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We report the first measurements of the kurtosis (�), skewness (S), and variance (�2) of net-proton

multiplicity (Np � N �p) distributions at midrapidity for Auþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 19:6, 62.4, and
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200 GeV corresponding to baryon chemical potentials (�B) between 200 and 20 MeV. Our measurements

of the products ��2 and S�, which can be related to theoretical calculations sensitive to baryon number

susceptibilities and long-range correlations, are constant as functions of collision centrality. We compare

these products with results from lattice QCD and various models without a critical point and study theffiffiffiffiffiffiffiffi
sNN

p
dependence of ��2. From the measurements at the three beam energies, we find no evidence for a

critical point in the QCD phase diagram for �B below 200 MeV.

DOI: 10.1103/PhysRevLett.105.022302 PACS numbers: 25.75.Gz, 12.38.Mh, 21.65.Qr

One of the major goals of the heavy-ion collision pro-
gram is to explore the QCD phase diagram [1]. Finite
temperature lattice QCD calculations [2] at baryon chemi-
cal potential �B ¼ 0 suggest a crossover above a critical
temperature ðTcÞ � 170–190 MeV [3] from a system with
hadronic degrees of freedom to a system where the relevant
degrees of freedom are quarks and gluons. Several QCD-
based calculations (see, e.g., [4]) find the quark-hadron
phase transition to be first order at large �B. The point in
the QCD phase plane (T vs �B) where the first order phase
transition ends is the QCD critical point (CP) [5,6].
Attempts are being made to locate the CP both experimen-
tally and theoretically [7]. Current theoretical calculations
are highly uncertain about the location of the CP. Lattice
QCD calculations at finite�B face numerical challenges in
computing. The experimental plan is to vary the center of
mass energy (

ffiffiffiffiffiffiffiffi
sNN

p
) of heavy-ion collisions to scan the

phase plane [8] and, at each energy, search for signatures
of the CP that could survive the time evolution of the
system [9].

In a static, infinite medium, the correlation length (�)
diverges at the CP. � is related to various moments of the
distributions of conserved quantities such as net baryons,
net charge, and net strangeness [10]. Typically variances
(�2 � hð�NÞ2i; �N ¼ N �M; M is the mean) of these
distributions are related to � as �2 � �2 [11]. Finite size
and time effects in heavy-ion collisions put constraints on
the values of �. A theoretical calculation suggests � �
2–3 fm for heavy-ion collisions [12]. It was recently shown
that higher moments of distributions of conserved quanti-
ties, measuring deviations from a Gaussian, have a sensi-
tivity to CP fluctuations that is better than that of�2, due to
a stronger dependence on � [13]. The numerators in skew-
ness (S ¼ hð�NÞ3i=�3) go as �4:5 and kurtosis (� ¼
½hð�NÞ4i=�4� � 3) go as �7. A crossing of the phase
boundary can manifest itself by a change of sign of S as
a function of energy density [13,14].

Lattice calculations and QCD-based models show that
moments of net-baryon distributions are related to baryon

number (�NB) susceptibilities (�B ¼ hð�NBÞ2i
VT ; V is the

volume) [15]. The product ��2, related to the ratio of

fourth order (�ð4Þ
B ) to second order (�ð2Þ

B ) susceptibilities,
shows a large deviation from unity near the CP [15].
Experimentally measuring event-by-event net-baryon
numbers is difficult. However, the net-proton multiplicity
(Np � N �p ¼ �Np) distribution is measurable. Theoretical

calculations have shown that �Np fluctuations reflect the

singularity of the charge and baryon number susceptibility
as expected at the CP [16]. Non-CP model calculations
(discussed later in the Letter) show that the inclusion of
other baryons does not add to the sensitivity of the observ-
able. This Letter reports the first measurement of higher
moments of the �Np distributions from Auþ Au colli-

sions to search for signatures of the CP.
The data presented in the Letter are obtained using the

