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We study a particular class of relativistic nuclear energy density functionals in which only nucleon degrees of
freedom are explicitly used in the construction of effective interaction terms. Short-distance (high-momentum)
correlations, as well as intermediate- and long-range dynamics, are encoded in the medium (nucleon-density)
dependence of the strength functionals of an effective interaction Lagrangian. Guided by the density dependence
of microscopic nucleon self-energies in nuclear matter, a phenomenological ansatz for the density-dependent
coupling functionals is accurately determined in self-consistent mean-field calculations of binding energies
of a large set of axially deformed nuclei. The relationship between the nuclear matter volume, surface, and
symmetry energies and the corresponding predictions for nuclear masses is analyzed in detail. The resulting
best-fit parametrization of the nuclear energy density functional is further tested in calculations of properties of
spherical and deformed medium-heavy and heavy nuclei, including binding energies, charge radii, deformation
parameters, neutron skin thickness, and excitation energies of giant multipole resonances.
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I. INTRODUCTION

Among the microscopic approaches to the nuclear many-
body problem, the framework of nuclear energy density
functionals (NEDF) provides the most complete and accurate
description of ground-state properties and collective excita-
tions over the whole nuclide chart. Probably no other method
achieves comparable accuracy at the same computational cost.
At the level of practical applications the NEDF framework is
realized in terms of self-consistent mean-field (SCMF) models
based, for instance, on the Gogny effective interaction, the
Skyrme energy functional, and the relativistic meson-exchange
effective Lagrangian [1,2]. In the mean-field approximation
the dynamics of the nuclear many-body system is represented
by independent nucleons moving in self-consistent potentials,
which correspond to the actual density and current distribu-
tions of a given nucleus.

The SCMF approach to nuclear structure is analogous
to Kohn-Sham density functional theory [3,4], and nuclear
mean-field models approximate the exact energy functional,
which includes all higher order correlations, with powers and
gradients of ground-state nucleon densities and currents [5]. In
particular, a number of very successful relativistic mean-field
(RMF) models have been constructed based on the framework
of quantum hadrodynamics (QHD) [6,7]. There are important
advantages in using functionals with manifest covariance [8].
The most obvious is the natural inclusion of the nucleon spin
degree of freedom and the resulting nuclear spin-orbit potential
that emerges automatically with the empirical strength in
a covariant formulation. The consistent treatment of large,
isoscalar, Lorentz scalar, and vector self-energies provides
a unique parametrization of time-odd components of the
nuclear mean-field (i.e., nucleon currents), which is absent
in the nonrelativistic representation of the energy density
functional. The empirical pseudospin symmetry in nuclear

spectroscopy finds a natural explanation in terms of relativistic
mean fields [9]. On a microscopic level, it has been argued [8]
that a covariant formulation of nuclear dynamics manifests
the true energy scales of QCD in nuclei and is consistent
with the nonlinear realization of chiral symmetry through the
implicit inclusion of pion-nucleon dynamics in the effective
nucleon self-energies. A covariant treatment of nuclear matter
provides a distinction between scalar and four-vector nucleon
self energies, leading to a very natural saturation mechanism.

In conventional QHD the nucleus is described as a system
of Dirac nucleons coupled to exchange mesons through
an effective Lagrangian. The isoscalar-scalar σ meson, the
isoscalar-vector ω meson, and the isovector-vector ρ meson
build the minimal set of meson fields that is necessary for
a description of bulk and single-particle nuclear properties.
Of course, at the scale of low-energy nuclear structure,
heavy-meson exchange is just a convenient representation
of the effective nuclear interaction. At the energy and mo-
mentum scales characteristic of nuclei, the only degrees of
freedom that have to be taken into account explicitly in the
description of many-body dynamics are pions and nucleons.
The behavior of the nucleon-nucleon (NN ) interaction at
long and intermediate distances is determined by one- and
two-pion exchange processes. The exchange of heavy mesons
is associated with short-distance dynamics that cannot be
resolved at low energies that characterize nuclear binding and,
therefore, can be represented by local four-point (contact) NN

interactions, with low-energy (medium-dependent) parameters
adjusted to nuclear data. These concepts of effective field
theory and density functional theory methods have recently
been used to derive a microscopic relativistic energy density
functional framework constrained by in-medium QCD sum
rules and chiral symmetry [10,11]. The density dependence of
the effective nucleon-nucleon couplings is determined from
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the long- and intermediate-range interactions generated by
one- and two-pion exchange processes. They are computed
by using in-medium chiral perturbation theory, explicitly
including �(1232) degrees of freedom [12]. Regularization-
dependent contributions to the energy density of nuclear
matter, calculated at the three-loop level, are absorbed in
contact interactions with parameters representing unresolved
short-distance dynamics.

However, even in a fully microscopic approach that starts
from a description of symmetric and asymmetric homoge-
neous and inhomogeneous nuclear matter, the parameters of a
nuclear energy density functional still have to be fine-tuned to
structure data of finite nuclei. This is simply because gross
properties of infinite nuclear matter cannot determine the
density functional on the level of accuracy that is needed
for a quantitative description of structure phenomena in finite
nuclei. For most functionals this tuning is performed on a
relatively small set of spherical closed-shell nuclei, mainly
because they are simple to calculate and can therefore be
easily included in multiparameter least-squares fits. A problem
arises, however, because ground-state data of closed-shell
nuclei include long-range correlations that cannot really be
absorbed into mean-field functionals. Generally, this will
affect the predictive power of energy density functionals when
they are used in the description of phenomena related to the
evolution of shell structure. For instance, soft potential energy
surfaces and/or small energy differences between coexisting
minima in deformed nuclei are often difficult to describe by
using functionals adjusted solely to data of spherical nuclei,
even when sophisticated models are employed that include
angular momentum and particle number projection, as well as
intrinsic configuration mixing.

In this work we explore a class of relativistic energy
density functionals originally introduced in Refs. [10,11] but,
instead of using low-energy QCD constraints for the medium
dependence of the parameters, a phenomenological ansatz is
adjusted exclusively to masses of a relatively large set of
axially deformed nuclei. The phenomenological approach,
although guided by microscopic nucleon self-energies in
nuclear matter, gives us more freedom to investigate in detail
the relationship between global properties of a nuclear matter
equation of state (volume, surface, and asymmetry energies)
and the corresponding predictions for nuclear binding en-
ergies. Eventually, the goal will be to develop an energy
density functional that does not implicitly contain symmetry
breaking corrections and quadrupole fluctuation correlations
and is therefore better suited for the new relativistic model that
uses the generator coordinate method to perform configuration
mixing of angular-momentum- and particle-number-projected
relativistic wave functions [13,14]. The idea is that those
correlations that we wish to treat explicitly should not
be included in the density functional in an implicit way
(i.e., by adjusting parameters to data that already include
correlations). The solution could be to adjust the functional to
pseudodata, obtained by subtracting correlation effects from
experimental masses and, eventually, radii. This is most easily
done by using masses of axially deformed nuclei with large
deformation parameters, because the dominant contribution
to their ground-state correlation energies is the rotational

energy correction [15], which is relatively simple to calculate.
Approximate methods for the calculation of correlations have
been developed [16], enabling a systematic evaluation of
correlation energies for the nuclear mass table. Of course one
expects that the corresponding modifications of the parameters
of the energy density functional will be relatively small, but
even a small change in the relative contribution of various
interaction terms could be the decisive factor in the description
of soft potential energy surfaces, coexistence of prolate and
oblate shapes, level ordering, etc. Very recent examples include
the phenomenon of shape coexistence in neutron-deficient Kr
isotopes [17,18] and the description of singular properties
of excitation spectra and transition rates at critical points of
quantum shape phase transitions [19]. As a first step toward
the construction of a relativistic density functional that could
provide a more accurate description of phenomena related to
the evolution of shell structure, in this work we explore the
possibility of determining the parameters of a given functional
using only binding energies of axially deformed nuclei.

In Sec. II we construct the relativistic nuclear energy
density functional based on these conjectures and discuss the
necessary approximations and fitting strategies. In Sec. III,
starting from microscopic nucleon self-energies in nuclear
matter, and empirical global properties of the nuclear matter
equation of state, we determine the functional accurately in
a careful comparison of the predicted binding energies with
data, for a set of 64 axially deformed nuclei in the mass regions
A ≈ 150–180 and A ≈ 230–250. In Sec. IV the new energy
density functional is thoroughly tested in a series of illustrative
calculations of properties of spherical and deformed medium-
heavy and heavy nuclei, including binding energies, charge
radii, deformation parameters, neutron skin thickness, and
excitation energies of giant multipole resonances. Section V
summarizes the results of the present investigations and ends
with an outlook for future studies.

