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The interaction energy between two metallic slabs in the retarded limit at finite temperature is expressed
in terms of surface polariton propagators for separate slabs, avoiding the usual matching procedure, with both
diamagnetic and paramagnetic excitations included correctly. This enables appropriate treatment of arbitrary
electron density profiles and fully nonlocal electronic response, including both collective and single-particle
excitations. The results are verified by performing the nonretarded and long-wavelength (local) limits and
showing that they reduce to the previously obtained expressions. Possibilities for practical use of the theory are
explored by applying it to calculation of various contributions to the Casimir energy between two silver slabs.

DOI: 10.1103/PhysRevB.83.165421 PACS number(s): 13.40.−f, 71.36.+c, 03.70.+k

I. INTRODUCTION

Ever since Casimir postulated1 the existence of attractive
forces between neutral bodies due to the interaction of their
ground-state (and later thermal) fluctuations, these effects
fascinated the physics community and led to intense studies
of their various aspects.2–5 These became especially relevant
with the advances in experimental techniques and their
precision, applied to different geometries5–9 and including
finite temperatures. Several recent reviews10–12 cover different
theoretical and experimental aspects of this field.

As the ground-state energy shift arising from the virtual
fluctuations of electromagnetic (EM) fields, the Casimir effect
is an essentially quantum mechanical phenomenon. However,
these fluctuations, in spite of their microscopic origin, in the
long-wavelength limit correspond to the classical EM field
excitations, i.e., bulk and surface polaritons, so that much of the
theory can be, and was, done using classical electrodynamics
based on the local description of the electron response in
terms of the local dielectric function.13,14 In such a local
approach, the dispersion (i.e., wave-vector dependence) of
this response mechanism was neglected. The local description
proved extremely successful in many situations due to the
fact that, at large separations between the objects, only
the long-wavelength fields are relevant. However, improving
this description, i.e., the treatment of electronic fluctuations
(e.g., in metallic slabs, spheres, etc.), immediately leads to
difficulties due to the intrinsic nonlocality of the electronic
response in finite media resulting from the lack of translational
invariance. This is the reason why most attempts, more or less
successful, were based on semiempirical phenomenological
corrections to the local theory based on the local dielectric
function. The justification of such an approach, apart from
simplicity, was based on the fact that, at large separations,
long-wavelength fluctuations dominate and, indeed, nonlocal
effects give negligible contributions to the Casimir energy.

Recently, a number of authors investigated the contribution
of the EM modes to the Casimir force,15–19 and even the
effects of finite temperature and dissipation became a topic
of discussion.20–23 The common conclusion is that, no matter

which level of approximation is used [hydrodynamic model,15

empirical nonlocal susceptibility,16 or self-consistent jellium
model (limited to the linear Q correction to local Fresnel
coefficients)],17–19 nonlocal corrections are almost negligible
at distances that are experimentally available (0.1 μm), i.e.,
around 1%, which is below the current experimental accuracy.

Previous calculations of the Casimir force obtained by using
the random-phase approximation (RPA) dielectric tensor3,4,21

show that the nonlocal effects give similar corrections to
perfect metal Casimir force as the use of Drude (with dissi-
pation) or experimental (wave-vector-independent) dielectric
functions. They also show that the Casimir force calculated
by using the RPA dielectric tensor with dissipation gives
small additional corrections.4,21 Therefore, it seems that, for
semi-infinite metals, temperature effects and inclusion of
dissipation modify Casimir interaction in the same manner
as the nonlocal effects.24 The principal role of nonlocal effects
at room temperature for poor conductors has also been stressed
in Ref. 25.

An interesting attempt to include nonlocal corrections15–19

was made using the d-parameter approximations26–28 based on
the long-wavelength calculation of the shift in the position of
the centroid of the induced charge density at the surface. The
resulting change in the Casimir force, valid at large distances,
can be interpreted as a shift of the effective surface position,
which is very sensitive to the theoretical description of the
electronic response. It would be interesting to compare these
approximate results, which use the calculated d parameters,29

with our exact results. However, this approach only concerns
the p-polarized contributions, while the s-polarized reflectivity
is unchanged in this theory.