time projection chamber (TPC) of the Solenoidal Tracker
at RHIC (STAR) [17]. The event-by-event proton (Np) and

antiproton (N �p) multiplicities are measured for Auþ Au

minimum bias events at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 19:6, 62.4, and 200 GeV

for collisions occurring within 30 cm of the TPC center
along the beam line. The numbers of events analyzed are
4� 104, 5� 106, and 8� 106 for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19:6, 62.4, and
200 GeV, respectively. Centrality selection utilized the
uncorrected charged particle multiplicity within pseudo-
rapidity j�j< 0:5, measured by the TPC. For each central-
ity, the average numbers of participants (hNparti) are ob-

tained by Glauber model calculations. The �Np

measurements are carried out at midrapidity (jyj< 0:5)
in the range 0:4< pT < 0:8 GeV=c. Ionization energy
loss (dE=dx) of charged particles in the TPC was used to
identify the inclusive pð �pÞ [18]. To suppress the contami-
nation from secondary protons, we required each pð �pÞ
track to have a minimum pT of 0:4 GeV=c and a distance
of closest approach to the primary vertex of less than 1 cm
[18]. The pT range used includes approximately 35%–40%
of the total pþ �pmultiplicity at midrapidity. �Np was not

)pN∆Net Proton (
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FIG. 1 (color online). �Np multiplicity distribution in Auþ
Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV for various collision central-

ities at midrapidity (jyj< 0:5). The statistical errors are shown.
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corrected for reconstruction efficiency. Typical �Np dis-

tributions from 70% to 80%, 30% to 40%, and 0% to 5%
Auþ Au collision centralities are shown in Fig. 1.

The four moments (M, �, S, and �) which describe the
shape of the�Np distributions at various collision energies

are plotted as a function of hNparti in Fig. 2. The typical

statistical errors on �, S, and � for central Auþ Au
collisions at 200 GeV are 0.2%, 11%, and 16%, respec-
tively. The M shows a linear variation with hNparti and

increases as
ffiffiffiffiffiffiffiffi
sNN

p
decreases, in accordance with the energy

and centrality dependence of baryon transport [8]. The
variation of M within a centrality bin has been taken into
account in higher moment calculations. The � increases
with hNparti. The values are similar for three beam energies

studied. The S is positive and decreases as hNparti increases
for a given collision energy. The values also decrease asffiffiffiffiffiffiffiffi
sNN

p
increases. This indicates that the distributions be-

come symmetric for more central collisions and for higher
beam energies. The � decreases as hNparti increases, but is
similar for all three

ffiffiffiffiffiffiffiffi
sNN

p
studied.

Experimentally it is difficult to correct such observables
for the particle reconstruction efficiency on an event-by-
event basis. Construction of observables independent of the
efficiency, such as factorial moments, leads to loss of one-
to-one correspondence with higher moments [19], and
significant difficulty in comparing to theoretical expecta-
tions. We have investigated the effects of the detector and
track reconstruction efficiencies by comparing the mo-
ments of the �Np distribution using the events from a

heavy-ion event generator model HIJING (ver.1.35) [20]
and the moments of the reconstructed �Np, after passing

the same events through a realistic GEANT detector simu-
lation. The difference between the two cases for the �, S,
and � are about an order of magnitude smaller than their
absolute values. Typical values of such differences for
central Auþ Au 200 GeV collisions are �0:37� 0:05,
0:02� 0:05, and �0:06� 0:12 for �, S, and �, respec-
tively. These results indicate that the effects on the shape of
the distributions are small. The effect on the yields of pð �pÞ
is discussed elsewhere [8,18]. The systematic errors are
estimated by varying the following requirements for pð �pÞ
tracks: distance of closest approach, track quality reflected
by the number of fit points used in track reconstruction, and
the dE=dx selection criteria for pð �pÞ identification. The
typical systematic errors are of the order 10% forM and �,
25% on S, and 30% on �. The statistical and systematic
(caps) errors are presented separately in the figures.
To understand the evolution of centrality dependence of

moments in Fig. 2, we invoke the central limit theorem
(CLT) and consider the distribution at any given centrality i
to be a superposition of several independent source distri-
butions. We assume the average number of the sources for
a given centrality to be equal to some number C times the
corresponding hNparti, and obtain [21]

