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We measure directed flow (v1) for charged particles in Auþ Au and Cuþ Cu collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼

200 and 62.4 GeV, as a function of pseudorapidity (�), transverse momentum (pt), and collision centrality,

based on data from the STAR experiment. We find that the directed flow depends on the incident energy

but, contrary to all available model implementations, not on the size of the colliding system at a given

centrality. We extend the validity of the limiting fragmentation concept to v1 in different collision

systems, and investigate possible explanations for the observed sign change in v1ðptÞ.
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The heavy-ion program at the Relativistic Heavy-Ion
Collider (RHIC) seeks to understand the nature and dy-
namics of strongly interacting matter under extreme con-
ditions. It is widely expected that in collisions at RHIC, a
new partonic phase of matter is created, strongly interact-
ing quark gluon plasma [1]. In particular, its bulk nature is
revealed in strong elliptic flow, which in central collisions
approaches the predictions of ideal hydrodynamics, assum-
ing system thermalization on an extremely short time scale
(� 0:5 fm=c) [2]. However, the mechanism behind such
rapid thermalization remains far from clear and is under
active theoretical study [3–5]. This may be related to
another novel phenomenon that could be relevant at
RHIC—saturation of the gluon distribution—which char-
acterizes the nuclear parton distribution prior to collision
[6]. Various theoretical approaches to connect collision
geometry, saturated gluon distributions, and the onset of
bulk collective behavior are being explored [2]; more
experimental input would guide these efforts.

Directed flow refers to collective sidewards deflection of
particles and is characterized by a first-order harmonic (v1)
of the Fourier expansion of particle’s azimuthal distribu-
tion with respect to the reaction plane [7]. At large� (in the
fragmentation region) the directed flow is believed to be
generated during the nuclear passage time (2R=��
0:1 fm=c) [8,9]. It therefore probes the onset of bulk
collective dynamics during thermalization, providing valu-
able experimental guidance to models of the preequili-
brium stage. In this Letter, we present multiple-
differential measurements of v1 for Auþ Au and Cuþ
Cu collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 and 62.4 GeVas a function of

�, pt, and collision centrality. Here, we report an intriguing
new universal scaling of the phenomenon with collision
centrality. Existing implementations of Boltzmann or cas-
cade and hydrodynamic models are unable to explain the
measured trends.

At RHIC energies, it is a challenge to measure v1

accurately due to the relatively small signal and a poten-
tially large systematic error arising from nonflow (azimu-
thal correlations not related to the reaction plane
orientation). In this work, the reaction plane was deter-
mined from the sideward deflection of spectator neutrons
[9,10] measured in the Shower Maximum Detectors
(SMD) of the Zero Degree Calorimeters (ZDC) [11,12].
The v1 based on this quantity, denoted v1fZDC-SMDg
[11], should have minimal contribution from nonflow ef-
fects due to the large � gap between the spectator neutrons
used to establish the reaction plane and the � region where
the measurements were performed.

Charged-particle tracks were reconstructed in STAR’s
main time projection chamber (TPC) [13] and forward
TPCs [14], with pseudorapidity coverage j�j< 1:3 and
2:5< j�j< 4:0, respectively. The centrality definition (in

which zero represents the most central collisions) and track
quality cuts are the same as in Ref. [15]. This study is based
on Auþ Au samples of 8� 106 events at 200 GeV, 5�
106 at 62.4 GeV, and Cuþ Cu samples of 12� 106 events
at 200 GeV, and 8� 106 at 62.4 GeV. All were obtained
with a minimum-bias trigger. Systematic uncertainties on
v1 measurements are estimated to be within 10% for the �
range studied. This limit is based on comparisons of
v1fZDC-SMDg and independent analysis methods
[11,15], and we also make use of forward-backward sym-
metry to constrain estimates of systematic errors. Nonflow
is not the dominant source of systematic uncertainty. More
details about these errors can be found in Refs. [11,15].
The resolution [7] of the first-order event plane recon-