In Sec. II, we first develop a formulation of the Casimir
energy as the ground-state-energy (or free-energy) shift due
to the electromagnetic coupling of the fluctuations in the two
separate objects and, in Sec. III, we apply it to the retarded
interaction between two metallic slabs. To take into account
the nonlocal character of the fluctuations in a finite system, we
avoid the standard approach2 based on the matching procedure
at the surfaces. Instead, we calculate the sum of all Feynman
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diagrams for the ground-state fluctuations and show that the
results for the Casimir free energy can be derived in a form
similar to the usual one, but with the generalized reflectivities
instead of the ones derived by the matching of EM fields.

Feynman diagrams for the coupled fluctuations can be
separated into intraslab terms, which are responsible for elec-
tromagnetic interaction inside separated slabs, and interslab
terms, describing the electromagnetic coupling between the
slabs. We do not deal explicitly with the intraslab interactions
since they are included in the surface polariton propagators.30

We also show that s(TE) and p(TM) contributions to the
Casimir energy can be separated, which enables us to study
them quantitatively.

The resulting expressions for the Casimir free energy are
given in terms of generalized reflectivities Rs and Rp, which
are proportional to surface polariton propagators Dind

xx and
Dind

yy , respectively. This approach follows closely our theory
of noncontact van der Waals interaction,31 where a similar
method was used to derive the expressions that include (in prin-
ciple) exact wave-vector-dependent response functions in each
metallic film. Here, we extend this method to treat the retarded
interaction so that response functions and polariton propaga-
tors become matrices, but these can also be taken from Ref. 30.

In Sec. IV A, we show that these generalized expressions for
the Casimir energy between two planar (metallic) slabs in the
nonretarded limit correctly reduce to the usual van der Waals
energy.31 We can also relate them to the standard Lifshitz
results in the long-wavelength limit obtained by neglecting
dispersion and using the local dielectric function to describe
the media, both for zero and finite temperatures.

In Sec. IV E, we apply our formalism to study Casimir
energy between two silver slabs in the jellium model. Densities
and electronic (current-current) response functions are calcu-
lated in the RPA using local-density approximation (LDA)
self-consistent wave functions. This description includes both
surface and bulk polaritons and their dispersion and (Landau)
damping due to the excitation of electron-hole pairs, so there
is no need for additional assumptions.

The expression for Casimir interaction includes both
diamagnetic and paramagnetic contributions,30 which enable
us to separate and investigate, with a high level of accuracy,
two kinds of corrections to the local Casimir energy. The
diamagnetic term is sensitive to the details of the charge-
density profile at the surface and the paramagnetic term arises
from the intraband and interband electronic transitions, and
contains essential nonlocal corrections.

We also checked (motivated, e.g., by Ref. 4) how our RPA
nonlocal dielectric tensor (for a smooth density profile) and
the local Drude dielectric function (for rectangular density
profile) influence the s-mode reflectivity coefficient calculated
in the Drude model without dissipation. Both models give
qualitatively the same behavior for frequencies close to zero,
where s reflectivity drops to zero very fast. This means that
phenomenologically included dissipation mechanisms modify
the Casimir force in a very similar way as the electron-hole
excitations in our nonlocal theory. This is because the Casimir
force is an integrated quantity and includes all possible
fluctuations, so the contributions, e.g., from the low-energy
tail of the damped Drude plasmon and from the continuum of
electron-hole pairs, are difficult to distinguish.

The main contribution of this paper is that it provides
a method for the microscopic calculation of generalized
surface reflectivities, based on the self-consistently calculated
electronic wave functions, from which we obtain nonlocal
response functions and also smooth, charge-density profiles
at surfaces without resorting to any matching procedure or
Fresnel formulas. Although the results for Casimir energies
might not differ significantly from those already obtained by
standard methods, our formalism might become essential in
the case of very thin metallic films at short distances.

