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Microscopic theory of the noncontact van der Waals interaction: Application to layered systems
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In this paper we introduce an efficient method for the calculation of the noncontact van der Waals interaction
between two metallic slabs of arbitrary thicknesses and densities. Because of the numerical resolution, the
method enables the detailed examination of transition from the classical to the intermediate region of the vdW
interaction. We also demonstrate how this new microscopic formulation reduces to the classical Lifshitz
formula for the van der Waals interaction. This method is applied to calculate the interaction between various
planar systems and compared with some previous results.

DOI: 10.1103/PhysRevB.75.045422 PACS number�s�: 73.20.Mf

I. INTRODUCTION

Density functional theory �DFT� has been enormously
successful in describing electronic properties of a variety of
systems, including thin films and semi-infinite solids, mol-
ecules, small particles and even atoms, in spite of the rather
drastic approximations �LDA, GGA� which omit a substan-
tial part of the correlation effects. Fast development of the
nanophysics requires improved description of the interaction
between the components of such systems, e.g., nanolayers or
nanowires, but it is also important in the studies of soft mat-
ter or biological systems. Interaction responsible for the sta-
bility of such systems is the weak van der Waals �vdW�
interaction. However, DFT-LDA was much less successful in
describing this interaction where the long and intermediate
range effects come exclusively from the electronic long
range correlation effects, and several efforts were made to
extend the DFT method and construct new functionals that
would include vdW interaction in such systems.

Starting point is usually the so-called adiabatic connection
formula �ACF�, which gives the ground state exchange-
correlation energy of the system and can also be expressed in
terms of the sum of ring diagrams. Furthermore, the summa-
tion of all unconnected ring diagrams can be performed by
the integration over the coupling constant �, which repre-
sents the strength of the coulomb interaction �i.e., the inter-
action Hamiltonian is written in the form �V�r ,r�� where V
is the bare Coulomb interaction�. This introduces additional
difficulties, but ACF then becomes a simple functional of the
response or dielectric function of the system. ACF also in-
volves exact exchange-correlation density functional Exc, and
by use of the local approximation for the response or dielec-
tric function it becomes an explicit functional of the local
densities. This approach has been used, e.g., to calculate the
interaction between two semi-infinite metals.1 Also, a micro-
scopic generalization of such a method �where the exchange
correlation functional was divided into local and nonlocal
part Exc=Exc

LDA/GGA+Exc
nl� has been used to calculate the vdW

interaction between two metallic films or semi-infinite met-
als, with their distance ranging from asymptotic separation to
full contact.2 Recently, nonlocal correlation functional has
been used to give better description of the interaction be-
tween certain layered systems,3 as well as to give the de-
scription of the dimerization of rare gas atoms and benzene

molecules.4 Similar extension of the LDA approximations
combine the ACF and the screening equation, using the in-
dependent particle KS response function or an approximation
based on the homogeneous system �Lindhard� response
function.5 These approximate density functional methods are
in good agreement with the exact RPA results at small and
intermediate distances. This was rewarding, because these
methods were numerically several hundred times more effi-
cient than the exact RPA calculation. However, exact RPA
calculation includes exact “nonlocality” and gives the details
of the vdW interaction from the asymptotic to the contact
region.6 Moreover, because of the neglecting of the short-
range correlations in the overlap regime there seems to be the
need to go beyond RPA. However, it has been proven7 that
correction of the RPA results with exchange-correlation ker-
nels fxc �e.g., using the TDDFT form of the screening equa-
tion� gives the same results even in the overlap regime. Nev-
ertheless, the effects beyond RPA are important in
calculating the total or surface correlation energy.8

Details of the electronic structure also influence the be-
havior of the vdW interaction in the asymptotic region. For
example, recently Dobson et al. discovered that anisotropic
nanostructures, having zero electronic gap, such as metallic
nanotubes or nanowires and nanolayered systems like metal-
lic or graphene planes, do not show standard power law de-
pendence in the asymptotic vdW region.9