II. RELATIVISTIC NUCLEAR ENERGY DENSITY
FUNCTIONAL

The basic building blocks of a relativistic nuclear energy
density functional are the densities and currents bilinear in the
Dirac spinor field ψ of the nucleon:

ψ̄Oτ�ψ, Oτ ∈ {1, τi}, � ∈ {1, γµ, γ5, γ5γµ, σµν}. (1)

Here τi are the isospin Pauli matrices and � generically
denotes the Dirac matrices. The nuclear ground-state density
and energy are determined by the self-consistent solution of
relativistic linear single-nucleon Kohn-Sham equations. To
derive those equations it is useful to construct an interaction
Lagrangian with four-fermion (contact) interaction terms in
the various isospace-space channels:

(i) isoscalar-scalar: (ψ̄ψ)2,
(ii) isoscalar-vector: (ψ̄γµψ)(ψ̄γ µψ),

(iii) isovector-scalar: (ψ̄ �τψ) · (ψ̄ �τψ), and
(iv) isovector-vector: (ψ̄ �τγµψ) · (ψ̄ �τγ µψ).

Vectors in isospin space are denoted by arrows. A general
Lagrangian can be written as a power series in the currents
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ψ̄Oτ�ψ and their derivatives, with higher order terms repre-
senting in-medium many-body correlations [20–24]. We will
adopt the approach of Refs. [10,11] and construct a Lagrangian
with second-order interaction terms only, with many-body
correlations encoded in density-dependent coupling functions.
In complete analogy to the successful meson-exchange RMF
phenomenology, in which the isoscalar-scalar σ meson, the
isoscalar-vector ω meson, and the isovector-vector ρ meson
build the minimal set of meson fields that is necessary for a
description of bulk and single-particle nuclear properties, we
consider an effective Lagrangian that includes the isoscalar-
scalar, isoscalar-vector, and isovector-vector four-fermion
interactions:

L = ψ̄(iγ · ∂ − m)ψ

− 1

2
αS(ρ̂)(ψ̄ψ)(ψ̄ψ) − 1

2
αV (ρ̂)(ψ̄γ µψ)(ψ̄γµψ)

− 1

2
αT V (ρ̂)(ψ̄ �τγ µψ)(ψ̄ �τγµψ)

− 1

2
δS(∂νψ̄ψ)(∂νψ̄ψ) − eψ̄γ · A

(1 − τ3)

2
ψ. (2)

In addition to the free-nucleon Lagrangian and the point-
coupling interaction terms, when applied to nuclei, the model
must include the coupling of the protons to the electro-
magnetic field. The derivative term in Eq. (2) accounts for
leading effects of finite-range interactions that are crucial
for a quantitative description of nuclear density distribution
(e.g., nuclear radii). Similar interactions can be included in
each space-isospace channel, but in practice data on charge
radii constrain only a single derivative term, for instance
δS(∂νψ̄ψ)(∂νψ̄ψ). The coupling parameter δS has been esti-
mated, for instance, from an in-medium chiral perturbation
calculation of inhomogeneous nuclear matter [12]. In the
region of nucleon densities relevant for the description of
finite nuclei (0.1 � ρ � 0.15 fm−3), the coupling strength of the
derivative term displays a rather weak density dependence and
can be approximated by a constant value δS between −0.85 and
−0.7 fm4. Note that the inclusion of an adjustable derivative
term only in the isoscalar-scalar channel is consistent with
conventional meson-exchange RMF models, in which the mass
of the fictitious σ meson is adjusted to nuclear matter and
ground-state properties of finite nuclei, whereas free values
are used for the masses of the ω and ρ mesons.

The point-coupling Lagrangian [Eq. (2)] does not include
isovector-scalar terms. In the meson-exchange picture this
channel is represented by the exchange of an effective δ meson,
and its inclusion introduces a proton-neutron effective mass
splitting and enhances the isovector spin-orbit potential. How-
ever, in calculations of ground-state properties of finite nuclei,
using both meson-exchange [25,26] and point-coupling [24]
models, it has not been possible to constrain the parameters
of the effective interaction in the isovector-scalar channel.
Although the isovector strength has a relatively well-defined
value, the distribution between the scalar and vector channels
is not determined by ground-state data. To reduce the number
of adjustable parameters, the isovector-scalar channel may be
omitted from an energy density functional that will primarily
be used for the description of low-energy nuclear structure.

The strength parameters of the interaction terms in Eq. (2)
are functions of the nucleon four-current:

jµ = ψ̄γ µψ = ρ̂uµ, (3)

where uµ is the four-velocity defined as (1 − v2)−1/2(1, v). In
the rest frame of the nuclear system, v = 0. The single-nucleon
Dirac equation, the relativistic analog of the Kohn-Sham
equation, is obtained from the variation of the Lagrangian
with respect to ψ̄ :[

γµ

(
i∂µ − µ − 

µ

R

) − (m + S)
]
ψ = 0, (4)

with the nucleon self-energies defined by the following
relations:

µ = αV (ρv)jµ + e
(1 − τ3)

2
Aµ, (5)


µ

R = 1

2

jµ

ρv

{
∂αS

∂ρ
ρ2

s + ∂αV

∂ρ
jµjµ + ∂αT V

∂ρ
�jµ

�jµ

}
, (6)

S = αS(ρv)ρs − δS � ρs, (7)


µ

T V = αT V (ρv) �jµ. (8)

In addition to the contributions of the isoscalar-vector four-
fermion interaction and the electromagnetic interaction, the
isoscalar-vector self-energy µ includes the “rearrangement”
terms 

µ

R , arising from the variation of the vertex functionals
αS, αV , and αT V with respect to the nucleon fields in the
density operator ρ̂. The inclusion of the rearrangement self-
energy is essential for energy-momentum conservation and
the thermodynamical consistency of the model [26–28]. S

and 
µ

T V denote the isoscalar-scalar and isovector-vector
self-energies, respectively.

In the relativistic density functional framework the nuclear
ground state |φ0〉 is represented by the mean-field self-
consistent solution of the system of Eqs. (4)–(8), with the
isoscalar and isovector four-currents and scalar density

jµ = 〈φ0|ψ̄γµψ |φ0〉 =
N∑

k=1

v2
k ψ̄kγµψk, (9)

�jµ = 〈φ0|ψ̄γµ�τψ |φ0〉 =
N∑

k=1

v2
k ψ̄kγµ�τψk, (10)

ρS = 〈φ0|ψ̄ψ |φ0〉 =
N∑

k=1

v2
k ψ̄kψk, (11)

where ψk are Dirac spinors, and the sum runs over occupied
positive-energy single-nucleon orbitals, including the corre-
sponding occupation factors v2

k . The single-nucleon Dirac
equations are solved self-consistently in the “no-sea” approx-
imation that omits the explicit contribution of negative-energy
solutions of the relativistic equations to the densities and
currents. Vacuum polarization effects are implicitly included
in the adjustable density-dependent parameters of the theory.

A large part of this work will be devoted to adjusting
the free parameters of the medium-dependent point-coupling
functionals αS, αV , and αT V and the strength δS of the
derivative term. To establish the density dependence of the
couplings one could start from a microscopic (relativistic)
equation of state (EoS) of symmetric and asymmetric nuclear
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matter and map the corresponding nucleon self-energies on
the mean-field self-energies [Eqs. (5)–(8)] that determine
the single-nucleon Dirac equation [Eq. (4)]. This approach
has been adopted, for instance, in RMF models based on
Dirac-Brueckner-Hartree-Fock self-energies in nuclear matter
[25,28,29] or on in-medium chiral perturbation theory (ChPT)
calculations of the nuclear matter EoS [10,11]. In general,
however, energy density functionals determined directly from
a microscopic EoS do not provide a very accurate description
of data in finite nuclei. The reason for this, of course, is that a
calculation of the nuclear matter EoS involves approximation
schemes and includes adjustable parameters that are not
really constrained by nuclear structure data. The resulting
bulk properties of infinite nuclear matter (saturation density,
binding energy, compression modulus, and asymmetry energy)
do not determine uniquely the parameters of nuclear energy
density functionals, which usually must be further fine-tuned
to ground-state data (masses and/or charge radii) of spherical
nuclei.

