must keep in mind that for lower p2 the
corresponding lattice-data-fitting curves in Figs. 2 and 3,
and therefore also in Fig. 1, are just extrapolations.
Nevertheless, presently most important is that comparing
the long-dashed and dotted curves in Fig. 1 shows that the
respective running couplings (3) following from these
‘‘lattice’’ [29–31] and ‘‘ab initio DS’’ [2,32] renormaliza-
tion functions typically do not differ by more than a factor
of 2. Thus, in spite of the mentioned caveat, these lattice
results [29–31] and the aforementioned D�SB scenario of
Fischer and Alkofer [2] support each other. Still, the be-
havior of QCD propagators, especially the ghost ones, and
the resulting running coupling, is not a closed issue yet, so
that the presently proposed scenario should also be con-
sidered although it is not supported by lattice results.

The examples [36–39] of lattice results differing from
the Tübingen lattice [29,31] and ab initio DS results [2,32]
are not only the relatively old ones such as those of Suman
and Schilling on the ghost renormalization function (which
abruptly falls for the very smallest probed momenta, pos-
sibly indicating the infrared vanishing behavior) [36,37],
but also some of the most recent ones, such as Ref. [38],
where Landau gauge lattice calculations give the strong
running coupling which, supposedly due to instanton ef-
fects, decreases1 at small momentum roughly as p4

[38,39].
1Their strong running coupling becomes roughly 0.1 or
smaller at p2 � 0:16 GeV2. Below this value of p2, the lattice
evaluation was found unreliable [38].

014004
Some other, quite independent methods, also give the
QCD running coupling vanishing at small p2 [40] although
not so fast as our form (18). Now, we want to make clear
that we do not argue that our results are another indication
that the running coupling indeed vanishes as p2 ! 0,
because we are aware (as we comment in more detail
below) that the behavior of our running coupling at very
small p2 is just an artifact of the way Eq. (18) was derived.
Fortunately, however, it turns out that the small-p2 behav-
ior does not influence much our final, observable results (in
contradistinction to intermediate p2’s). To see all this, let
us discuss in detail the behavior of our form (18) and
especially the possible objections to it. The first, less
serious one is that �pe�p2� ultimately hits the Landau
pole as p2 gets lower. However, we handle this as in other
phenomenological DS studies [4–6,41–45], where this
pole is shifted to timelike momenta in all logarithms:
ln�p2=�2

QCD� ! ln�x0 � p2=�2
QCD�. (Dynamical gluon

mass can provide the physical reason for this [46]; i.e.,
x0 / m

2
A=�

2
QCD � 10.) For �pe�p

2� we use the two-loop
expression used before by JM [4] and our earlier DS
studies, e.g., Refs. [41–45]. This means the infrared (IR)
regulator (to which all results are almost totally insensitive)
is x0 � 10, and �QCD � 0:228 GeV. The parameters of
�pe�p2� are thereby fixed and do not belong among vari-
able parameters such as CA and CG.

Back to the possible objections: the second, in the
present context the more serious, one is that we cannot
in advance give an argument that the factor
ZNpe�p2�GNpe�p2�2 in the proposed �eff�p2� (18) indeed
approximates well nonperturbative contributions at low p2

(say, p2 < 1 GeV2), but can only hope that our results to be
calculated will provide an a posteriori justification for
using it as low as p2 � 0:3 GeV2 [since Eq. (18) takes
appreciable values down to about p2 � 0:3 GeV2]. Of
course, ZNpe�p2� and GNpe�p2� must be wrong in the limit
p2 ! 0, as the OPE-based results (4)–(6) of Refs. [15,17–
20] certainly fail in that limit. Thus, the extreme suppres-
sion for small p2 is an unrealistic artifact of the proposed
form (18) when applied down to the p2 ! 0 limit.
Nevertheless, because of the integration measure in the
integral equations in DS calculations, integrands at these
small p2 do not contribute much, at least not to the quan-
tities (such as h �qqi condensate, meson masses, decay con-
stants and amplitudes) calculated in phenomenological DS
analyses. Hence, the form of �eff�p