II. FORMULATION OF THE PROBLEM

A. Ground-state energy of an interacting system

Following the procedure developed in Ref. 13, we shall
briefly present how the ground-state-energy shift due to various
interactions in the system can be expressed in terms of
S-matrix expansion. It is convenient to start from the finite-
temperature formalism. Free-energy shift in the canonical
ensemble when interaction is turned on can be written as

F − F0 = −kBT ln 〈S〉, (1)

where kB is the Boltzman constant, T is the temperature of the
system, and the thermodynamic average is taken with respect
to the unperturbed (free) canonical distribution

〈A〉 = eF0/kBT Tr e−H0/kBT A.

Here, F0 and H0 are unperturbed parts of the free energy
and Hamiltonian, respectively. The average in (1) can also be
written as

〈S〉 = e〈S〉con−1, (2)

where

〈S〉con =
∑
n=1

(−1)n

n!
Scon

n

and Scon
n is the sum of all closed connected diagrams that can

be obtained in the nth order of the perturbation expansion.
Furthermore, for every connected diagram in the nth order,
there are (n − 1)! topologically equivalent diagrams, so we
can write

Scon
n = (n − 1)! Sdif con

n ,

where Sdif con
n are all topologically inequivalent diagrams of

order n. The free-energy shift (1) now becomes

F − F0 = −kBT

{∑
n

(−1)n

n
Sdif con

n − 1

}
. (3)

In order to proceed, we shall anticipate some arguments
given in more detail in Sec. II B. Our system consists of
electromagnetic fields and electrons, and we shall consider
the free-energy or ground-state-energy shift due to their
interaction. In this case, Sdif con

n can be formally written (in
the frequency space, omitting spatial coordinates) as

Sdif con
n =

∑
k

Tr{�n(iωk)D(iωk)}, (4)

which is shown in Fig. 1.

165421-2
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Θ (iω)

D(iω)

n

FIG. 1. (Color online) Feynman’s diagram for Sdif con
k , i.e., the nth

term in the perturbation expansion.

The summation in (4) is over discrete boson frequencies
ωk = 2kπkBT , where k = 0,1,2,3, . . . , �n(iωk) is the po-
larization propagator of the system in the nth order, and
D(iωk) is the electromagnetic field boson propagator. The trace
operation is with respect to space coordinates and polarization.
In Sec. II B, we present the detailed form of these propagators.
Now we are able to use a very powerful relation that connects
the temperature boson Green’s functions with the retarded
boson Green’s functions:13

D(iωk) = Dret(i|ωk|), �(iωk) = �ret(i|ωk|).
This relation is very useful because propagators that describe
classical fields, e.g., currents or electromagnetic fields, are
retarded boson Green’s functions. Also, since for bosons n =
2m, and in this case all the frequencies are positive, expression
(3) becomes

F − F0= − kBT

[ ∑
m=1

1

2m

′∑
k=0

Tr
{
�ret

2m(iωk)Dret(iωk)
} − 1

]
.

(5)

The prime on the summation denotes that the k = 0 term is
multiplied by a factor 1

2 .

B. Electromagnetic interaction between two objects

Now we shall apply expression (5) to calculate the interac-
tion energy between two objects with nonoverlapping electron
densities. We can start from the Hamiltonian

H = H0 + V,

where H0 is the energy of electrons in some local potential,
and the interaction part V in the φ = 0 gauge can be written
as

V = −1

c

∫
dr J(r)A(r), (6)

where the current operator is

J = J1 + J2

with indices 1 and 2 denoting the two slabs and

Ji = eh̄

2im

{
ψ+

i (r)∇ψi(r) − [∇ψ+
i (r)]ψi(r)

× − ie

h̄c
ψ+

i (r)ψi(r)A(r)

}
, i = 1,2.