In a phenomenological construction of a relativistic energy
density functional one starts from an assumed ansatz for the
medium dependence of the mean-field nucleon self-energies
and adjusts the parameters directly to data of spherical nuclei.
This procedure was used, for instance, in the construction
of the relativistic density-dependent interactions TW-99 [26],
DD-ME1 [27], DD-ME2 [30], PKDD [31], and PK01 [32].

This work adopts a different strategy and determines
the parameters of the point-coupling Lagrangian [Eq. (2)]
exclusively from a large data set of binding energies EB of
deformed nuclei. First one notes that calculated masses of
finite nuclei are primarily sensitive to the three leading terms
in the empirical mass formula (volume, surface, and symmetry
energies):

EB = avA + asA
2/3 + a4

(N − Z)2

4A
+ · · · . (12)

Therefore one can generate families of effective interactions
that are characterized by different values of av, as and a4

and determine which parametrization minimizes the deviation
from the empirical binding energies of a large set of deformed
nuclei. This approach differs considerably from the standard
procedure of fitting parameters of nonrelativistic Skyrme or
RMF functionals, in which a given set of parameters is
adjusted simultaneously to a favorite nuclear matter EoS and
to ground-state properties of about 10 spherical closed-shell
nuclei. Deformed systems have generally not been included
in fits of parameters of self-consistent RMF models, mainly
because calculation of deformed nuclei is computationally
more demanding and requires advanced computer codes. In
this work parameters of relativistic energy density functionals
are for the first time directly adjusted to binding energies of
axially deformed nuclei in the mass regions A ≈ 150–180 and
A ≈ 230–250.

To determine the functional form of the density depen-
dence of the couplings αS, αV , and αT V , one can start
from microscopic nucleon self-energies in nuclear matter.
In a recent analysis of relativistic nuclear dynamics [33],
modern high-precision NN potentials (Argonne V18, Bonn
A, CD-Bonn, Idaho, Nijmegen, and V low k) were mapped on

a relativistic operator basis, and the corresponding relativistic
nucleon self-energies in nuclear matter were calculated in a
Hartree-Fock approximation at tree level. A very interesting
result is that, at moderate nucleon densities relevant for nuclear
structure calculations, all potentials yield very similar scalar
and vector mean fields of several hundred MeV magnitude,
in remarkable agreement with standard RMF phenomenology,
giving at saturation density a large and attractive scalar field
s ≈ −400 MeV and a repulsive vector field v ≈ 350 MeV.
The different treatment of short-distance dynamics in the
various NN potentials leads to slightly more pronounced
differences between the corresponding self-energies at higher
nucleon densities. Generally, however, all potentials predict
a very similar density dependence of the scalar and vector
self-energies. In the chiral effective field theory framework, in
particular, these self-energies are predominantly generated by
contact terms that occur at next-to-leading order in the chiral
expansion.

Of course at the Hartree-Fock tree level these NN potentials
do not yield saturation of nuclear matter. Nevertheless, the
corresponding self-energies can be used as the starting point
in the modeling of medium dependence of a relativistic nuclear
energy density functional. Guided by the microscopic density
dependence of the vector and scalar self-energies, we choose
the following practical ansatz for the functional form of the
couplings:

αi(ρ) = ai + (bi + cix)e−dix(i ≡ S, V, T V ), (13)

with x = ρ/ρsat, where ρsat denotes the nucleon density
at saturation in symmetric nuclear matter. Note that the
corresponding self-energies are defined in Eqs. (5)–(8). In
the next section we will adjust the parameters of this ansatz
simultaneously to infinite and semi-infinite nuclear matter
and to binding energies of deformed nuclei. The resulting
self-energies in nuclear matter will eventually be compared to
our starting approximation: the Hartree-Fock scalar and vec-
tor self-energies of the Idaho next-to-next-to-next-to-leading
order (N3LO) potential [34].

In the isovector channel the corresponding Hartree-Fock
tree-level nucleon self-energies, obtained by directly mapping
microscopic NN potentials on a relativistic operator basis,
are presently not available. Therefore, as was done in the
case of the finite-range meson-exchange interactions TW-99
[26], DD-ME1 [27], DD-ME2 [30], and PK01 [32], the
density dependence of the isovector-vector coupling function
is determined from the results of Dirac-Brueckner calculations
of asymmetric nuclear matter [29]. Accordingly, in Eq. (13) for
the isovector channel we set two parameters to zero—aT V = 0
and cT V = 0—and adjust bT V and dT V to empirical properties
of asymmetric matter and to nuclear masses, together with the
parameters of the isoscalar channel.

III. THE EFFECTIVE DENSITY-DEPENDENT
INTERACTION DD-PC1

A. Infinite and semi-infinite nuclear matter

The usual procedure in the construction of an effective
mean-field interaction is the least-squares adjustment of
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parameters to both nuclear matter EoS and to ground-state
data (masses and charge radii) of spherical nuclei. Instead we
generate sets of effective interactions with different values of
the volume energy av , surface energy as , and symmetry energy
a4 in nuclear matter and analyze the corresponding binding
energies of deformed nuclei with A ≈ 150–180 and A ≈
230–250. The nuclear matter saturation density, compression
modulus, and Dirac mass will be kept fixed throughout this
analysis. The calculated binding energies of finite nuclei are
not very sensitive to the nuclear matter saturation density,
and we take ρsat = 0.152 fm−3, in accordance with values
predicted by most modern relativistic mean-field models.
In particular, this value has also been used for the meson-
exchange effective interactions DD-ME1 [27] and DD-ME2
[30]. From these interactions we also take the Dirac effective
nucleon mass m∗

D = m + S = 0.58m. In RMF theory the
Dirac mass is closely related to the effective spin-orbit single-
nucleon potential, and empirical energy spacings between
spin-orbit partner states in finite nuclei determine a relatively
narrow interval of allowed values: 0.57 � m∗

D/m � 0.61. In a
recent study [35] of the relation between finite-range (meson-
exchange) and zero-range (point-coupling) representations of
effective RMF interactions we have shown that, to reproduce
experimental excitation energies of isoscalar giant monopole
resonances, point-coupling interactions require a nuclear mat-
ter compression modulus Knm ≈ 230 MeV, considerably lower
than values typically used for finite-range meson-exchange
relativistic interactions. Thus we take Knm = 230 MeV for all
effective interactions considered in the present analysis.

Of course if only nuclear matter properties at the point
of saturation density were specified, one could parametrize a
number of realistic effective interactions that would be difficult
to compare at the level of finite nuclei. In particular, nuclear
structure data do not constrain the nuclear matter EoS at high
nucleon densities. Therefore, in addition to ρsat,m

∗
D , and Knm,

we fix two additional points on the E(ρ) curve in symmetric
matter to the microscopic EoS of Akmal, Pandharipande, and
Ravenhall [36], based on the Argonne V18NN potential and
the UIX three-nucleon interaction. This EoS has extensively
been used in studies of high-density nucleon matter and
neutron stars. At almost four times nuclear matter saturation
density, we choose the point ρ = 0.56 fm−3 with E/A =
34.39 MeV and, to have an overall consistency, one point at low
density: ρ = 0.04 fm−3 with E/A = −6.48 MeV (cf. Table VI
of Ref. [36]). As we have already emphasized in the previous
section, by adjusting mean-field interactions exclusively to a
microscopic EoS such as, for instance, the one calculated in
Ref. [36], it is not possible to obtain a very accurate description
of nuclear structure. Ground-state nuclear data must be used
to fine-tune the parameters of effective interactions.

In contrast to the Dirac mass and saturation density, the
nuclear matter volume energy coefficient av has a decisive
influence on the calculated binding energies of finite nuclei.
By using the framework of nonrelativistic Skyrme functionals,
it was recently shown that even a relatively small change
in the volume energy (≈0.5%) can have a pronounced
effect on the calculated masses of heavy and superheavy
nuclei, as compared with experimental values [15,37]. In the
framework of RMF models no attempt has been made so far to
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FIG. 1. (Color online) The equations of state of symmetric
nuclear matter (binding energy as a function of nucleon density)
for the eight point-coupling effective interactions of Table I, in
comparison with the EoS of the meson-exchange effective interaction
DD-ME2 [30] and the microscopic EoS of Ref. [36]. The two points
from the microscopic EoS on which the point-coupling effective
interactions (sets A–H) were adjusted are denoted by larger filled
circle symbols.

constrain the value of volume energy better than the interval
−16.2 � av � − 16 MeV. To study in more detail the effect of
volume energy on masses, we have generated point-coupling
effective interactions characterized by the following values
of the coefficient: av = −16.02 MeV (set A), av = −16.04
MeV (set B), av = −16.06 MeV (set C), av = −16.08 MeV
(set D), av = −16.10 MeV (set E), av = −16.12 MeV (set
F), av = −16.14 MeV (set G), and av = −16.16 MeV (set
H). The corresponding parameters of the ansatz [Eq. (13)] for
the functional form of the isoscalar couplings are collected in
Table I. Note that to reduce the number of free parameters, we
have set the value cV = 0. The resulting binding energy curves
for symmetric nuclear matter are plotted in Fig. 1, together with
the EoS of the meson-exchange effective interaction DD-ME2
and the microscopic EoS of Ref. [36]. The two points on the
microscopic EoS that have been used to adjust the parameters
are represented by large filled circle symbols. Because of the
anchor at ρ = 0.56 fm−3, the new binding energy curves are,
of course, different from DD-ME2 and much closer to the
microscopic EoS. However, the high-density behavior has little
influence on the description of low-energy nuclear structure
data.