On the other hand, classical theory of the van der Waals
forces is well established, e.g., in the form of the Lifshitz
formula which is based on the local �long wavelength� di-
electric functions of the systems, ignoring quantum-
mechanical character of the charge fluctuations. It was there-
fore plausible to extend the validity of the Lifshitz formula
by replacing the classical reflectivity by its quantum me-
chanical analogon. It was soon discovered that the classical
Lifshitz formula �via field matching� could be reproduced
using ACF. Early attempts continued in this direction by us-
ing local SCIBM surface response function10,11 or adding
terms linear in the wave vector expansion of the dielectric
function calculated within LDA.1 Full nonlocal RPA calcula-
tion leads to serious numerical problems, therefore it was
only applied to very thin, practically two-dimensional
slabs.5,6,8

In this paper we modify previous theories of the van der
Waals interaction, and develop a formulation which is almost
exact for the planar systems with nonoverlapping charge
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densities. We express the response function of the system
consisting of two coupled slabs in terms of the response
functions of individual slabs. The procedure is not restricted
to RPA, and the response function of the total system in-
cludes all local field corrections due to intraslab Coulomb
interaction, but not the local field corrections due to interslab
coupling, which are expected to be small. Then we can per-
form the coupling constant integration analytically. The final
result is given in terms of discrete matrices with the dimen-
sion which can be ten times smaller than in the analogous
spatial matrices, so the numerical calculations are substan-
tially faster. This enables us to perform accurate calculations
of vdW interaction at large separations. Comparing this with
the previous calculations, we can also evaluate the separation
at which the overlap of electron densities begins to influence
the results. It is also demonstrated that the new expression in
the local approximation directly reduces to the Lifshitz for-
mula.

In Sec. II we obtain the quantum-mechanical expression
for the vdW interaction between planar systems in terms of
response functions of separate systems, calculated in the best
possible way, without any restriction on the method. In Sec.
III we show how this expression reduces to the classical
Lifshitz formula if we replace the surface excitation propa-
gator by the surface reflectivity. We also show how to per-
form a complex integration �slightly modified with respect to
Ref. 12� by which we express the vdW energy as the sum of
differences between coupled and uncoupled surface excita-
tion frequencies. In Sec. IV we show how our method can be
applied to the calculation of vdW interaction for metallic
films of various thicknesses and densities. Results for inter-
action between two very thin metallic films at short distances
are compared with those obtained in Ref. 6. We show that the
d−5/2 power law9 remains valid for any finite film thickness.

II. FORMULATION OF THE PROBLEM

We shall consider two subsystems with nonoverlapping
charge densities, described by the Hamiltonian

H = H1 + H2 + �Hint, �1�

where �� �0,1� and Hamiltonian Hi�i=1,2� of each sub-
system consists of kinetic energy, interaction with the crystal
lattice of the subsystem �or homogeneous background if the
jellium model is used�, and electron-electron interaction
within the subsystem. The interaction between the sub-
systems is

Hint = �
V1

dr�
V2

dr�n1�r�v12�r,r��n2�r�� , �2�

where n1,2 are the charge density operators in the subsystems
and v12 is the bare inter-subsystem coulomb interaction. Note
that Hint can be written in this form because, due to the fact
that the electron densities of the slabs do not overlap,
n1�r�v12�r ,r��n2�r��=n2�r�v21�r ,r��n1�r��. If there is no in-
teraction between the subsystems ��=0� the exact ground
state of the system is �0��=0�. With the interaction included
���0� the exact ground state is �0���, and the total ground
state energy is

E0 = ��0����H1 + H2 + �Hint��0���� . �3�

A. Derivation of Ec„d…

Using the standard Pauli trick the ground state energy of
the fully interacting system ��=1� can be written as

E0 = E0�� = 0� + �
0

1 d�

�
Eint��� , �4�

where

Eint��� = ��0�����Hint��0���� . �5�

E0��=0� is the sum of exact ground state energies of the two
noninteracting subsystems ��=0�. The ground state energy
shift to the coupling between the subsystems �i.e., interaction
energy� is therefore

Ec = �
0

1 d�

�
Eint��� . �6�

This energy is due to the correlation because for nonoverlap-
ping systems complete exchange �for each subsystem� is al-
ready included in E0��=0�. Assuming that the ground state
energies of separate subsystems are already evaluated, let us
study the change in the total energy when the interaction is
included. Inserting �2� and �5� in �6� gives

Ec = �
0

1 d�

�
�

V1

dr�
V2

dr�v�
12�r,r��

� ��0����n1�r�n2�r����0���� , �7�

where v�
12�r ,r��=�e2 / �r−r��.