structed using the ZDC-SMDs is a crucial quantity for this
analysis. The magnitude of the event-plane resolution,
defined as hcosð�EP ��RPÞi [7], increases with the spec-
tator v1 and the number of neutrons per event detected by
the ZDC-SMDs. The ZDC size is optimized for 200 GeV,
and its acceptance for spectator neutrons decreases at lower
energies due to spectator neutrons being emitted within a
cone whose apex angle increases with the inverse of the
beam momentum. For the 30%–60% most central colli-
sions, resolutions for 200 GeV Auþ Auand Cuþ Cu, and
for 62.4 GeV Auþ Au and Cuþ Cu are about 0.4, 0.15,
0.15, and 0.04, respectively (more details are provided in
Table 1 of Ref. [16]). The 30%–60% centrality interval is
the only region where the ZDC-SMD event-plane resolu-
tion can be reliably determined for all four systems.
The charged particle v1ð�Þ is shown in Fig. 1 for Auþ

Au at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV in three centralities. The inset
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FIG. 1 (color online). Charged particle v1ð�Þ for three central-
ities in Auþ Au collisions at 200 GeV. The arrows indicate the
algebraic sign of v1 for spectator neutrons, and their positions on
the � axis correspond to beam rapidity. The inset shows the
mid-� region in more detail. The error bars are statistical, and
the shaded bands show systematic errors. PHOBOS results [18]
are also shown for midcentral collisions.
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shows, on expanded scales, the mid-� region measured by
the main TPC, where v1 is resolvable below the 0.1% level.
Within the studied � range, the sign of charged particle v1

is opposite to that of the spectators, and the v1 magnitude
increases from central to peripheral collisions. For 0%–5%
centrality, the slope dv1=d� changes sign above the
middle of the forward time projection chamber (FTPC)
pseudorapidity acceptance, and our results agree with the
pattern reported by PHOBOS over a broader � range
[17,18].

The ratio hpxi=hpti is shown in Fig. 1 for the most
central data (0%–5%), in comparison to v1. Here, px refers
to the in-plane component of a track’s transverse momen-
tum, a quantity commonly used prior to the 1990s [10]. As
elaborated below, there is interest in the behavior of both
v1 and hpxi when v1ðptÞ changes sign.

To further examine v1, the 200 GeV Auþ Au data are
divided into bins of pt (Fig. 2). The upper and lower panels
show results from the main TPC and the FTPCs, respec-
tively. In the main TPC, v1ðptÞ crosses zero at 1< pt <
2 GeV=c for central and midcentral collisions. A zero-
crossing behavior in v1ðptÞ is necessarily exhibited by a
hydrodynamic calculation in which hpxi, presumably im-
parted during the passing time of the initial-state nuclei,
has been neglected and set equal to zero [19]. Because of
the poor momentum resolution of the FTPCs at higher pt,
we cannot test the zero crossing at forward �. It is note-
worthy that the observed hpxi, presented in Fig. 1, is far

from negligible, which contradicts the assumptions used in
the hydrodynamic calculations.
The observed v1ðptÞ dependence can be explained by

assuming that pions and baryons flow with opposite sign,
coupled with the measured baryon enhancement at higher
pt [20]. For example, taking linear functions [21] for pion
and baryon v1ðptÞ, we obtain a satisfactory description of
our data (see the solid curve in Fig. 2) with pion v1 slopes,
dv1=dpt ¼ �0:18� 0:02, �0:34� 0:02, and �0:52�
0:04, and baryon v1 slopes 0:56� 0:12, 0:86� 0:10, and
1:02� 0:12 for centralities 0%–5%, 5%–40%, and 40%–
80%, respectively. Note that the opposite v1 slope for pions
and protons, with the magnitude of proton slopes being
larger, in this case is consistent with calculations [22]
where the ‘‘wiggle’’ rapidity dependence of identified par-
ticles has been predicted to result from the interplay of
stopping and radial flow. Currently, we are unable to test
the wiggle effect in v1ðyÞ with identified particles due to
limited statistics and limited particle identification.
To study the energy and system-size dependence of v1,