The isovector channel of the energy density functional
determines the density dependence of the nuclear matter
symmetry energy

S2(ρ) = a4 + p0

ρ2
sat

(ρ − ρsat) + �K0

18ρ2
sat

(ρ − ρsat)
2 + · · · . (14)

The parameter p0 characterizes the linear density dependence
of the symmetry energy, and �K0 is the isovector correction
to the compression modulus. Experimental masses, unfortu-
nately, do not place very strict constraints on the parameters
of the expansion of S2(ρ) [38], but self-consistent mean-
field calculations show that binding energies can restrict the
values of S2 at nucleon densities somewhat below saturation
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T. NIKŠIĆ, D. VRETENAR, AND P. RING PHYSICAL REVIEW C 78, 034318 (2008)

TABLE I. Isoscalar parameters [Eq. (13)] of the point-coupling effective interactions with volume energy coefficients av =
−16.02 MeV (set A), av = −16.04 MeV (set B), av = −16.06 MeV (set C), av = −16.08 MeV (set D), av = −16.10 MeV
(set E), av = −16.12 MeV (set F), av = −16.14 MeV (set G), and av = −16.16 MeV (set H).

Parameter Set A Set B Set C Set D Set E Set F Set G Set H

aS (fm2) −10.0220 −10.0332 −10.0462 −10.0855 −10.0951 −10.1051 −10.1137 −10.1220
bS (fm2) −9.1781 −9.1666 −9.1504 −9.0623 −9.0539 −9.0436 −9.0384 −9.0307
cS (fm2) −6.2799 −6.3541 −6.4273 −6.4878 −6.5611 −6.6336 −6.7065 −6.7786
dS 1.3585 1.3654 1.3724 1.3806 1.3872 1.3938 1.4001 1.4065

aV (fm2) 5.9020 5.9108 5.9195 5.9262 5.9348 5.9431 5.9513 5.9594
bV (fm2) 8.8711 8.8687 8.8637 8.8156 8.8150 8.8134 8.8148 8.8147
cV (fm2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
dV 0.6548 0.65676 0.6584 0.6547 0.6568 0.6587 0.6610 0.6630

density (i.e., at ρ ≈ 0.1 fm−3). Additional information on the
symmetry energy can be obtained from data on neutron skin
thickness and excitation energies of giant dipole resonances.
Although values of neutron radii are available only for a small
number of nuclei and the corresponding uncertainties are large,
recent studies have shown that relativistic effective interactions
with volume asymmetry a4 in the range 31 � a4 � 35 MeV
predict values for neutron skin thickness that are consistent
with data and reproduce experimental excitation energies of
isovector giant dipole resonances (cf. Ref. [39] and references
therein cited). Therefore we keep the volume asymmetry fixed
at a4 = 33 MeV and vary the symmetry energy at a density
that corresponds to an average nucleon density in finite nuclei:
〈ρ〉 = 0.12 fm−3. The quantity S2(ρ = 0.12 fm−3) will be
denoted 〈S2〉.

Calculated binding energies and charge radii are strongly
influenced by the choice of the surface energy coefficient
as . In the present model the value of this quantity is
determined by the strength δS of the derivative coupling term
in the point-coupling Lagrangian [Eq. (2)]. For each effective
interaction (sets A–H), we have calculated the surface energy
and surface thickness of semi-infinite nuclear matter [40], for
several values of the parameter δs in the range −0.76 � δS �
− 0.86 fm4. In Fig. 2 we plot the corresponding surface ener-
gies as functions of the surface thickness, in comparison to the
point obtained with the finite-range interaction DD-ME2 (t =
2.108 fm, as = 17.72 MeV). Considering that DD-ME2 has
an rms error of only 0.017 fm when compared to data on
absolute charge radii and charge isotope shifts [30], and
also taking into account the comparison between DD-ME2
and point-coupling RMF interactions of Ref. [35], we can
deduce the following range for the parameter of the derivative
coupling term: −0.80 � δS � − 0.84 fm4, which is in very

good agreement with the microscopic estimate of Ref. [12] for
the region of nucleon densities ρ ≈ 0.1 fm3.

B. Deformed nuclei

If an effective interaction is adjusted to masses of finite
nuclei by varying the volume, symmetry, and surface energies,
the parameters of the energy density functional that determine
these quantities will generally be correlated because of
Eq. (14). When only a small number of nuclei is considered,
satisfactory results can be obtained with various, in general
linearly dependent, combinations of parameters. The new
effective point-coupling interactions will therefore be analyzed
on a set of 64 deformed nuclei, listed in Table II. To resolve the
surface and volume contributions to binding energy, nuclides
with mass number ranging from 154 to 250 are considered.
The variation of the asymmetry coefficient

α2 = (N − Z)2

A2
(15)

in the range from 0.018 to 0.054 should suffice to deduce
the isovector parameters that govern the symmetry energy
contribution. The effect of shell closure is minimized by taking
into account only well-deformed nuclei. Pairing correlations
are treated in the BCS approximation with empirical pairing
gaps (five-point formula). The pairing model space includes
two major oscillator shells (2h̄ω0) above the Fermi surface.
The self-consistent single-nucleon RMF equations are solved
by expanding nucleon spinors in terms of eigenfunctions of
a deformed, axially symmetric harmonic oscillator potential
[41]. In this work calculations of nuclear ground states are
performed in a large basis of 16 major oscillator shells, and

TABLE II. The binding energies of the isotopic chains 62 � Z � 72 and 90 � Z � 98 have been used to adjust
the parameters of relativistic point-coupling effective interactions. Nmin and Nmax denote the corresponding ranges
of neutron number in even-even nuclides.

Z 62 64 66 68 70 72 90 92 94 96 98

Nmin 92 92 92 92 92 72 140 138 138 142 144
Nmax 96 98 102 104 108 110 144 148 150 152 152
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FIG. 2. (Color online) Surface energy of semi-infinite nuclear
matter as a function of the surface thickness, for the eight point-
coupling effective interactions of Table I. The corresponding values
of the strength δS of the derivative coupling term in the point-coupling
Lagrangian [Eq. (2)] are displayed on the upper horizontal axis. The
filled square symbol denotes the surface energy and surface thickness
predicted by the meson-exchange effective interaction DD-ME2 [30].

convergence has been tested in several calculations with 18
oscillator shells. After the self-consistent equations are solved,
the microscopic estimate for the center-of-mass correction is
subtracted from the total binding energy

Ec.m. = −
〈
P 2

c.m.

〉
2Am

, (16)

where Pc.m. is the total momentum of a nucleus with A

nucleons.
For each effective interaction with given volume energy

av (sets A–H), and for six values of the symmetry energy
〈S2〉 = 27.6, 27.8, 28.0, 28.2, 28.4, and 28.6 MeV, we have
adjusted the surface energy [i.e., the coupling strength δS of
the derivative term in the Lagrangian Eq. (2)] to a value that

minimizes the deviation of the calculated binding energies
from data for the set of nuclei listed in Table II. The required
accuracy is 0.05%, which approximately corresponds to an
absolute error of ±1 MeV for the total binding energy. The
resulting surface energies are plotted in Fig. 3 as functions
of the volume energy, for each value of the symmetry energy
〈S2〉. At this point we have a set of 48 parametrizations of the
energy density functional. Figure 4 displays the corresponding
χ2 values

χ2 =
∑

i

(
Eth

B (i) − E
exp
B (i)

�E
exp
B (i)

)2

, (17)

where E
exp
B (i) denote experimental binding energies [42],

Eth
B (i) are the corresponding theoretical values, �E

exp
B (i) =

0.0005E
exp
B (i), and the sum runs over the set of 64 deformed

nuclei. Although the span of χ2 values is very large, the
functional dependence of χ2 on av is smooth and, for
each value 〈S2〉 of the symmetry energy, there is a unique
combination of volume and surface energies that minimizes
χ2. The minima of each curve are collected in Fig. 5.
Also in this plot, χ2 versus av displays a smooth parabola,
with the absolute minimum at the point av = −16.06 MeV,
〈S2〉 = 27.8 MeV, and as = 17.498 MeV. The χ2 values of
the neighboring points are not much larger, but obviously the
systematics of binding energies excludes effective interactions
with av � − 16.10 MeV.