The matrix element in �7� can be related to the correlation
function of the system. Namely, for nonoverlaping sub-
systems the density operator can be written in the form
n�r�=n1�r�+n2�r� and the correlation function S��r ,r� , t
=0, t�=0� consists of four terms: S11, S12, S21, and S22, given
by

S�
ij�r,r�,0,0� = ��0����ni�r�nj�r����0����, i = 1,2, �8�

where ni�r� is the density operator in subsystem i. Only the
term S�

12 �which is, because the electron densities of the slabs
do not overlap, equal to S�

21� appears in the integration in �7�,
and by use of the relation:

S�
12�r,r�,t = 0,t� = 0� = −

1

�
Im �

0

�

d�R�
12�r,r�,�� �9�

�7� becomes

Ec = −
1

�
Im �

V1

dr�
V2

dr��
0

�

d��
0

1 d�

�

� v�
21�r,r��R�

12�r,r�,�� �10�

Here R�
12 is the response function between the points r and

r�, located in different subsystems. A detailed description of
the calculation of the response functions for the two sub-
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systems can be found in Ref. 13. The integrand in �10� rep-
resents the sum of all connected ring diagrams for the ground
state energy shift. The coupling constant integration enables
us to express all the diagrams for ground state fluctuations in
terms of the connected ones.14

B. Application to planar systems

To consider the van der Waals interaction between two
parallel metallic slabs �Fig. 1� we assume one of the slabs in
the region −L1�z�0 with electron density corresponding to
rs1, and the other one in the region d�z�d+L2 with elec-
tron density corresponding to rs2. In other words d is the
distance between the points where the electron densities of
the two slabs practically vanish, while the distance between
jellium edges is D=d+2� �Fig. 1�, where � is the character-
istic electron density decay length. The jellium thicknesses
are then a1=L1−2� and a2=L2−2�.

Now we can use translational symmetry parallel to the
surface and Fourier transform Eq. �10�:

Ec�d�
A

= −
1

�
Im �

−L1

0

dx�
d

L2+d

dy�
0

�

d�� dQ

�2��2�
0

1 d�

�

� R�
12�Q,x,y,��v�

21�Q,y,x� , �11�

where

v�
21�Q,y,x� = �vQe−Q�y−x�; vQ =

2�e2

Q
. �12�

Q is the wave vector parallel to the surface, A is the surface
area, and points x and y are located in the left slab �sub-
system 1� and the right slab �subsystem 2�, respectively.

Following the procedure presented in Ref. 13 we can
transform the integral equation �11� into the matrix equation:

Ec�d�
A

= −
1

�
Im �

0

�

d�� dQ

�2��2�
0

1 d�

�
Tr	R�

12v�
21
 .

�13�

Calculation of the the matrix elements of R�
12 are presented

in detail in the following subsection and v�
12 are

v�,q1q2

12 = ṽ�,q1q2

12 e−Qd

= �
8�e2Q

L1L2
	q1

	q2

�1 − pq1
e−QL1��1 − pq2

e−QL2�

�q1
2 + Q2��q2

2 + Q2�
e−Qd,

�14�

where pqi
is the parity of qi-th cosine harmonic, i.e., pqi

= �−�qiLi/2�.