2� at p2 close to zero is
not very important for the outcome of these phenomeno-
logical DS calculations.2 This is because the most impor-
tant for the success of phenomenological DS calculations
seems the enhancement at somewhat higher values of p2;
e.g., see the humps at p2 � 0:4 to 0:6 GeV2 in the JM [4] or
2This is supported by, e.g., Fischer [47], who found that nearly
all dynamically generated mass is produced by the integration
strength above p2 � 0:25 GeV2.
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MRT interaction [5,6] in Fig. 1. Our �eff�p
2� (18), the solid

curve in Fig. 1, exhibits such an enhancement centered
around p2  m2

A=2. This enhancement is readily under-
stood when one notices that Eq. (18) has four poles,

�p2�1;2 �
1

2

�
m2
A � i

����������������������
4CG 	m4

A

q �
; (23)

�p2�3;4 �
1

2

�
	m2

A � i
����������������������
4CA 	m4

A

q �
; (24)

in the complex p2 plane. For minfCG;CAg>m4
A=4 there

are no poles on the real axis, but saddles between two
complex conjugated poles. For the DS studies, which are
almost exclusively carried out in Euclidean space, space-
like p2, i.e., p2 > 0, is the relevant domain and is thus
pictured in Fig. 1. There, the maximum of �eff�p

2� (18) at
the real axis is at p2  m2

A=2, i.e., the real part of its double
poles �p2�1;2 coming from GNpe�p2�2. The height and the
width of the peak is influenced by both CG and mA. The
enhancement of �eff�p

2� (18) is thus determined by hA2i
through Eq. (6), and by the manner this condensate con-
tributes to the ghost renormalization function.

We are thus motivated to use this form (18) of �eff�p
2�

for all p2 to test its success in DS calculations. We are
aware of the shortcomings due to its oversimplified char-
acter, but its study helps to answer whether the hA2i con-
densate, which has recently attracted so much attention,
may be important for the enhancement of the effective
interaction needed for successful DS phenomenology.
The results presented below indicate that the hA2i conden-
sate may indeed provide an important mechanism not
considered so far.
IV. END RESULTS WITH DISCUSSION
AND CONCLUSION

We solved the gap and BS equations (2) for quark
propagators

S�p� �
1

i� � pA�p2� �B�p2�



A�p2�	1

i� � p�M�p2�
(25)

and for pseudoscalar meson q �q (q � u; d; s) bound-state
vertices (�M) in the same way as in our previous phenome-
nological DS studies, e.g., Refs. [41–45]. This essentially
means as in the JM approach [4], except that instead of
JM’s �eff�p

2�, Eq. (18) is employed in the RLA interaction
(1). We can thus immediately present the results because
we can refer to Refs. [4,41–45] for all calculational details,
such as procedures for solving DS and BS equations, all
model details, as well as explicit expressions for calculated
quantities and inputs such as the aforementioned IR-
regularized �pe�p

2�.
These calculations show that the initial mA;CA, and CG

estimates motivated and given above need only slight (a
few %) modifications to provide a very good description of
014004
the light pseudoscalar sector. Concretely, now we will
[both in the chiral limit (� lim) and realistically away
from it] quote only results obtained for the parameter set

CA � �0:6060 GeV�4 � CG; mA � 0:8402 GeV;

(26)

while a broader investigation of parameter dependence
shows the following. (i) The results are only weakly sensi-
tive to moderate variations (up to the factors of 2 to 1=2) of
CA. (ii) Contrary to that, the results are very sensitive tomA
and CG, since they determine the peak of our �eff�p

2� (18).
However, between Cmin

G � �0:6 GeV�4 and Cmax
G �

�0:9 GeV�4 there are many pairs of these quantities which
give fits comparable (within a percent) to that resulting
from the values (26), as long as they approximately satisfy
the linear relation

�CG�1=4 � 0:7742mA 	 0:0442 GeV: (27)

Thus, the two parameters ruling the strength of �eff�p2� are
not independent.

Already the chiral-limit results are very satisfactory:
f
� � f
0 
 f
 � 90:5 MeV, the 
0 ! �� chiral-limit
amplitude T��


0 �� lim� 
 1=�4
2f
� � 0:280 GeV	1, and
the chiral condensate h �qqi � �	217 MeV�3. We also get
the correct QCD chiral-limit behavior: massless q �q pseu-
doscalars and satisfied (within �4%) GMOR.