This result is illustrated in much more detail in Figs. 6–11,
where we display the absolute deviations of the calculated
binding energies from the experimental values for the effective
interactions that correspond to each of the points included in
Fig. 5. Because these interactions have already been optimized
with respect to as (cf. Fig. 3) and 〈S2〉 (cf. Fig. 4), Figs. 6–11
show the isospin asymmetry (α2) and mass dependencies of the
absolute errors of calculated binding energies as functions of
volume energy at saturation, av . Positive deviations correspond
to underbound nuclei. We notice that not only does the
interaction with av = −16.06 MeV (cf. Fig. 7) correspond
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FIG. 3. (Color online) Surface energies of
semi-infinite nuclear matter that minimize the
deviation of the calculated binding energies from
data, for the set of nuclei listed in Table II, plotted
as functions of the volume energy at saturation,
for six values of the symmetry energy 〈S2〉.
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FIG. 4. (Color online) χ 2 deviations
[Eq. (17)] of the theoretical binding energies
from data for the set of deformed nuclei listed in
Table II and for each combination of the surface,
volume, and symmetry energy shown in Fig. 3.

to the lowest χ2 value but also that it is the only one that does
not display any visible isotopic or mass dependence of the
deviations of calculated masses. The absolute errors for all 64
axially deformed nuclei in the mass regions A ≈ 150–180 and
A ≈ 230–250 are smaller than 1 MeV. With stronger binding in
symmetric nuclear matter (i.e., by increasing the absolute value
of av), the corresponding deviations of calculated binding
energies become larger, and they also acquire a definite
isotopic dependence (cf. Figs. 8–11). Reducing the absolute
value of av reverses the isotopic trend of the errors (cf. Fig. 6).
The isospin and mass dependence of binding energies shown
in Figs. 6–11 is one of the main results of the present analysis,
and it illustrates the sensitivity of the calculated masses to the
choice of the nuclear matter binding energy at saturation. It also
clearly shows why it is not possible to accurately determine
the parameters of a nuclear energy density functional already
at nuclear matter level (i.e., in an ab initio approach starting
from empirical NN and NNN interactions) without additional

  0
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FIG. 5. (Color online) The minimum χ 2 deviation of the theoret-
ical binding energies from data, as a function of the volume energy
coefficient. Each point represents the minimum of the corresponding
curve plotted in Fig. 4.

adjustment to low-energy data on finite medium-heavy and
heavy nuclei.

The results of Figs. 6–11 can be compared to those obtained
with one of the most successful finite-range meson-exchange

-3

-2

-1

0

1

2

3

140 160 180 200 220 240 260

δE
 (

M
eV

)

A

(b)

Sm
Gd
Dy
Er
Yb
Hf
Th
U

Pu
Cm
Cf

-3

-2

-1

0

1

2

3

0.020 0.030 0.040 0.050 0.060

δE
 (

M
eV

)

α2

(a)

av=-16.04 MeV

FIG. 6. (Color online) Absolute deviations of the calculated
binding energies from the experimental values of the 64 axially
deformed nuclei listed in Table II, as functions of (a) the asymmetry
coefficient and (b) the mass number. Lines connect nuclei that
belong to the isotopic chains shown in the legend. The theoretical
binding energies are calculated by using the point-coupling effective
interaction characterized by the volume energy av = −16.04 MeV.
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FIG. 7. (Color online) Same as in Fig. 6, but for the point-
coupling effective interaction with volume energy av = −16.06 MeV.
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FIG. 8. (Color online) Same as in Fig. 6, but for the point-
coupling effective interaction with volume energy av = −16.08 MeV.
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FIG. 9. (Color online) Same as in Fig. 6, but for the point-
coupling effective interaction with volume energy av = −16.10 MeV.
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FIG. 10. (Color online) Same as in Fig. 6, but for the point-
coupling effective interaction with volume energy av = −16.12 MeV.
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FIG. 11. (Color online) Same as in Fig. 6, but for the point-
coupling effective interaction with volume energy av = −16.14 MeV.

effective interactions: DD-ME2 (cf. Fig. 12). The volume
energy coefficient of DD-ME2 is av = −16.14 MeV, and
the parameters were adjusted to binding energies, charge
radii, and neutron radii of 12 spherical nuclei [30]. One
notices both the pronounced isotopic and mass dependence
of the deviations of binding energies calculated with DD-
ME2. Although the span of the DD-ME2 absolute errors
is somewhat smaller than that of the corresponding point-
coupling effective interaction with av = −16.14 MeV (cf.
Fig. 11), the meson-exchange interaction obviously under-
binds most of the 64 axially deformed nuclei, especially in
the mass region A ≈ 150–180. This is because DD-ME2 was
adjusted to binding energies of spherical nuclei, and therefore
it implicitly includes closed-shell effects beyond the mean
field. Virtually all self-consistent relativistic models based
on the static mean-field approximation are characterized by
relatively small effective nucleon masses, because in the RMF
framework the nonrelativistic-type effective mass m∗

NR [43]
is not independent of the Dirac mass m∗

D = m − S . The
latter determines not only the nucleon spin-orbit potential but
also the binding of symmetric nuclear matter and, therefore,
constraints the nonrelativistic-type effective mass to a rather
narrow interval around m∗

NR ≈ 0.65m. A small effective mass
translates into low density of single-nucleon states around
the Fermi surface. This is especially pronounced in magic
nuclei where standard RMF models predict much too large
energy gaps between occupied and unoccupied major shells.
When these interactions are nevertheless forced to reproduce
experimental binding energies of magic nuclei (i.e., when their
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FIG. 12. (Color online) Absolute deviations of the calculated
binding energies from the experimental values of the 64 axially
deformed nuclei listed in Table II, as functions of (a) the asymmetry
coefficient and (b) the mass number. Lines connect nuclei that belong
to the isotopic chains shown in the legend. The theoretical binding
energies are calculated by using the meson-exchange effective
interaction DD-ME2 [30].

parameters are adjusted to masses of nuclei such as 132Sn
and 208Pb), the surrounding open-shell nuclei are predicted
to be underbound, giving rise to characteristic “arches” of
the deviations between theoretical and experimental binding
energies [15,30]. Arches between shell closures (i.e., the
overbinding of closed-shell nuclei relative to surrounding
open-shell nuclei) characterize also most nonrelativistic self-
consistent mean-field models (e.g., Skyrme-type effective
interactions [15]).

It has become customary to adjust nonrelativistic and
relativistic energy density functionals to ground-state data of
magic, closed-shell nuclei. However, the resulting effective
interactions are rarely used to calculate low-lying spectra
of spherical nuclei. These functionals are more successful
in the description of the evolution of deformation, shape
coexistence phenomena, rotational bands, etc. in deformed
nuclei. This is the rationale behind the present adjustment of
the relativistic energy density functional directly to masses
of axially deformed medium-heavy and heavy nuclei. This
procedure, of course, does not solve the problem of arches.
They are still present, but now magic, closed-shell nuclei are
overbound with respect to experimental binding energies.

In this section it has been shown that, among the effective
density-dependent point-coupling interactions considered in
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the present analysis, the one with volume energy av =
−16.06 MeV, surface energy as = 17.498 MeV, and symmetry
energy 〈S2〉 = 27.8 MeV (a4 = 33 MeV) yields best results
for the binding energies of axially deformed nuclei in the
mass regions A ≈ 150–180 and A ≈ 230–250. We will denote
this interaction DD-PC1 (density-dependent point-coupling).
In addition to the parameters of the isoscalar terms (set C
in Table I) and the strength of the derivative term δS =
−0.815 fm4, DD-PC1 is completely specified by the two
parameters of the isovector channel: bT V = 1.836 fm2 and
dT V = 0.64. The total number of parameters is 10. In the
next section a number of calculations will be performed that
illustrate not only the predictive power of DD-PC1 but also
problems in the calculation of masses of spherical nuclei.