Here, ψi are electron field operators in the ith object, and
A is the electromagnetic field operator. This interaction
Hamiltonian treats the system consisting of two objects as

unique, including (short-range) interaction inside individual
objects and (long-range) interaction between different objects.
Since we are interested only in the interaction between objects,
we shall divide the vector potentials into the part mediating
only between current fluctuations within the same object (AS),
and the part mediating only between current fluctuations in
different objects (AL). Now, the interaction Hamiltonian (6)
can be written as

V = VS + VL. (7)

Here, VS and VL have the same form as (6), with A replaced by
AS and AL, respectively. In order to separate the interobject
energy shift from the intraobject one, interaction VS can be
included in H0 and VL treated as the perturbation

H = HS
0 + VL,

where the Hamiltonian describing separate objects is

HS
0 = H0 + VS. (8)

Note that this omission of the short-range interactions from
the perturbation leads to the omission of the kBT term in (5).13

Some fluctuation diagrams of the fourth and eighth order
with respect to VL are shown in Fig. 2. Interaction between
current fluctuations is mediated by the interobject photon
propagator DL. Current fluctuations in the objects 1 and 2 are
described by the current-current response functions �1 and
�2, respectively. The �i’s are not free response functions.
They, in principle, contain all interaction terms arising from
interaction VS mediated by the intraobject photon propagator
DS . For illustration, some terms in the expansion of �i are
shown in Fig. 3(a). Local corrections to RPA diagrams shown
in Fig. 3(b) are also mediated by DS . Furthermore, when an
interobject photon is created in one of the objects, it can only
be annihilated in the other object and nothing else can occur
in between. Therefore, the propagator DL is, in fact, the free
photon propagator

DL = D0.

In the following, we shall neglect two-photon interobject
exchange processes [Fig. 3(c)] in analogy with our theory of
noncontact van der Waals forces.31

From Fig. 2, it can be recognized that the lowest order in the
expansion of �m [which appears in Eq. (5)] is �2 = �1D0�2,

D
L

D
L

D
L

D
L

D
L

D
L

Π1 Π2

Π2Π1

Π2 Π1

+ +  . . .

FIG. 2. (Color online) Interobject fluctuation diagrams in terms
of current-current response functions.
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Πi

= +
D

S

D
S

+ +

++ . . .

= D
S

+ + + . . .

D
S

DS= + + + . . .

(a)

(b)

Π1

Π2

D
S

D
S

(c)

FIG. 3. (Color online) (a) Expansion of the current-current
response function in terms of DS ; (b) irreducible polarizabilities;
(c) two-photon exchange diagram.

the next higher order term is �4 = �2D0�2, and so on. Hence,
the free-energy shift can be written as

F − F0 = −kBT

′∑
k

Tr

{
1

2
�1D0�2D0

+ 1

4
�1D0�2D0�1D0�2D0 + · · ·

}
. (9)

By using ln(1 − A) = −A − 1
2A2 − 1

3A3 − · · · , the matrix
series in (9) can be written in a compact form

F − F0 = kBT

′∑
k

Tr ln{1 − �1(iωk)D0(iωk)

×�2(iωk)D0(iωk)}, (10)

where we have omitted writing spatial coordinates. The
tensors �i and D0 are retarded current-current and photon
propagators, respectively, which are here also matrices in
real space. So, the trace operation and matrix multiplications
correspond to summations over polarization μ and integration
over spatial coordinates.

III. RETARDED INTERACTION BETWEEN
METALLIC SLABS

We shall now apply this formalism to the interaction
between two metallic slabs schematically presented in Fig. 4.

Electron currents and densities are localized inside the regions
−L1 < z < 0 and d < z < L2 + d, where z is the coordinate
perpendicular to metallic surfaces.

