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Renormalized relativistic Hartree-Bogoliubov equations with a zero-range pairing interaction
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A recently introduced scheme for the renormalization of the Hartree-Fock-Bogoliubov equations in the case
of zero-range pairing interaction is extended to the relativistic Hartree-Bogoliubov model. A density-dependent
strength parameter of the zero-range pairing is adjusted in such a way that the renormalization procedure
reproduces the empirical 1S0 pairing gap in isospin-symmetric nuclear matter. The model is applied to the
calculation of ground-state pairing properties of finite spherical nuclei.
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I. INTRODUCTION

The theoretical framework of self-consistent mean-field
models enables a description of the nuclear many-body
problem in terms of universal energy density functionals. By
employing global effective interactions, adjusted to empirical
properties of symmetric and asymmetric nuclear matter, and
to bulk properties of spherical nuclei, the current generation of
self-consistent mean-field models has achieved a high level of
accuracy in the description of ground states and properties of
excited states in arbitrarily heavy nuclei, exotic nuclei far from
β stability, and in nuclear systems at the nucleon drip lines [1].

The relativistic mean-field (RMF) models, in particular, are
based on concepts of nonrenormalizable effective relativistic
field theories and density functional theory. They have been
very successfully applied in studies of nuclear structure
phenomena at and far from the valley of β stability. For a
quantitative analysis of open-shell nuclei it is necessary to
consider also pairing correlations. Pairing has often been taken
into account in a very phenomenological way in the Bardeen-
Cooper-Schrieffer (BCS) model with the monopole pairing
force, adjusted to the experimental odd-even mass differences.
This approach, however, presents only a poor approximation
for nuclei far from stability. The physics of weakly bound
nuclei necessitates a unified and self-consistent treatment of
mean-field and pairing correlations. This has led to the formu-
lation and development of the relativistic Hartree-Bogoliubov
(RHB) model, which represents a relativistic extension of
the conventional Hartree-Fock-Bogoliubov framework, and
provides a basis for a consistent microscopic description of
ground-state properties of medium-heavy and heavy nuclei,
low-energy excited states, small-amplitude vibrations, and
reliable extrapolations toward the drip lines [2].

In most applications of the RHB model [2] the pairing part
of the well known and very successful Gogny force [3] has be
employed in the particle-particle ( pp) channel:

V pp(1, 2) =
∑
i=1,2

e−[(r1−r2)/µi ]2

× (Wi + BiP
σ − HiP

τ − MiP
σ P τ ), (1)

with the set D1S [4] for the parameters µi,Wi , Bi,Hi , and
Mi (i = 1, 2). This force has been very carefully adjusted to
the pairing properties of finite nuclei all over the periodic
table. In particular, the basic advantage of the Gogny force
is the finite range, which automatically guarantees a proper
cutoff in momentum space. However, the resulting pairing
field is nonlocal and the solution of the corresponding
Dirac-Hartree-Bogoliubov integro-differential equations can
be time consuming, especially in the case of deformed nuclei.
Another possibility is the use of a zero-range, possibly density-
dependent, δ force in the pp channel of the RHB model [5]. This
choice, however, introduces an additional cutoff parameter
in energy and neither this parameter, nor the strength of the
interaction, can be determined in a unique way. The effective
range of the interaction is determined by the energy cutoff,
and the strength parameter must be chosen accordingly to
reproduce empirical pairing gaps.

In a series of recent articles [6–8] A. Bulgac and Y. Yu
have introduced a simple scheme for the renormalization
of the Hartree-Fock-Bogoliubov equations in the case of
zero-range pairing interaction. The scheme is equivalent to
a simple energy cutoff with a position-dependent coupling
constant. In this work we use the prescription of Refs. [6,7]
to implement a regularization scheme for the relativistic
Hartree-Bogoliubov equations with zero-range pairing. We
analyze the resulting 1S0 pairing gap in isospin-symmetric
nuclear matter and apply the RHB model to the calculation
of ground-state pairing properties of finite spherical nuclei.