Finally, in Fig. 13 we compare the density dependence of
the DD-PC1 isoscalar vector and scalar nucleon self-energies
in symmetric nuclear matter with the starting approximation
given by the Hartree-Fock (HF) self-energies [33] calcu-
lated from the Idaho N3LO NN potential [34]. As already
emphasized, the analysis of Ref. [33] has shown that at
the relativistic HF level microscopic NN potentials do not
yield nuclear matter saturation. To achieve saturation of
homogeneous symmetric matter, and to reproduce binding
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FIG. 13. (Color online) (a) Vector and (b) scalar nucleon self-
energies in symmetric nuclear matter as functions of the nucleon
density. The self-energies that correspond to the phenomenological
density functional DD-PC1 are compared with the Hartree-Fock self-
energies [33] calculated from the Idaho N3LO NN potential [34].

energies of finite nuclei, the self-consistent DD-PC1 mean
fields must include effects of short-range correlations. This
necessitates an increase in magnitude of the HF scalar self-
energy for nucleon densities below 2ρsat. At saturation density,
in particular, this increase is 70 MeV and we also note the
pronounced exponential dependence on density of the DD-
PC1 self-energies, as compared to the almost linear density
dependence of the HF Idaho self-energies. The magnitude
of the scalar self-energy also determines the effective Dirac
mass and, therefore, the strength of the effective nucleon
spin-orbit potential in finite nuclei. At low densities below
ρsat the HF Idaho vector self-energy is much less modified
by the requirement of saturation and self-consistency. An
interesting result is that, at saturation density, the HF Idaho
and DD-PC1 vector self-energies differ by less than 3 MeV.
At much higher nucleon densities the behavior of the DD-PC1
self-energies has been determined by fixing the EoS to the
point ρ = 0.56 fm−3 on the microscopic EoS of Akmal,
Pandharipande, and Ravenhall [36], and therefore it can no
longer be compared with the HF Idaho self-energies.

IV. ILLUSTRATIVE CALCULATIONS

We have performed a series of test calculations of binding
energies, charge isotope shifts, deformations, and isoscalar
and isovector giant resonances. Ground-state properties are
calculated by using the axially deformed RMF model. Pairing
correlations are treated in the BCS approximation with
constant pairing gaps determined from the five-point formula

�(5)(N0) = −�N0

8
[E(N0 + 2) − 4E(N0 + 1) + 6E(N0)

− 4E(N0 − 1) + E(N0 − 2)], (18)

where E(N0) denotes the experimental binding energy of a
nucleus with N0 neutrons (Z0 protons) and �N0 = +1(−1)
for N0 even (odd).

The relativistic quasiparticle random-phase approximation
(RQRPA) [44,45] is used to calculate excitation energies of
giant resonances in spherical nuclei. Results calculated with
DD-PC1 are compared to available data, and with predictions
of the meson-exchange interaction DD-ME2.

In Fig. 14 the RMF + BCS predictions for charge radii of
the Nd, Sm, Gd, Dy, Er, and Yb isotopic chains are compared
with data from Ref. [46]. The charge density is obtained by
folding the theoretical point-proton density distribution with
the Gaussian proton-charge distribution. For the latter an rms
radius of 0.8 fm is used, and the resulting ground-state charge
radius reads

rc =
√

r2
p + 0.64 fm, (19)

where rp is the radius of the point-proton density distribution.
Even though the two RMF interactions, meson-exchange
DD-ME2 and point-coupling DD-PC1, have been adjusted
by using different procedures and to different data sets, they
predict virtually identical charge radii for all six isotope
chains. The theoretical values are in excellent agreement
with data for Nd, Sm, Gd, and Dy nuclei. For the heavier
isotopes of Er and Yb, the calculated radii are only slightly
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FIG. 14. (Color online) Charge radii of Nd, Sm, Gd, Dy, Er, and
Yb isotopic chains. The results of the RMF + BCS calculation with
the DD-PC1 and DD-ME2 interactions are compared with data [46].

above the experimental values. Note that the parameters of
DD-ME2 were tuned to both binding energies and charge
radii of spherical nuclei, whereas only experimental masses
of deformed nuclei have been used to adjust the interaction
DD-PC1. Of the nuclides that belong to the six isotopic chains
shown in Fig. 14, only those with N � 92 are included in the
data set of 64 deformed nuclei used to determine the density
functional DD-PC1.

The ground-state quadrupole deformation parameters β2

are calculated according to the prescription of Ref. [47].
The theoretical predictions for the quadrupole deformation
parameters of Nd, Sm, Gd, Dy, Er, and Yb isotopes are
displayed in Fig. 15, in comparison with the empirical values
from Ref. [48]. Also in this case DD-ME2 and DD-PC1 predict
identical ground-state shapes for all six isotopic chains and
reproduce not only the global trend of the data but also the
saturation of quadrupole deformation for heavier isotopes. The
only discrepancy is found around the N = 82 closed shell in
Nd and Sm isotopes, where both interactions predict spherical
ground states, whereas data indicate that these nuclei are
slightly prolate deformed, probably with soft potential energy
surfaces. Shape coexistence structures (spherical-deformed, or
prolate-oblate shapes), and soft potential surfaces in general,
cannot quantitatively be described on a mean-field level. The
description of coexisting shapes must include long-range cor-
relations and necessitates angular momentum projection and
configuration mixing [13,14], neither of which are considered
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FIG. 15. (Color online) DD-PC1 and DD-ME2 predictions for
the ground-state quadrupole deformations β2 of the Nd, Sm, Gd, Dy,
Er, and Yb isotopes, in comparison with empirical values [48].

in this work. For heavier Nd and Sm isotopes, however,
the predictions of both DD-ME2 and DD-PC1 are again in
excellent agreement with empirical prolate deformations.

Even though DD-PC1 is not constructed with the idea of
being used as a mass formula, nevertheless this functional
must also be tested in the calculation of binding energies. We
consider the cases of deformed and spherical nuclei separately.
As a first test Fig. 16 shows the absolute deviations of the DD-
PC1 binding energies from experimental values of deformed
nuclei in the mass regions A ≈ 120–130, A ≈ 150–180, and
A ≈ 230–250, as functions of the asymmetry coefficient and
mass number. Cross symbols denote the 64 nuclei used to
adjust the parameters of DD-PC1 and correspond to the
deviations already shown in Fig. 7. Additional deformed nuclei
that have not been used in the fit are represented by diamond
symbols. We include about 20 nuclei in the mass region
A ≈ 120–130, and 12 more around mass A ≈ 150–160. In
this way the predictions for binding energies are extrapolated
to a lower mass region not included in the fit and, even more
importantly, to lower values of the asymmetry parameter. The
overall agreement with data is very good, and the absolute
deviations from experiment are contained in the interval
±1 MeV.

In the case of spherical closed-shell nuclei, the variance
between calculated masses and the corresponding experimen-
tal values is somewhat larger. This is illustrated in Fig. 17,
where, for the Pb and Sn isotopic chains, we plot the
absolute deviations of the calculated binding energies from
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FIG. 16. (Color online) Absolute deviations of the DD-PC1
binding energies from experimental values of deformed nuclei in
the mass regions A ≈ 120–130, A ≈ 150–180, and A ≈ 230–250, as
functions of (a) the asymmetry coefficient and (b) the mass number.

data as functions of the mass number. The binding energies
calculated by using the RMF + BCS model with the func-
tional DD-PC1 are also compared to those obtained with
the meson-exchange interaction DD-ME2. The latter, like
most modern self-consistent mean-field nonrelativistic and
relativistic interactions, was adjusted to reproduce the binding
energies of doubly closed-shell nuclei, including 132Sn and
208Pb. In addition, of the isotopes shown in Fig. 17, the
set of nuclei used to fine-tune the parameters of DD-ME2
also included 116Sn, 124Sn, 204Pb, and 214Pb. The resulting
binding energies of the two isotopic chains are, of course, in
better agreement with data than those predicted by the density
functional DD-PC1. Because it has been tailored to masses
of deformed nuclei, DD-PC1 necessarily overbinds spherical
closed-shell nuclei. The situation is actually not as bad as
the comparison with the experimental mass of 132Sn might
indicate. This isotope, with a deviation of 5.21 MeV, is in
fact the worst case of those nuclei that we have calculated
so far. For instance, 16O is calculated to be overbound by
0.72 MeV, 48Ca by 1.51 MeV, 208Pb by 3.51 MeV, etc.
Although the interaction DD-ME2 predicts masses of spherical
nuclei closer to data, it underbinds most deformed nuclei (cf.
Fig. 12).