C. Van der Waals interaction between two slabs

First we want to write the response function connecting
two slabs R�

12 �Q ,x ,y ,�� �with point x being in slab 1 and
point y being in slab 2� in terms of the response functions R1

and R2 of the individual slabs. To achieve that we examine
the following integral equation:13

R�
12�Q,x,y,�� = 
��Q,x,y,�� + �

−L1

0

dx2�
d

L2+d

dy2
��Q,x,y2,��v�
21�Q,y2,x2�
��Q,x2,y,�� + ¯ �15�

where the first term is


��Q,x,y,�� = �
−L1

0

dx1�
d

L2+d

dy1R�
1�Q,x,x1,��v�

12�Q,x1,y1�R�
2�Q,y1,y,�� �16�

FIG. 1. Density profile for two nonoverlapping metallic
slabs.

FIG. 2. Dyson series for R�
12�Q ,� ,z ,z��, as in Eq. �15�.
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as shown in Fig. 2. Here the points x and x1 can obviously be
located only inside the slab 1 while the points y and y1 can
only be within the slab 2 which means that R�

1 and R�
2 are the

response functions describing the situation where the the
starting and the final point are both inside the same slab �as
shown in Fig. 3�a��, but not the situation where the starting
and the final points are in different slabs. In other words, this
formulation is almost exact, and neglects only the diagrams
like the ones shown in Fig. 3�b�. In order to perform the �
integration in �13� analytically, we make further approxima-
tion, and neglect the diagrams F, G, and H �Fig. 3�a�� and
similar, containing the interslab local field corrections medi-
ated by v�

12 and v�
21. This way, instead of having the response

functions R�
1 and R�

2 we have reduced the formulation to the
response functions Ri, which are the exact response functions
of the completely separate slabs and do not contain the cou-
pling constant �. This approximation is obviously well justi-
fied in the situation where the electronic densities of the
slabs do not overlap, since in that case the interslab local
field corrections are very small. However, this formulation is
by no means restricted to RPA, since all the intraslab local-
field corrections, such as those shown in diagrams B, C, D,
and E, are still included.

After transforming �15� and �16� into matrix form, R�
12

can be expressed as

R12
� = �� + ��v�

21�� + ¯ = �1 − ��v�
21�−1��, �17�

where ��=R1v�
12R2. Inserting �17� into �13� and using sym-

metry properties v�
21=v�

12T gives

Ec�d�
A

= −
1

�
Im �

0

�

d�� dQ

�2��2�
0

1 d�

�

� Tr	�1 − ��v�
12T�−1��v�

12T
 . �18�

To perform the � integration we introduce the notation
��v�

12T=�2A and use the mathematical identity Tr	ln�1
−A�
=ln	det�1−A�
 and obtain

Ec�d�
A

= Im � dQ

�2��2�
0

� d�

2�
ln	det�1 − e−2QdR1ṽ12R2ṽ12T�
 ,

�19�

where ṽ12 is defined in �14�. This expression, which is actu-
ally the microscopic analogon of the Lifshitz formula, as will
be shown in Sec. III, has several advantages. The key quan-
tity is the matrix M=R1ṽ12R2ṽ12T, which is independent of
the slab separation d, so for each Q and � the matrix M must
be calculated only once. For thicker slabs or semi-infinite
metals the dimension of the matrix M does not need to be
more than fifty, regardless of the distance between the slabs.
For thinner slabs like those in Refs. 5–7 the dimension of the
matrix M does not need to exceed 25.

As an illustration, in Fig. 4 we demonstrate the fast con-
vergence of the correlation energy Ec �for a fixed slab sepa-
ration� with respect to the dimension of the matrices. Clearly,
for slab thicknesses a1=a2=5a0 and separation D=12a0 the
result converges already for N=25, for slab thicknesses a1
=a2=20a0 and the same separation for N=40. At larger sepa-
rations convergence is still faster.

It is important to notice that the coupling constant inte-
gration was performed analytically, regardless of how the
matrices Ri are calculated. For example, in the TDDFT
method to evaluate Ri:

FIG. 3. �a� Series expansion for the response function R�
i of the

slab i: A- RPA term; B and C- local field intraslab vertex correc-
tions; D and E- local field intraslab self-energy corrections; F- local
field interslab vertex corrections; G and H- local field interslab self-
energy corrections. Black bubbles denote possible diagrams in the
expansion for R�

j . �b� diagrams containing the nonlinear interslab
terms for which the starting and the final points are in different
slabs.