In Sec. II we present an outline of the RHB model and
introduce the renormalization scheme for the case of zero-
range pairing. The model is applied in Sec. III to pairing
in isospin-symmetric nuclear matter. Ground-state pairing
properties of Sn nuclei are analyzed in Sec. IV. Section V
contains the summary and conclusions.

II. RELATIVISTIC HARTREE-BOGOLIUBOV MODEL
WITH ZERO-RANGE PAIRING

A detailed review of the relativistic Hartree-Bogoliubov
model can be found, for instance, in Ref. [2]. In this section
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we include those features which are essential for the discussion
of the renormalization of the RHB equations. The model can be
derived within the framework of covariant density functional
theory. When pairing correlations are included, the energy
functional depends not only on the density matrix ρ̂ and
the meson fields φm but also on the anomalous density κ̂ as
follows:

ERHB[ρ̂, κ̂, φm] = ERMF[ρ̂, φm] + Epair[κ̂], (2)

where ERMF[ρ̂, φ] is the RMF energy density functional and
the pairing energy Epair[κ̂] is given by the following:

Epair[κ̂] = 1

4
Tr[κ̂∗V ppκ̂]. (3)

V pp denotes a general two-body pairing interaction. The
equation of motion for the generalized density matrix

R =
(

ρ κ

−κ∗ 1 − ρ∗

)
, (4)

reads

i∂tR = [H(R),R]. (5)

The generalized Hamiltonian H is a functional derivative of
the energy with respect to the generalized density

HRHB = δERHB

δR

=
(

ĥD − m − µ 	̂

−	̂∗ − ĥ
∗
D + m + µ

)
. (6)

The self-consistent mean field ĥD is the Dirac Hamiltonian,
and the pairing field reads as follows:

	ab(r, r′) = 1

2

∑
c,d

V
pp

abcd(r, r′)κcd (r, r′), (7)

where a, b, c, and d denote quantum numbers that specify the
Dirac indices of the spinors and V

pp
abcd (r, r′) are the matrix

elements of a general two-body pairing interaction.
Pairing effects in nuclei are restricted to an energy window

of a few mega-electron-volts around the Fermi level, and their
scale is well separated from the scale of binding energies,
which are in the range of several hundred to thousand mega-
electron-volts. There is no experimental evidence for any
relativistic effect in the nuclear pairing field 	̂. Therefore,
pairing can be treated as a nonrelativistic phenomenon, and a
hybrid RHB model with a nonrelativistic pairing interaction
can be employed. For a general two-body interaction, the
matrix elements of the relativistic pairing field read as follows:

	̂a1p1,a2p2

= 1

2

∑
a3p3,a4p4

〈a1p1, a2p2|V pp|a3p3, a4p4〉aκa3p3,a4p4 , (8)

where the indices (p1, p2, p3, p4 = +,−) refer to the large
and small components of the quasiparticle Dirac spinors.
In most applications of the RHB model, only the large
components of the spinors Uk(r) and Vk(r) have been included
in the nonrelativistic pairing tensor κ̂ in Eq. (12). The resulting

pairing field reads as follows:

	̂a1+,a2+ = 1

2

∑
a3+,a4+

〈a1+, a2 + |V pp|a3+, a4+〉aκa3+,a4+.

(9)

The other components: 	̂+−, 	̂−+, and 	̂−− are neglected, in
accordance with the results that are obtained with a relativistic
zero-range force [10].

The ground state of an open-shell nucleus is described by
the solution of the relativistic Hartree-Bogoliubov equations
as follows:(

ĥD − m − µ 	̂

−	̂∗ − ĥ
∗
D + m + µ

)(
Uk(r)

Vk(r)

)
= Ek

(
Uk(r)

Vk(r)

)
,

(10)

which correspond to the stationary limit of Eq. (5).
The chemical potential µ is determined by the particle

number subsidiary condition so that the expectation value
of the particle number operator in the ground state equals
the number of nucleons. The column vectors denote the
quasiparticle wave functions, and Ek are the quasiparticle
energies. The RHB wave functions determine the hermitian
single-particle density matrix as follows:

ρ̂ll′ = (V ∗V T )ll′ , (11)

and the antisymmetric anomalous density as follows

κ̂ll′ = (V ∗UT )ll′ . (12)

The calculated nuclear ground-state properties sensitively
depend on the choice of the effective Lagrangian and pairing
interaction. Over the years many parameter sets of the mean-
field Lagrangian have been derived that provide a satisfactory
description of nuclear properties along the β-stability line.
The most successful RMF effective interactions are purely
phenomenological, with parameters adjusted to reproduce the
nuclear matter equation of state and a set of global properties
of spherical closed-shell nuclei. This framework has recently
been extended to include effective Lagrangians with explicit
density-dependent meson-nucleon couplings. In a number of
studies it has been shown that this class of global effective
interactions provides an improved description of asymmetric
nuclear matter, neutron matter, and finite nuclei far from
stability. In the present analysis of ground-state properties
of Sn isotopes the density-dependent effective interaction
DD-ME1 [9] will be employed in the particle-hole ( ph)
channel of the RHB model.

In the following we extend the regularization scheme of
Bulgac and Yu [6–8] to the solution of the relativistic Hartree-
Bogoliubov equations for a zero-range pairing interaction as
follows:

V pp(r, r′) = gδ(r − r′). (13)

In Refs. [6,7] it has been shown that in this case the
renormalized pairing field can be expressed as follows:

	(r) = −geff(r)κc(r), (14)

044320-2
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where κc(r) denotes the cutoff anomalous density as follows:

κc(r) =
Ec∑

Ek>0

V
†
k (r)Uk(r). (15)

The cutoff energy Ec defines the two corresponding momenta
kc and lc as follows:√

k2
c (r) + m∗2(r) + V (r) − m = Ec + µ, (16)

√
l2
c (r) + m∗2(r) + V (r) − m = −Ec + µ. (17)

m∗(r) = m + S(r) is the Dirac mass, and S(r) and V (r) are, re-
spectively, the scalar and vector single-nucleon potentials con-
tained in the Dirac Hamiltonian ĥD . The chemical potential µ

determines the local Fermi momentum√
k2
f (r) + m∗2(r) + V (r) − m = µ. (18)

The effective, position-dependent coupling in Eq. (14) reads
as follows:

1

geff(r)
= 1

g
+ F1(r) + F2(r), (19)

with

F1(r) = −
kc(r)

√
k2
f (r) + m∗2(r)

4π2

[
1 − kf (r)

kc(r)
Ar cth

kc(r)

kf (r)

]

−
kc(r)

√
k2
c (r) + m∗2(r)

8π2
+

√
k2
f (r) + m∗2(r)

4π2
kf (r)

× Ar cth
kc(r)

√
k2
f (r) + m∗2(r)

kf (r)
√

k2
c (r) + m∗2(r)

− 2k2
f (r) + m∗2(r)

8π2
ln

kc(r) +
√

k2
c (r) + m∗2(r)

m∗(r)
(20)

and

F2(r) = −
lc(r)

√
k2
f (r) + m∗2(r)

4π2

[
1 − kf (r)

lc(r)
Ar th

lc(r)

kf (r)

]

−
lc(r)

√
l2
c (r) + m∗2(r)

8π2
+

√
k2
f (r) + m∗2(r)

4π2
kf (r)

× Ar th
lc(r)

√
k2
f (r) + m∗2(r)

kf (r)
√

l2
c (r) + m∗2(r)

− 2k2
f (r) + m∗2(r)

8π2
ln

lc(r) +
√

l2
c (r) + m∗2(r)

m∗(r)
.

(21)

F1 + F2 is the relativistic generalization of the corresponding
correction to the coupling constant g, as defined in Eq. (16) of
Ref. [6].

III. PAIRING PROPERTIES OF SYMMETRIC
NUCLEAR MATTER

A zero-range pairing interaction leads to a particularly
simple expression for the gap equation in symmetric nuclear
matter

1

geff
= − 1

4π2

∫ kc

lc

dk
k2√[√

k2 + m∗2 −
√

k2
f + m∗2

]2 + 	2

.