The origin of the additional binding in closed-shell nuclei
can be found in the predicted shell structure. For the two par-
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FIG. 17. (Color online) Absolute deviations of the calculated
binding energies from experimental values for (a) the Pb and (b) the
Sn isotopic chains, as functions of the mass number. The theoretical
binding energies are calculated by using the RMF + BCS model with
the point-coupling effective interaction DD-PC1 and the finite-range
meson-exchange interaction DD-ME2.

ticular examples of 208Pb and 132Sn, this effect is illustrated in
Fig. 18, which shows the comparison between experimental
and DD-PC1 single-nucleon spectra of protons (upper panel)
and neutrons (lower panel). The experimental spectra corre-
spond to the single-nucleon separation energies of Ref. [49].
Note that single-nucleon orbitals are solutions of the relativis-
tic Kohn-Sham equations and the corresponding eigenvalues,
introduced just as Lagrange multipliers, do not have a directly
observable physical interpretation (i.e., they cannot exactly be
identified with nucleon separation energies [50]). For the last
few occupied orbitals close to the Fermi surface, however,
the Kohn-Sham eigenvalues approximately correspond to
physical single-nucleon energies. As with most self-consistent
mean-field models [1], the calculation reproduces the overall
structure and ordering of single-nucleon levels, but not the
level density around major shell gaps. Because of the low
effective nucleon mass, the magnitude of the spherical shell
gaps between occupied and unoccupied states is overestimated.
As Fig. 18 clearly shows, the theoretical occupied levels
are on average considerably deeper than the corresponding
empirical single-nucleon states, and this effect gives rise to
the overbinding that characterizes masses of spherical nuclei
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FIG. 18. (Color online) Comparison between experimental (left) and DD-PC1 (right) single-nucleon spectra of (a) protons and (b) neutrons
for 208Pb and 132Sn. The experimental spectra are from Ref. [49].

calculated with nonrelativistic and relativistic mean-field
models. We note that a similar analysis for the nonrelativistic
Skyrme interaction Sly4 was carried out in Ref. [15].

This effect is particularly pronounced for the N = 82
neutron gap in 132Sn. Not only is the theoretical gap much
larger than the empirical one, but the functional DD-PC1, like
many other mean-field interactions, does not reproduce the
empirical sequence of neutron levels below N = 82. The last
occupied level should be 2d3/2, whereas DD-PC1 places this
orbital below 1h11/2 and 3s1/2. This increases the magnitude of
the gap, and the net result is the additional binding of heavy Sn
isotopes shown in Fig. 17. If an interaction with a low effective
nucleon mass, such as DD-PC1 or DD-ME2, is nevertheless
tuned to the masses of 132Sn and 208Pb, most deformed nuclei
in between will be underbound, as shown for DD-ME2 in
Fig. 12.

Even though it will not be considered in the present work,
we would like to point out that to enhance the nonrelativistic ef-
fective (Landau) nucleon mass, the functional must go beyond
the static mean-field approximation and include momentum-
dependent (energy-dependent in stationary systems) nucleon
self-energies. In the meson-exchange RMF framework, in
particular, this has been achieved by including in the effective
Lagrangian a particular form of coupling between meson fields
and the derivatives of the nucleon fields [51–53]. This leads
to a linear momentum dependence of the scalar and vector
self-energies in the Dirac equation for the in-medium nucleon.
Although this extension of the standard mean-field framework
is phenomenological, it is nevertheless based on Dirac-
Brueckner calculations of in-medium nucleon self-energies
and consistent with the relativistic optical potential in nuclear
matter, extracted from elastic proton-nucleus scattering data.
In this way it was possible to increase the effective (Landau)

mass to m∗
NR ≈ 0.8m. An additional enhancement of the

effective nucleon mass in finite nuclei is caused by the
coupling of single-nucleon levels to low-energy collective
vibrational states [54], an effect that goes entirely beyond
the mean-field approximation. In the RMF framework the
coupling of single-nucleon states to low-energy phonons and
the resulting increase of the effective mass were recently
explored in Ref. [55].

The somewhat more pronounced deviations between the
theoretical DD-PC1 and experimental masses of the Sn and Pb
isotopic chains do not affect the accuracy of the calculated radii
of these nuclei. In Fig. 19 the RMF + BCS model predictions
for the charge radii of Pb and Sn isotopes, calculated with
the effective interactions DD-PC1 and DD-ME2, are shown in
comparison with empirical values [46]. The two interactions
predict virtually identical values for the charge radii, in
excellent agreement with data for the Sn nuclei, and only
slightly above the empirical charge radii of the Pb isotopes.
We note again that the charge radii of 116Sn, 124Sn, 132Sn,
204Pb, 208Pb, and 214Pb were used to tune the parameters
of DD-ME2, whereas DD-PC1 has only been adjusted to
masses. A similar result is also obtained for the thickness
of the neutron skin in Pb and Sn nuclei. In Fig. 20 the
DD-ME2 and DD-PC1 results for the differences between the
neutron and proton rms radii are compared with available data
[56–58]. Although the experimental uncertainties are large,
both interactions nicely reproduce the isotopic trend of neutron
radii in Sn nuclei and predict values in very good agreement
with the empirical values of neutron skin thickness. These
data, however, were specifically used to adjust the isovector
channel of the DD-ME2 interaction, whereas in the case of
DD-PC1 this level of agreement is achieved with the choice of
the asymmetry energy at saturation a4 = 33 MeV.
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FIG. 19. (Color online) RMF + BCS model predictions for the
charge radii of (a) Pb and (b) Sn isotopes, calculated with the DD-PC1
and DD-ME2 effective interactions, and compared with data [46].

Another very important test of self-consistent mean-field
models involve excitation energies of collective modes and,
in particular, giant multipole resonances. Using the relativistic
(Q)RPA [44,45] with the DD-PC1 functional, we have there-
fore carried out a few representative calculations of giant
resonances in spherical nuclei. The RQRPA is fully self-
consistent; that is, in both the particle-hole and particle-particle
channels the same interactions are used in the equations
that determine the ground state of a nucleus and as residual
interactions in the matrix equations of RQRPA. The RQRPA
configuration space also includes the Dirac sea of negative
energy states. In adjusting the parameters of DD-PC1 we
took into account the results of Refs. [35], where it has been
shown that, to reproduce the experimental excitation energies
of isoscalar giant monopole resonances (ISGMR) in spherical
nuclei, relativistic point-coupling interactions require a nuclear
matter compression modulus of Knm ≈ 230 MeV, somewhat
lower than the values typically used for meson-exchange
relativistic interactions [39] but within the range of values used
by modern nonrelativistic Skyrme interactions. In Ref. [39]
it was also shown that data on the isovector giant dipole
resonance (IVGDR) constrain the range of the nuclear matter
symmetry energy at saturation to 31 � a4 � 35 MeV, and in
this work we have used a4 = 33 MeV for all point-coupling
interactions. For 208Pb the RRPA results for the isoscalar
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FIG. 20. (Color online) RMF + BCS model predictions for the
differences between the neutron and proton rms radii of (a) Pb and
(b) Sn isotopes, calculated with the DD-PC1 and DD-ME2 effective
interactions, in comparison with available data [56–58].

monopole and isovector dipole response are shown in Fig. 21.
For the multipole operator Q̂λµ the response function R(E) is
defined as

R(E) =
∑

i

B(λi → 0)
�/2π

(E − Ei)2 + �2/4
, (20)

where |0〉 denotes the ground state of an even-even nucleus,
|λi〉 is the corresponding ith excited state of multipolarity λ, �

is the width of the Lorentzian distribution, and

B(λ → 0) = 1

2λ + 1
|〈0||Q̂λ||λ〉|2. (21)

The kth moment of the strength function is defined by

mk(Q̂λ) =
∑

i

Ek
i |〈λi |Q̂λ|0〉|2. (22)

The ratio m1/m0 is the quantity often compared with the
experimental excitation energy of the corresponding reso-
nance, although, of course, this is strictly correct only if there
are no pronounced multiple peaks within the energy interval
over which the summation in Eq. (22) is performed. In the
examples considered here the continuous strength distributions
are obtained by folding the discrete spectrum of R(Q)RPA
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FIG. 21. (Color online) (a) Isoscalar
monopole and (b) isovector dipole
strength distributions in 208Pb calculated
with the relativistic RPA by using the
effective interaction DD-PC1. The exper-
imental excitation energies are denoted
by arrows: 13.96 ± 0.2 [59] for the giant
monopole resonance and 13.3 ± 0.1 [60]
for the giant dipole resonance, respec-
tively.

states with the Lorentzian [cf. Eq. (20)] of constant width
� = 1 MeV.