FIG. 4. Convergence of the vdW energies at fixed film separa-
tion D=12a0 for two film thicknesses �a� a1=a2=5a0 and �b� a1

=a2=20a0, as functions of the number of cosine harmonics �rs1

=rs2=2�.
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Ri = Ri
KS + Ri

KS�vi + fxc�Ri �20�

we can correct vi by the various forms of the exchange-
correlation kernels fxc, which would correspond to adding the
intraslab local field corrections �as discussed in Sec. II�,
without increasing numerical difficulty in �19�. Including the
interslab correction terms presented, e.g., in Fig. 3 �and ne-
glected in the procedure presented in this paper�, would con-
tribute little, because they are reduced at least by the factor
e−2Qd, and could become important only for finite overlap. In
conclusion, we consider that this method is about hundred
times faster than the existing numerical methods, and prob-
ably comparable to some fast DF approaches like those in
Ref. 2.

III. CLASSICAL LIMIT

A. Alternative expression for the van der Waals energy

Instead of working with matrices in the final expression
�19� we notice that the right-hand side of �11� contains the
expression of the form:

�
−L1

0

dx�
d

L2+d

dyR�
12�Q,x,y,��v�

21�Q,y,x� �21�

which, with use of �15� can be written in terms of the inte-
grated quantities

vQ�
−L1

0

dx1�
−L1

0

dx2eQx1R�
1�Q,x1,x2,��eQx2 = D1�Q,��

�22�

and similarly for D2�Q ,��. By use of that, Eq. �19� can be
rewritten as15

Ec�d�
A

= Im � dQ

�2��2�
0

� d�

2�

� ln�1 − e−2QdD1�Q,��D2�Q,��� . �23�

From Eq. �22� we can see that Di is in fact the surface exci-
tation propagator,13,16–18 which can be related to the surface
dielectric functions �p �Q ,��=�p�Q ,� ,0 ,0�.

Di�Q,�� =
1

vQ
Wi

ind�Q,�,z = 0,z� = 0� =
1

2 �
p=±1

Di,p�Q,��,

i = 1,2, �24�

where

Di,p�Q,�� =
cp − c−p�p�Q,��

1 + �p�Q,��
, cp = 1 − pe−QLi �25�

and p denotes the parity of the single slab surface excita-
tions. We need to emphasize that evaluating vdW energy
from expressions �19� or �23�, requires the same numerical
effort: in the first case matrix multiplication, in the latter
evaluation of matrix sums for Di’s. Therefore, in Sec. IV we
use the first expression.

B. Lifshitz formula

It is now easy to verify that the microscopic expressions
�19� and �23� give the expected results in the classical limit.
We consider the case of two semi-infinite solids separated by
the distance d. For semi-infinite solids surface excitation
propagators have the similar form like �25� but do not de-
pend on parity, i.e., p=0.17,18 In the clasical limit surface
dielectric function ��Q ,�� is replaced by the bulk �local�
dielectric function ���� where �=�+ i	 sgn���. So, the sur-
face excitation propagators transform into

Di�Q,�� →
1 − �i���
1 + �i���

= ri
S���, i = 1,2 �26�

and can be recognized as the surface reflectivity functions ri
S.

In the classical limit the electronic charge density distribu-
tion edges correspond to the jellium edges, i.e., �→0, so d
→D and Li→ai, i=1,2 �Fig. 2�, leading to

Ec�D�
A

= −
1

2
� dQ

�2��2 � d�

2�i
� ln	1 − r1

S���r2
S���e−2QD
 ,

�27�

where the frequency integration is extended to the complex
� plane and the contour of integration is a semicircle in the
lower part of the complex �-plane. Equation �27� is the well-
known Lifshitz formula for the van der Waals interaction
between two metallic surfaces.