(22)

The momenta kc and lc are determined by the cutoff energy
Ec Eqs. (16) and (17), and the effective coupling geff is
defined in Eq. (19). In the left panel of Fig. 1 we display
the density dependence of the resulting pairing gap in
nuclear matter (dashed curve). The single-particle spectrum
has been calculated with the relativistic effective interaction
DD-ME1 [9], and the coupling constant of the zero-range
pairing interaction Eq. (13) g = −330 MeV fm3 is typical
for the values used by Bulgac and Yu in their analyses. The
pairing gap is shown in comparison to the gap calculated
with the effective Gogny interaction D1S [4] (dots). The
corresponding single-particle spectrum has been computed in
the Hartree-Fock approximation for the Gogny interaction. The
density dependence of the two gaps is completely different.
The pairing gap of the renormalized zero-range interaction
increases uniformly with density, whereas the gap of the Gogny
interaction display the characteristic maximum of ≈2.5 MeV
at low density ρ = 0.03 − 0.04 fm−3 (corresponding to a
Fermi momentum of approximately 0.8 fm−1) and decreases
at higher densities. The bell-shaped form of the pairing gap
as a function of the density was, in fact, obtained already
more than 40 years ago [12]. This density dependence is
not characteristic only of the phenomenological finite-range
interactions, but is also obtained when the gap is calculated
with bare nucleon-nucleon potentials adjusted to the empirical
nucleon-nucleon phase shifts and deuteron properties (for a
recent review see Ref. [13]). The decrease of the gap at Fermi
momenta kf > 0.8 fm−1 simply reflects the repulsive character
of the nucleon-nucleon interaction at short distances [11]. Of
course there is no repulsive component in the zero-range force
with constant coupling Eq. (13), and the corresponding pairing
gap displays the unphysical uniform increase with density. We
notice, however, that in the range of densities shown in Fig. 1,
that is, up to nuclear matter saturation density, the values of
the pairing gap of the renormalized zero-range interaction are
comparable with those of the Gogny pairing gap. As shown in
the next section, this means that the renormalization scheme
for the zero-range interaction with constant coupling can be
safely applied to the calculation of pairing correlations in finite
nuclei, provided an appropriate choice is made for the strength
parameter g.

Conversely, there is no particular reason why the strength
parameter g of the zero-range pairing interaction should be
a constant. In fact, in many applications to finite nuclei
an explicit density dependence is introduced, and in this
way pairing correlations partially include finite-range effects.
For instance, in one of the first applications [14] Bertsch
and Esbensen used a density-dependent contact interaction,
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FIG. 1. Pairing gap in symmetric nuclear
matter as a function of density for the
zero-range interaction with constant coupling
g = −330 MeV fm3 (dashed) and the density-
dependent coupling Eq. (23) (solid). The
corresponding density-dependent curves geff

[Eq. (19)] are plotted in the panel on the right.
The dots in the left panel denote the pairing gap
calculated with the Gogny D1S interaction.

together with a simple energy cutoff, in a description of pairing
correlations in weakly bound neutron-rich nuclei. They also
compared the corresponding pairing gap in symmetric nuclear
matter with the result of a Hartree-Fock calculation using the
Gogny interaction. In the present anaysis we have adjusted a
density-dependent strength parameter g(ρ) of the zero-range
pairing interaction Eq. (13), in such a way that the pairing gap
of the renormalized zero-range interaction Eq. (22), reproduces
the density dependence of the Gogny pairing gap. The resulting
density dependence can be approximated by the following
analytic expression

g(ρ) = 1

a0 + a1ρ1/3 + a2ρ2/3
, (23)

with a0 = −0.064 fm−2, a1 = 0.447 fm−1, and a2 = −3.693.
The resulting pairing gap, displayed in the left panel of Fig. 1
(solid line), is in very good agreement with the one calculated
using the Gogny interaction. A very similar procedure was
employed in Ref. [15], where the density dependence of the
“bare coupling constant” g(ρ) was adjusted to a specific
formula for the pairing gap in low-density homogeneous
neutron matter.