Mi ¼ CMxhNpartii; (1)

�2
i ¼ C�2

xhNpartii; (2)

Si ¼ Sx=½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ChNpartii

q
�; (3)

and

�i ¼ �x=½ChNpartii�: (4)

The various moments of the parent distributionMx, �x, Sx,
�x, and constant C have been determined from fits to data.
The dashed lines in Fig. 2 show the expectations from the
CLT. The �2=ndf between the CLT expectations and data
are<1:5 for all the moments presented. If collision central-
ity reflects the system volume, then the results in Fig. 2
which approximate baryon number susceptibilities suggest
that the susceptibilities do not change with the volume [2].
Deviations from hNparti scaling could indicate new physics

such as might result from the CP.
To get a microscopic view, we present two observables,

S� and ��2, which can be used to search for the CP. These
products will be constants as per the CLT and other likely
non-CP scenarios, as seen from the dependences on hNparti
discussed above. These observables are related to the ratio
of baryon number susceptibilities (�B) at a given tem-

perature (T) computed in QCD models as S� ¼
ð�ð3Þ

B =TÞ=ð�ð2Þ
B =T2Þ and ��2 ¼ �ð4Þ

B =ð�ð2Þ
B =T2Þ [6]. Close

to the CP, models predict the net-baryon number distribu-
tions to be non-Gaussian and susceptibilities to diverge
causing S� and ��2 to deviate from being constants and
have large values. Figure 3 shows that S� and ��2 for

0

2

4

6

8
M (a) σ (b)

Au+Au 19.6 GeV
Au+Au 62.4 GeV
Au+Au 200 GeV

0 100 200 300 400

-210

-110

1

10 S (c)

0 100 200 300 400

κ (d)

〉partAverage Number of Participant 〈N

FIG. 2 (color online). Centrality dependence of moments of
�Np distributions for Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19:6, 62.4,

and 200 GeV. The lines are the expected values from the central
limit theorem. Error bars are statistical and caps are systematic
errors.
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Auþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 19:6, 62.4, and 200 GeVare

constants as a function of hNparti.
In Fig. 3(a), lattice QCD results on S� for net baryons in

central collisions are found to agree with the measure-
ments. Near the CP, the system will deviate from equilib-
rium [12], and results from lattice QCD, which assumes
equilibrium, should not be consistent with the data. These
lattice calculations, which predict a CP around �B �
300 MeV, are carried out using two-flavor QCD with the
number of lattice sites in imaginary time to be 6 and mass
of pion around 230 MeV [6]. The ratios of the nonlinear
susceptibilities at finite �B are obtained using Padé ap-
proximant resummations of the quark number susceptibil-
ity series. The freeze-out parameters as a function of

ffiffiffiffiffiffiffiffi
sNN

p
are taken from [22] and Tc ¼ 175 MeV.

To understand the various non-CP physics background
contribution to these observables, in Fig. 3 we also present
the results for the net-proton distribution as a function of
hNparti from URQMD (ver.2.3) [23], HIJING [20], AMPT

(ver.1.11) [24], and THERMINATOR (ver.1.0) [25] models.
The measurements are consistent with results from various

non-CP models studied. In Fig. 3(c), several model calcu-
lations from Auþ Au collisions at 200 GeV are presented
to explain the effect of the following on our observable:
with (W) and without (W/O) resonance decays, inclusion
of all baryons (both studied using URQMD), jet production
(HIJING), coalescence mechanism of particle production
(AMPT String Melting, ver.2.11), thermal particle produc-
tion (THERMINATOR), and rescattering (URQMD and AMPT).
All model calculations are done using default versions and
with the same kinematic coverage as for data. The ��2

[Fig. 3(b)] and S� [Fig. 3(a)] are found to be constant for
all the cases as a function of hNparti. This constant value can
act as a baseline for the CP search. QCD model calcula-
tions with CP predict a nonmonotonic dependence of these
observables with hNparti and ffiffiffiffiffiffiffiffi

sNN
p

[13].