In a similar way we can find the classical limit of our
result �19� for the interaction between two different metallic
slabs with thickneses ai. Surface excitation propagators �24�
and �25� are then replaced by the surface reflectivities of the
slabs:

Di�Q,�� → ri
F�Q,�� = ri

S���
1 − e−2Qai

1 − �ri
S����2e−2Qai

. �28�

Equation �27� with the modified reflectivities ri
S→ri

F given
by �28� is exactly the classical limit of our quantum-
mechanical results �19� and �23�.

C. Van der Waals energy and zero point energies

One can transform the Lifshitz formula �27� by perform-
ing the frequency integration and express the van der Waals
energy in terms of the differences of zero point energies of
the coupled and separate slabs.12 After partial integration in
�27� we can apply the Rouche’ theorem, valid for any mero-
morphic function f�z� �has no singularity except poles� and
any analytic function g�z� inside the positive contour of in-
tegration 
:

1

2�i
�




dzg�z�
d

dz
ln f�z� = �

i=1

Nz

nig�ai� − �
i=1

Np

mig�bi� ,

where 	ai
 are zeros of the order 	ni
 and 	bi
 are poles of the
order 	mi
 of the function f�z� inside the contour of integra-
tion 
. Zeros of the function:
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f��� = 1 − r1
S���r2

S���e−2QD

are the frequencies of the two surface plasmon modes of the
coupled semi-infinite solids �i�Q ,D�. Poles of f��� are the
poles of the reflectivities ri, which correspond to the
asymptotic surface plasmon frequencies �i=�i�Q ,D→�� of
the two separated semi-infinite solids. Integrating �27� in the
complex � plane gives

Ec�D�
A

=
1

2 �
i=1,2

� dQ

�2��2 ��i�Q,D� − �i�Q,D → ��� .

�29�

IV. QUANTUM-MECHANICAL CALCULATIONS

To perform the quantum mechanical calculation of the
vdW interaction between two metallic slabs we use the ex-
pression �19� which we compare with the classical result
�29�. Let us describe the steps in the calculation of the vdW
interaction between two metallic slabs using formula �19�.

1. Calculation of the matrices Ri
We first transform the KS-response functions Ri

KS �Refs.
13 and 18� into the matrices. Solving the Dyson equation:

Ri = Ri
KS + Ri

KS�vi + fxc�Ri

by using simple Gauss-Jordan method for the matrix inver-
sion we obtain matrices Ri. Form of the matrices vi can be
found in Ref. 13. We restrict our calculation to RPA, so we
put the fxc matrix to be zero. Dimension of the matrix Ri
depends on the slab thickness, but not significantly. For slab
thickness 5a0 it is 25 and for semiinfinite metals it is 50.

2. Calculation of the determinant
First we construct the matrix

M = R1ṽ12R2ṽ12T �30�

and then for every d the matrix

F = 1 − e−2QdM . �31�

Matrix F is then transformed into the upper triangle matrix,
and the summation of the logarithms of the diagonal ele-
ments gives the function

f = ln�det F� . �32�

3. Q integration
Function f in �32� is very smooth function of Q, so we use

simple Simpson integration. The interval of integration de-
pends on the separation between slabs because the contribu-
tions to vdW interaction go as e−2QD, which at the same time
defines the characteristic cutoff. So, e.g., for the separation
D=8a0 the interval of integration is Q=0.005−1.0a0

−1 with
maximally fifty points used for integration.

4. � integration
� integration is the greatest problem in the evaluation of

Ec at large separations d. For small Q the function f has four
sharp peaks which originate from four surface plasmons and
which give dominant contributions at large d. If we want to
calculate vdW interaction precisely we must integrate care-
fully around these sharp peaks at the energies that also de-
pend on the separation d.

It is well known that one could also transform the expres-
sions �19� and �23� into the form which is easier for � inte-
gration, though it is less physically transparent. We replace
�→ iu, in order to exploit the fact that the response functions
in �19� and �23� are real and smooth �with no peaks� func-
tions on the imaginary axis.