In the right panel of Fig. 1 we display the ef-
fective couplings geff calculated using the constant g =
−330 MeV fm3, and the density dependent coupling of
Eq. (23). The density dependence of the two effective cou-
plings is completely different. To prevent an unphysical growth
of the pairing gap with density, the density dependence of the
pairing strength Eq. (23) ensures that the effective coupling
becomes weaker with increasing nucleon density. A very
strong effective coupling in the low-density region produces
a peak in the corresponding pairing gap shown in the left
panel. Conversely, geff calculated using the constant coupling
increases in absolute value with density (i.e., the resulting
pairing gap increases uniformly with density). However, rather
similar values for the two effective couplings geff are calculated
in the region of densities characteristic for the bulk of finite
nuclei. One should not, therefore, expect very different results
for the pairing properties of finite nuclei calculated with the

zero-range interaction with constant coupling or with the
density-dependent coupling of Eq. (23). In the next section
we will show that this is really not true in weakly bound nuclei
far from stability.

The renormalization prescription must, of course, lead to a
pairing field that is independent of the cutoff energy Ec, if the
latter is chosen large enough. This is illustrated in Fig. 2, where
we plot the pairing gap, calculated using the density-dependent
coupling of Eq. (23), for a number of characteristic values Ec

in the interval between 5 and 60 MeV. The pairing gap shows a
weak dependence on the cutoff energy only for the two lowest
values of Ec. When the cutoff is increased beyond 10 MeV,
the corresponding pairing gaps cannot be distinguished. Thus
already for Ec � 10 MeV the pairing gap of the renormalized
zero-range interaction in symmetric nuclear matter converges.
This is in agreement with the results obtained in the analysis
of the pairing gap in homogeneous neutron matter [6].

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

kf (fm
-1

)

0.5

1.0

1.5

2.0

2.5

3.0

∆
f (

M
eV

)

Ec=5 MeV

Ec=10MeV

Ec=20 MeV

Ec=30 MeV

Ec=40 MeV

Ec=50 MeV

Ec=60 MeV

FIG. 2. Pairing gap in symmetric nuclear matter as a function
of the Fermi momentum, calculated with the zero-range interaction
and the density-dependent coupling Eq. (23), for a series of cutoff
energies.

044320-4



RENORMALIZED RELATIVISTIC HARTREE- . . . PHYSICAL REVIEW C 71, 044320 (2005)

0 10 20 30 40 50
Ec (MeV)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

<
∆>

 (
M

eV
)

RDDC
RCC

0 10 20 30 40 50
Ec (MeV)

-50

-40

-30

-20

-10

0

E
pa

iri
ng

 (
M

eV
)

114
Sn

FIG. 3. Average neutron pairing gaps (left)
and pairing energies (right) for 114Sn calculated
with a zero-range interaction as functions of the
cutoff energy. The calculations are performed
with the renormalization of the constant cou-
pling g = −330 MeV fm3 (squares), and with
the renormalization of the density-dependent
coupling Eq. (23) (dots).

IV. GROUND-STATE PAIRING PROPERTIES
OF SPHERICAL NUCLEI

In this section the renormalization scheme is tested in the
calculation of ground-state pairing properties of Sn isotopes.
The DD-ME1 mean-field Lagrangian is employed for the ph
channel, and the zero-range interaction Eq. (13) is used in the
pp channel. The renormalization procedure described in the
previous section is carried out for the zero-range interaction
with constant pairing strength g = −330 MeV fm3 and for the
density-dependent coupling of Eq. (23). In the latter case the
density dependence of the pairing strength has been adjusted
to reproduce the Gogny D1S pairing gap in symmetric nuclear
matter. In the following we denote by RCC the case of the
renormalized constant coupling, and by RDDC the results
obtained with the renormalized density-dependent coupling.