The calculated excitation energies of the giant resonances
in 208Pb can be compared with very accurate data. For the
ISGMR the calculated m1/m0 = 14.17 MeV is rather close
to the experimental value m1/m0 = 13.96 ± 0.2 MeV [59].
The relativistic RPA peak energy of the IVGDR at 13.6 MeV
is also in very good agreement with the experimental exci-
tation energy E∗ = 13.3 ± 0.1 MeV [60]. A similar level of
agreement, both for ISGMR and IVGDR, is also obtained
with the DD-ME2 interaction; however, we note that these
data were taken into account in adjusting the parameters of
DD-ME2 [30].

In Fig. 22 the RQRPA results for the Sn isotopes are
compared with data on IVGDR excitation energies [61]. In

contrast to the case of 208Pb, the strength distributions in the
region of giant resonances exhibit considerable fragmentation.
Note, however, that the RQRPA calculation with the DD-PC1
interaction reproduces the isotopic dependence of the IVGDR
and the experimental excitation energies. The theoretical peak
energies 15.56 MeV (116Sn), 15.35 MeV (118Sn), 15.26 MeV
(120Sn), and 15.13 MeV (124Sn) are in excellent agree-
ment with the experimental values of 15.68 MeV (116Sn),
15.59 MeV (118Sn), 15.36 MeV (120Sn), and 15.19 MeV
(124Sn), respectively.

Finally, in Fig. 23 we display the RQRPA isoscalar
monopole strength functions for the chain of even-even Sn
isotopes, 112–124Sn. The evolution of ISGMR in Sn isotopes
can be compared with very recent data from Ref. [62].
In general, the theoretical excitation energies E0 = m1/m0,
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FIG. 22. (Color online) The RQRPA
isovector dipole strength functions
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the DDPC1 effective interaction.
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FIG. 23. (Color online) The
RQRPA isoscalar monopole strength
distributions in even-even 112–124Sn
nuclei, calculated with the DDPC1
effective interaction. Arrows denote
the positions of experimental ISGMR
excitation energies [62].

when compared with the corresponding experimental values
evaluated in the energy interval between 10.5 and 20.5 MeV,
are systematically between 0.8 and 1 MeV higher. This result
might indicate that the value of the nuclear matter compression
modulus for this functional could actually be chosen as
Knm < 230 MeV. However, Sn isotopes are much lighter than
208Pb, and one can expect that the calculated ISGMR will be
more affected by the surface incompressibility, a quantity that
we have not attempted to determine in this work.

V. SUMMARY AND CONCLUDING REMARKS

The principal goal of modern nuclear structure theory is to
build a consistent microscopic framework that will describe
ground-state properties, nuclear excitations, and reactions at
a level of accuracy comparable with experimental results
and provide reliable predictions for systems very far from
stability, including data for astrophysical applications that
are not accessible in experiments. At present the only viable
approach to a comprehensive description of arbitrarily heavy
nuclear systems, including vast regions of short-lived nuclei
with extreme isospin values and extended nucleonic matter, is
the one based on nuclear energy density functionals.

In this work we have explored a particular class of relativis-
tic nuclear energy density functionals in which only nucleon
degrees of freedom are explicitly used in the construction
of effective interaction terms. Short-distance correlations, as
well as intermediate- and long-range dynamics, are effectively
taken into account in the nucleon density dependence of
the strength functionals of second-order contact interactions
in an effective Lagrangian. By starting from microscopic
nucleon self-energies in nuclear matter, a phenomenological
ansatz for the density-dependent coupling functionals has
been formulated and the corresponding parameters adjusted
in self-consistent mean-field calculations of masses of 64

axially deformed nuclei in the mass regions A ≈ 150–180
and A ≈ 230–250.

The relationship between global properties of the nuclear
matter equation of state and the corresponding predictions for
nuclear masses has been analyzed in detail. Ground states of
deformed nuclei have been calculated in the self-consistent
mean-field approximation by employing sets of effective
interactions with different values of the volume energy av ,
surface energy as , and symmetry energy a4 in nuclear matter,
whereas empirical constraints have been used for the nuclear
matter saturation density, compression modulus, and Dirac
effective mass. The calculated masses are not particularly
sensitive to the saturation density, and previous relativistic RPA
calculations of excitation energies of isoscalar giant monopole
and isovector giant dipole resonances in finite nuclei, as well
as results for the neutron skin thickness, have been used
to determine the nuclear matter compression modulus and
symmetry energy, respectively.

One of the important results of the careful analysis of
deviations between calculated and experimental masses (mass
residuals) is the pronounced isospin and mass dependence
of the residuals on the nuclear matter volume energy at
saturation. To reduce the absolute mass residuals to less than
1 MeV, and to contain their mass and isotopic dependence,
strict constraints on the value of av must be met. The narrow
window of allowed values of the volume energy cannot be
determined microscopically already at the nuclear matter
level; rather, it results from a fine-tuning of the parameters
of the energy density functional to experimental masses.
Calculated binding energies and charge radii are also sensitive
to the choice of the surface coefficient as that determines the
surface energy and surface thickness of semi-infinite nuclear
matter. In the functional considered in the present work, these
quantities are controlled by the strength of the derivative
isoscalar-scalar coupling interaction. The range of allowed
values of the strength parameter determined by data is in very
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good agreement with estimates obtained from microscopic
calculations of inhomogeneous nuclear matter.

The optimal energy density functional (DD-PC1) deter-
mined in a multistep parameter fit to the masses of 64 axially
deformed nuclei has been further tested in calculations of
properties of spherical and deformed medium-heavy and heavy
nuclei, including binding energies, charge radii, deformation
parameters, neutron skin thickness, and excitation energies
of giant multipole resonances. Results have been compared
with available data, and with predictions of one of the most
successful finite-range meson-exchange relativistic effective
interactions: DD-ME2. In general, a very good agreement
with data has been obtained except, perhaps, for the effect
of overbinding of spherical closed-shell nuclei. DD-PC1, like
virtually all relativistic mean-field models, is characterized by
a relatively low effective nucleon mass and, when adjusted to
masses of deformed nuclei, it overbinds spherical closed-shell
systems. The well-known problem of arches of mass residuals
between shell closures could be addressed by a functional
that goes beyond the static mean-field approximation, but
this approach has not been considered in the present model.
Very good results have been obtained for the excitation
energies of giant monopole and dipole resonances in spherical
nuclei, calculated with the relativistic quasiparticle random-
phase approximation based on the DD-PC1 functional. The
agreement with data confirms the choice of the nuclear matter
compressibility and symmetry energy for DD-PC1.

The total number of parameters in the functional DD-PC1 is
10, as in most nonrelativistic Skyrme-type density functionals.
Note, however, that the effective Lagrangian of DD-PC1
contains only four interaction terms except, of course, the
Coulomb term [cf. Eq. (2)]. The 10 parameters determine the
density dependence of the strength functionals and reflect the
complex nuclear many-body dynamics. We also emphasize
that, because the high-density behavior of the corresponding

nuclear matter EoS has been adjusted to a microscopic EoS
extensively used in studies of high-density nucleon matter and
neutron stars, DD-PC1 should also be tested in astrophysical
applications.

This work is part of a program to develop an universal
relativistic energy density functional to be used in studies of
the evolution of shell structure, deformation, shape coexistence
phenomena, rotational bands, etc. in transitional and deformed
nuclei. In the first step the parameters of the density functional
have been adjusted to reproduce binding energies of a large
set of axially deformed nuclei. In the continuation of this
program we plan to build a functional, based on DD-PC1, to be
used in the new relativistic model that employs the generator
coordinate method (GCM) to perform configuration mixing of
angular-momentum and particle-number projected mean-field
wave functions. However, if rotational energy corrections and
quadrupole fluctuations are treated explicitly in the GCM
framework, they should not at the same time implicitly be
included in the functional (i.e., through parameters adjusted to
data that already include correlations). Therefore, starting from
DD-PC1, the parameters of this new functional can be adjusted
to pseudodata, obtained by subtracting correlation effects from
experimental masses and radii. The resulting energy density
functional will be tested in relativistic GCM model studies of
shell evolution, deformations, shape coexistence, and shape
phase transitions.
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