For comparison we shall also evaluate the classical results
using the expression �29�. In the classical limit the function f
transforms into

f = 1 − r1
F�Q,��r2

F�Q,��e−2QD,

where ri
F�Q ,�� are surface reflectivities for the slabs given

by �28�. Now the frequency integration can be performed
analytically and expressed in the form of the differences be-

FIG. 5. Quantum mechanical
van der Waals energy per unit area
between two metallic slabs �a�
rs1=rs2=2.07 and a1=a2=5a0; �b�
rs1=rs2=2 and a1=a2=20a0; �c�
rs1=rs2=2 and a1=a2=50a0; �d�
a1=a2=20a0 and rs1=rs2=2 �full
line�, rs1=2, rs2=3 �dashed line�,
rs1=2, rs2=4 �dotted line�.

DESPOJA, ŠUNJIĆ, AND MARUŠIĆ PHYSICAL REVIEW B 75, 045422 �2007�

045422-6



tween zeros and poles of the function f , as in �29�. So the
only problem is Q integration of the differences between the
four coupled plasmon frequencies �i�D ,Q�, which are the
solutions of the equation

r1
F�Q,��r2

F�Q,��e−2QD = 1,

and four uncoupled plasmons frequencies

�1,2�Q,D → �� =
�p,i


2

1 ± e−Qai

�where the �p,i are the bulk plasma frequencies� which are
solutions of the equation

ri
F�Q,�� = �; i = 1,2.

V. DISCUSSION OF THE RESULTS

Here we want to illustrate briefly the application of the
microscopic expressions �19� and �23� for the van der Waals
energies, with the results presented in Fig. 5 and Fig. 6.
Figures 5�a�–5�c� show the vdW interaction between slabs of
various thicknesses and are compared with the classical �Lif-
shitz� results. Strength of the vdW interaction and its devia-
tion from the classical results at intermediate distances �10 to
40a0� increase with slab thickness. The number of occupied
electronic subbands for slab thicknesses 5, 20, and 50a0 pre-
sented in Figs. 5�a�–5�c� are 2, 7 and 16, respectively.

Figure 5�d� represents the vdW interaction between slabs
for different slab densities. As the difference between densi-
ties �plasmon frequencies� increases, the strength of the vdW
interaction decreases, because the coupling between surface
charge oscillations, which gives the dominant contribution to
the vdW interaction, goes “off-resonance.”

In Figs. 6�a�–6�c�, we compare our results with the “non-
local” RPA results for vdW interaction between metallic
slabs presented in Ref. 6 with the intention to examine the
accuracy of our results at short distances. From Figs.
6�a�–6�c� it is obvious that our results are in very good
agreement with those in Ref. 6 all the way to D�5a0 when
the overlap becomes important. One could infer that our ap-
proach can be used even at small distances which would
simplify the calculations.

Our approach also enables us to provide accurate vdW
interaction in the asymptotic region �d→��. Figures
5�a�–5�c� show that the quantum-mechanical results in the
asymptotic region approach the classical �Lifshitz� results.
Also, vdW interaction for finite slab thicknesses shows some
interesting behavior. As shown by Dobson,9 for 2D layers it
varies as d−5/2, and we verify that this is true for finite L both
in the classical and quantum-mechanical calculations �Fig.
6�d��. In fact, d−2 behavior cannot be obtained for any finite
L.

In conclusion, our new formulation provides an efficient
method for further calculations of the quantum-mechanical
vdW interaction between planar systems with nonoverlap-
ping charge densities, and enables us to examine in detail
quantum mechanical corrections to the classical results in the
asymptotic region.
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FIG. 6. Quantum mechanical
van der Waals energy per unit area
�full line� between �a�two metallic
slabs rs1=rs2=2.07 and a1=a2

=5a0; �b�two metallic slabs rs1

=rs2=4 and a1=a2=5a0; �c�two
metallic slabs rs1=rs2=6 and a1

=a2=8a0; dots are nonlocal RPA
calculations from Ref. 6; �d�Illus-
tration of the power-law behavior
of vdW energy: full lines corre-
spond to classical �varying from
d−2 to d−5/2� dependence, quantum
calculations are shown by dots
�a1=a2=20a0� and circles �a1

=a2=100a0�.
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