Although in the symmetric nuclear matter the Fermi
momentum is always real [see Eq. (18)], in the surface region of
finite nuclei it becomes imaginary. In Ref. [6] it has been shown
that also in this case the renormalized anomalous density is
real. The effective coupling geff is still given by Eq. (19), but

F1(r) = −
kc(r)

√
−|kf (r)|2 + m∗2(r)

4π2

×
[

1 − kf (r)

kc(r)
Ar ctg

kc(r)

kf (r)

]
−

kc(r)
√

k2
c (r) + m∗2(r)

8π2

+
√

−|kf (r)|2 + m∗2(r)

4π2
kf (r)
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8
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3 )
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Ec=50 MeV
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RDDC

FIG. 4. The pairing fields as functions of
the radial coordinate (left), and the curves
geff [r(ρ)] [Eq. (19)] as functions of the corre-
sponding density in 114Sn (right), for a series
of energy cutoffs. The upper panels display
results of the renormalization procedure for the
zero-range force with constant coupling g =
−330 MeV fm3 (RCC), and the lower ones
correspond to the density-dependent coupling
Eq. (23) (RDDC).
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FIG. 5. The effective single-nucleon poten-
tial in 114Sn as a function of the radial coordinate
(left) and the correction to the strength parameter
of the zero-range effective force (right) as a
function of the square of the Fermi momentum.
µ denotes the position of the chemical potential.

× Ar ctg
kc(r)

√
−|kf (r)|2 + m∗2(r)

kf (r)
√

k2
c (r) + m∗2(r)

− (−2|kf (r)|2 + m∗2(r))

8π2
ln

kc(r) +
√

k2
c (r) + m∗2(r)

m∗(r)
,

(24)

and

F2(r) = 0. (25)

However, if either kc or lc becomes imaginary, the correspond-
ing terms in the effective coupling should be omitted.

The rate of convergence of the renormalization scheme is
illustrated in Fig. 3 where, for the nucleus 114Sn, we display

the average pairing gaps and the pairing energies as functions
of the cutoff energy Ec. The average gaps shown in the left
panel, are defined as follows:

〈	N 〉 =
∑

nlj 	nlj v
2
nlj∑

nlj v2
nlj

, (26)

where v2
nlj are the occupation probabilities of the neutron

states in the canonical basis. Both the pairing gaps and the
pairing energies converge already for Ec � 10 MeV. We also
notice that, even though the renormalized constant coupling
and the renormalized density-dependent coupling lead to
very different pairing gaps in symmetric nuclear matter, in
114Sn they produce similar average pairing gaps and virtually
identical pairing energies.

The corresponding pairing fields as functions of the radial
coordinate, and geff Eq. (19) as functions of the density, are
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FIG. 6. Average neutron pairing gaps (left)
and pairing energies (right) for the chain of
even-even Sn isotopes with 110 � A � 160.
The calculations are performed with the
renormalization of the constant coupling g =
−330 MeV fm3 (dashed) and with the renor-
malization of the density-dependent coupling
Eq. (23) (solid).
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FIG. 7. The anomalous densities in 114Sn,
124Sn, 150Sn isotopes as functions of the ra-
dial coordinate (left) and the density-dependent
curves geff [Eq. (19)] (right). The calculations
are performed with the renormalization of the
density-dependent coupling Eq. (23) (RDDC).

plotted in Fig. 4 for a series of values of the energy cutoff. In
both cases the calculation of the pairing field and geff shows
convergence for Ec > 10 MeV. Although the renormalized
constant coupling and the renormalized density-dependent
coupling produce very similar average pairing gaps and pairing
energies, the dependence of the corresponding pairing fields on
the radial coordinate is rather different. The RCC pairing field
(upper left panel) is concentrated in the bulk of the nucleus,
whereas the RDDC pairing field (lower left panel) exhibits
a pronounced peak on the surface. This behavior reflects the
difference between the effective couplings geff , shown in the
right panel of Fig. 1 for the case of symmetric nuclear matter.
In the panels on the right of Fig. 4 we plot the effective
couplings geff(r(ρ)) as functions of the nucleon density in
114Sn. The geff that corresponds to the density-dependent
coupling of Eq. (23) decreases steeply in the region of very low
density (i.e., on the surface of the nucleus). Consequently, the
pairing field also displays a peak in the surface region. In both