In the chiral limit, where the quark mass is purely
dynamically generated since the bare (and current) quark
masses vanish, the only parameters are mA;CA, and CG.
Away from the chiral limit, chiral symmetry is explicitly
broken by the nonvanishing bare mass parameters ~mq of
light quarks (q � u; d; s) entering the quark-propagator
gap equation and the q �q BS equation. For the very light
quarks u and d, the dynamically generated quark masses of
u and d quarks away from the chiral limit are practically
the same as in the chiral limit. In Fig. 4, the solid curve
depicts our results for the momentum dependence of these
dynamical masses M�p2� 
 B�p2�=A�p2� of u and d
quarks (in the isosymmetric limit). Figure 4 also presents
the lattice results for the u- and d-quark dynamical masses
of Refs. [48,49] which give their fits to the lattice-data
points in terms of analytic, closed-form expressions. Our
results for the dynamical quark mass M�p2� agree very
well with both the ab initio DS results [2,32] and the lattice
results [48,49].

As the first attempt to depart realistically from the chiral
limit, we adopt without change the ~mq values obtained
earlier by JM [4] in a very broad DS fit of the meson
phenomenology (with their �eff [4]), i.e., ~mu � ~md �
3:1 MeV and ~ms � 73 MeV. Already the corresponding
results for the masses and decay constants of pions and
kaons and the 
0 ! �� decay amplitude T��


0 , given in the
first line of Table I, show a very good agreement with
experimental values, except for the kaon mass. The second
-6



TABLE I. The masses and decay constants of pions and kaons
and 
0 ! �� decay amplitude T��


0 , for the parameter values
(26) and our �eff�p

2� (18). The JM [4] quark bare masses ~mu �
~md � 3:1 MeV; ~ms � 73 MeV give the first line. The second
line are the results obtained with ~mu � ~md � 3:046 MeV; ~ms �
67:70 MeV. The last line gives the experimental values. (The
distinction between neutral and charged mesons applies only to
this line, as we calculate in the isosymmetric limit.) Everything
is in MeV except T��


0 .

M
0 f
� MK� fK� T��

0 (GeV	1)

136.17 93.0 516.28 112.5 0.256
134.96 92.9 494.92 111.5 0.256
134.98 92:4 � 0:3 493.68 113:0 � 1:0 0:274 � 0:010

p2 [GeV 2]

M
(p

2 )[
G

eV
]

0

0.1

0.2

0.3

0.4

0 0.5 1 1.5 2 2.5 3

FIG. 4. The momentum dependence of the dynamically gen-
erated quark mass M�p2� for u and d quarks. The solid curve is
our result for the parameters giving the second line of Table I,
but our M�p2� depends in fact very little on the small explicit
chiral symmetry breaking mass parameters ~mu and ~md of the
very light u and d quarks as long as their values are at all
realistic. The dotted curve is the ab initio DS result [2,32]. The
short-dashed curve is the M�p2� fit of Ref. [48] to the extrapo-
lation of their lattice data to the chiral limit. The dash-dotted
curve is the similar result from another lattice calculation,
namely, the fit of M�p2� from Fig. 14 of Ref. [49].
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line shows that just a slight readjustment of the quark
masses, to ~mu � ~md � 3:046 MeV; ~ms � 67:70 MeV, is
enough to get an almost perfect fit to the pion and kaon
masses.
014004
The presented results allow us to conclude that the
dimension 2 gluon condensate hA2i provides an enhanced
effective interaction �eff�p

2� which leads to a sufficiently
strong D�SB, pions and kaons as (quasi-)Goldstone bo-
sons of QCD, and successful DS phenomenology at least in
the light sector of pseudoscalar mesons. This opens the
possibility that instead of modeling �eff�p2�, its enhance-
ment at intermediate p2 may be understood in terms of
gluon condensates.
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[45] D. Kekez and D. Klabučar, Phys. Rev. D 65, 057901

(2002).
[46] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[47] C. S. Fischer, hep-ph/0304233.
[48] CSSM Lattice Collaboration, J. B. Zhang, P. O. Bowman,

D. B. Leinweber, A. G. Williams, and F. D. R. Bonnet,
Phys. Rev. D 70, 034505 (2004).

[49] P. O. Bowman, U. M. Heller, and A. G. Williams, Phys.
Rev. D 66, 014505 (2002.
-8