Fig. 3 shows Cuþ Cu data compared to Auþ Au in the
centrality range 30%–60% for both 200 and 62.4 GeV.
There is a clear trend for v1ð�Þ to decrease with increasing
beam energy for both Auþ Au and Cuþ Cu. In the
studied pseudorapidity and centrality range, v1ð�Þ is,
within errors, independent of the system size at each
beam energy, despite the three-to-one mass ratio between
gold and copper. This remarkable feature holds for almost
all centrality bins studied, as shown in Fig. 4, and persists
even near mid-� (as shown in the upper panel), where
elliptic flow (v2) of charged particles in Cuþ Cu is con-
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FIG. 2 (color online). Charged particle v1ðptÞ in 200 GeV
Auþ Au for three centralities. The dashed curve and dotted
curve are hydrodynamic calculations for the labeled rapidities at
impact parameter 6.8 fm (15%–25% most central collisions). See
the text for an explanation of the solid curve. The plotted error
bars are statistical, and systematic errors (see Fig. 1) are within
10%.
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FIG. 3 (color online). Charged particle v1ð�Þ for midcentral
(30%–60%) Auþ Au and Cuþ Cu at 200 and 62.4 GeV. The
solid curves and dashed curves are odd-order polynomial fits to
guide the eye and demonstrate the forward-backward symmetry
of the data. The wider shaded bands are from AMPT for the
same conditions as the data. For clarity, 200 (62.4) GeV calcu-
lations are shown only at negative (positive) �. The plotted error
bars are statistical, and systematic errors (see Figs. 1 and 5) are
within 10%.
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siderably lower than in Auþ Au [23]. Unlike v2=�, the
ratio of the elliptic flow to the system initial eccentricity,
which scales with the particle density in the transverse
plane ð1=SÞdNch=dy [24] (also interpreted to be the mid-
rapidity area density [25] or the system length [26]), v1ð�Þ
at a given centrality is found to be independent of the
system size, and varies only with the incident energy.
The different scalings for v2=� and v1 might arise from
the way in which they are developed: to produce v2, many
momentum exchanges among particles must occur (and the
number of momentum exchanges is related to the partici-
pant density and the dimensions of the system), while to
produce v1, an important feature of the collision process is
that different rapidity losses need to occur (related to the
incident energy) for particles at different distances from the
center of the participant zone [22].

The hybrid transport model AMPT (a multiphase trans-
port model) [27] lies consistently below the measured data,
as evident from Fig. 3. STAR’s prior v1 study [11] in Auþ
Au at 62 GeV also showed this trend for AMPT and other
transport models. It is noteworthy that AMPT does not
exhibit the observed pattern of system-size independence.
UrQMD (ultrarelativistic quantum molecular dynamics)
[28] (not shown here) is similar to AMPT in exhibiting a
significant change in v1 between Auþ Au and Cuþ Cu.

Further scaling behavior is seen by transforming the data
presented in Fig. 3 into the projectile frame (see Fig. 5),
where zero on the horizontal axis corresponds to the beam
rapidity, ybeam, for each of the collision energies. Within

three units from ybeam, most data points lie on a universal
curve for v1 versus �� ybeam. This incident-energy scal-
ing of directed flow has previously been reported for Auþ
Au [11,18], and it is now evident that the limiting frag-
mentation hypothesis [29] holds even for much lighter
collision systems like Cuþ Cu. AMPT adheres less
closely to limiting fragmentation for Cuþ Cu. Note that
the quantity �� ybeam introduces some uncertainty due to
the use of � instead of rapidity; the latter requires particle
identification. The system-size independence at a given
fractional cross section and longitudinal scaling of scaled
multiplicity distributions, dNch=d�=ðNpart=2Þ, have been

previously reported by the PHOBOS Collaboration [30].
In summary, we have presented measurements of

charged-particle directed flow as a function of pt, �, and
centrality in Auþ Au and Cuþ Cu collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼

200 and 62.4 GeV. The observed trend of decreasing v1

with increasing beam energy agrees with models. The lack
of system-size dependence in v1 for Auþ Au and Cuþ
Cu is quite remarkable and is a feature not observed or
predicted by any existing model implementation. The pre-
sented � dependence of v1 provides further support for
limiting fragmentation scaling by extending its applicabil-
ity to Cuþ Cu. The observed pt dependence of directed
flow motivates further theoretical investigations and ex-
perimental measurements with identified particles.
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