the RCC and RDDC cases the pronounced discontinuity of
the effective coupling geff at very low density corresponds
to the transition from real to imaginary Fermi momentum
kf . This is illustrated in Fig. 5, where we plot the effective
single-nucleon potential (left panel) and the correction to
the coupling originating from the renormalization of the
anomalous density (right panel). The effective single-nucleon
potential is determined by the sum of the vector and scalar
potentials Vcen(r) = S(r) + V (r). For real values of the Fermi
momentum (the effective potential is below the chemical
potential µ) the correction to the coupling F1(r) + F2(r) is
calculated from Eqs. (20) and (21) and for imaginary values
of the Fermi momentum (the effective potential is above
the chemical potential µ) from Eqs. (24) and (25). In the
region where the Fermi momentum changes from real to
imaginary the correction F1(r) + F2(r) displays a very sharp
peak, which is reflected in the discontinuities of the effective
couplings.
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FIG. 8. Same as in Fig. 7 but for the
RCC case with the constant coupling g =
−330 MeV fm3.
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The importance of possible surface effects is illustrated
in Fig. 6, where we plot the calculated average pairing gaps
and pairing energies for the chain of even-even Sn isotopes
with 110 � A � 160. Although both the RCC and RDCC
schemes lead to comparable values of the average pairing
gaps for the entire isotopic chain, the pairing energies differ
significantly for isotopes beyond the doubly closed-shell 132Sn.
For example, the pairing energy of 150Sn calculated with
RDDC is almost 25 MeV larger than the one calculated with
the RCC. The large increase in the pairing energy for the
RDDC case is caused by the dominant role of the surface
region for the very neutron-rich Sn isotopes and because the
effective coupling is especially strong at very low densities. In
the panels on the left of Figs. 7 and 8 we plot the self-consistent
solutions for the cutoff anomalous densities Eq. (15) for the
isotopes 114Sn, 124Sn, and 150Sn, calculated using the RDDC
and RCC effective couplings, respectively. The corresponding
effective couplings geff are shown in the panels on the right
of Figs. 7 and 8. The anomalous densities for 114Sn and 124Sn
are concentrated in the nuclear volume (r � 6 fm), where the
effective couplings geff have comparable values. Therefore,
the corresponding pairing energies are similar for the RDDC
and RCC cases. But in 150Sn, the anomalous densities
extend to the region r � 8 fm, where the RDDC effective
coupling becomes much stronger than the one calculated with
the RCC. Hence, the pairing energy for 150Sn, calculated
using the renormalized density-dependent coupling, is much
larger than the one obtained with the renormalized constant
coupling.

V. CONCLUSIONS

A simple renormalization scheme for the Hartree-Fock-
Bogoliubov equations with zero-range pairing has recently

been introduced [6–8]. In the present work we have im-
plemented this renormalization scheme for the relativistic
Hartree-Bogoliubov equations with a zero-range pairing in-
teraction. The procedure is equivalent to a simple energy
cutoff with a position-dependent coupling constant. We have
verified that the resulting average pairing gaps and pairing
energies do not depend on the cutoff energy Ec, if the latter
is chosen large enough. Convergence is achieved for values
Ec � 10 MeV, both in nuclear matter and for finite nuclei. If the
strength parameter of the zero-range pairing is a constant, the
resulting pairing gap in symmetric nuclear matter displays an
unphysical increase with density. We have therefore adjusted
a density-dependent strength parameter of the zero-range
pairing in such a way that the renormalization procedure
reproduces in symmetric nuclear matter the pairing gap of the
phenomenological Gogny interaction. In this sense the present
study goes beyond the simple extension of the renormalization
scheme of Ref. [6] to the relativistic framework. However,
the resulting effective coupling is too strong in the region of
low density, and this leads to large pairing energies in open-
shell nuclei with very diffuse surfaces (e.g., in neutron-rich
Sn isotopes). One must therefore be careful when applying the
renormalized HFB or RHB models with zero-range pairing to
nuclei far from stability. Adjusting the strength parameter to
the pairing gap in symmetric nuclear matter obviously does not
provide enough information about the density dependence of
the zero-range pairing to be used in very neutron-rich nuclei.
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