Figure 4 shows the energy dependence of ��2 for �Np,

compared to several model calculations that do not include
a CP. The experimental values plotted are average values
for the centrality range studied; they are found to be con-
sistent with unity. Also shown at the top of Fig. 4 are the
�B values corresponding to the various

ffiffiffiffiffiffiffiffi
sNN

p
[18,22]. We

observe no nonmonotonic dependence with
ffiffiffiffiffiffiffiffi
sNN

p
. The

results from non-CP models are constants as a function
of

ffiffiffiffiffiffiffiffi
sNN

p
and have values between 1 and 2. The result from

the thermal model is exactly unity. Within the ambit of the
models studied, the observable changes little with change
in non-CP physics (such as due to a change in �B, collec-
tive expansion, and particle production) at the various
energies studied. From comparisons to models and the
lack of nonmonotonic dependence of ��2 on

ffiffiffiffiffiffiffiffi
sNN

p
studied, we conclude that there is no indication from our
measurements for a CP in the region of the phase plane
with�B < 200 MeV. It is difficult to rule out the existence
of CP for the entire �B region below 200 MeV. The extent
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200 GeV
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FIG. 3 (color online). Centrality dependence of (a) S� and
(b) ��2 for �Np in Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19:6, 62.4,

and 200 GeV compared to various model calculations. The
shaded band for S� and ��2 reflects contributions from the
detector effects. (c) shows the model expectations for ��2 from
various physical effects in Auþ Au collisions at 200 GeV. The
lattice QCD results are for net baryons corresponding to central
collisions [6]. See text for more details.
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FIG. 4 (color online).
ffiffiffiffiffiffiffiffi
sNN

p
dependence of ��2 for net-proton

distributions measured at RHIC. The results are compared to
non-CP model calculations (slightly shifted in

ffiffiffiffiffiffiffiffi
sNN

p
). The left-

right arrow at the bottom indicates the energy range for the CP
search at RHIC.
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to which these results can do that is guided by the following
theoretical work. One QCD-based model including a CP
(� ¼ 3 fm) predicts the value of ��2 to be at least a factor
of 2 higher than the measurements presented (��2 � 2:5,
35, 3700 for the CP at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200, 62.4, and 19.6 GeV,

respectively) [13]. In addition, the expectation of the extent
of the critical region in�B is thought to be about 100 MeV
[6,26].

In summary, the first measurements of the higher mo-
ments of the net-proton distributions at midrapidity (jyj<
0:5) within 0:4<pT < 0:8 GeV=c in Auþ Au collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 19:6, 62.4, and 200 GeV have been presented.

New observables S� and ��2 derived from the �Np

distribution to search for the CP in heavy-ion collisions
are discussed. These observables are found to be constant
as a function of hNparti for all collisions’ energies studied.
This is consistent with expectations from the central limit
theorem and in general agreement with results from vari-
ous models without the CP. The measured S� in central
collisions are consistent with lattice QCD calculations of
the ratio of third order to second order baryon number
susceptibilities. Within the uncertainties, ��2 is found to
be constant as a function of

ffiffiffiffiffiffiffiffi
sNN

p
studied. This trend is

consistent with models without a CP and in sharp contrast
to models [13] which include a CP in this �B range. Our
measurements show no evidence for a CP to be located
at �B values &200 MeV in the QCD phase plane. The
RHIC beam energy (100<�B < 550 MeV) scan will
look for nonmonotonic variation of ��2 for net protons
as a function of

ffiffiffiffiffiffiffiffi
sNN

p
to locate the CP.
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