Because of planar symmetry, the tensors �i and D0 can be
Fourier transformed in the plane parallel to metallic surfaces
and expression (10) becomes

F − F0 = kBT

′∑
k

∫
dQ

(2π )2
TrμTrz

× ln{1 − �1(iωk,Q)D0(iωk,Q)

×�2(iωk,Q)D0(iωk,Q)}. (11)

Photon self-energy matrices �i , illustrated in Fig. 3(a), consist
of contributions, shown in Fig. 3(b), where the lowest-order
terms are

�̂i = �̂
dia
i + �̂

para
i , i = 1,2. (12)

The diamagnetic term30 is a function of the density profile n(z)
shown in Fig. 7:

�̂
dia

(Q,iωk,z,z
′) = − e2

mc
n(z)δ(z − z′)Î, (13)

where Î is the unit matrix. Paramagnetic contribution (current-
current response matrix)30 for the metallic slab has the form

�para
μν (Q,iωk,z,z

′) = −1

c

∑
Knm

fn (K) − fm (K + Q)

ih̄ωk + En (K) − Em (K + Q)

× jμ
nm (2K + Q,z) jν

mn(2K + Q,z′),
(14)

where En (K) = En + h̄2K2

2m
, En are quantized levels in the

direction perpendicular to the metallic slab, and fn (K) is
the Fermi-Dirac distribution. At T = 0, the Fermi-Dirac
distribution is fn (K) = θ [EF − En (K)], where EF is the
Fermi level. Current density producing the transition from
state {n,K} to {m,K + Q} is

jnm (2K + Q,z) = eh̄

2im
{iφn (z) φm (z) (2K + Q) +

+ [φn (z) ∂zφm (z) − φm (z) ∂zφn (z)] ẑ} .

(15)

z-L 0 d L +d1 2

FIG. 4. Geometry of the system.
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The two terms in (15) represent the currents parallel and per-
pendicular to the surface, respectively, and φn (z) are electronic
wave functions in the z direction. The trace operation and
matrix multiplication in (11) now correspond to summations
over μ and integrations over z. We shall first perform the z

integration. After expansion of the logarithm, Eq. (11) can be
written as

F − F0 = −kBT
∑

k

′
∫

dQ
(2π )2

Trμ

{
A + A2

2
+ A3

3
+ · · ·

}
,

(16)

where

A =
∫ 0

−L1

dz1dz2

∫ L2+d

d

dz3dz4

×�1 (z1,z2) D0 (z2,z3) �2 (z3,z4) D0 (z4,z1)

≡ Trz{�1 ⊗ D0 ⊗ �2 ⊗ D0} (17)

is now the matrix with respect to polarization μ only, the
symbol ⊗ represents the convolution in the coordinates z, and
we have omitted writting Q and iωk .

In the following, and also in Sec. III A, the expressions will
be written as functions of real frequency. Explicit expression
for the retarded free photon propagator D0 can be found in
Refs. 30 or 32. If we choose the coordinate system so that
Q = Qy, the free propagators of s- and p-polarized fields
become

D0(Qy,iωk,z,z
′) = vQ(ωk)

⎧⎨
⎩

d+e−βk (z−z′), z > z′

d−e−βk (z′−z), z < z′
(18)

where vQ(ωk) = − 2πQc

ω2
k

and we introduced the matrices

d± =
[

ds 0

0 dp
±

]
. (19)

The component

ds = − ω2
k

Qβkc2
(20)

corresponds to the s-polarized electromagnetic field and the
matrices

dp
± =

[
− βk

Q
∓i

∓i Q

βk

]
(21)

to the p-polarized electromagnetic field. The wave vector in

the z direction is βk =
√

ω2
k

c2 + Q2. After using (18) and some
manipulation, the expression (17) becomes

A = e−2βkd P−P+, (22)

where

P− = vQ(ωk)
∫ 0

−L1

dz1dz2e
βk (z1+z2)�1 (z1,z2) d−,

(23)

P+ = vQ(ωk)
∫ L2

0
dz1dz2e

−βk (z1+z2)�2 (z1,z2) d+.

P± could be considered as polarization propagators on the
left and right inner metallic surfaces (i.e., right surface of the
left slab and left surface of the right slab), respectively.

A. Connection with surface polariton propagators

Now we shall show that the tensors P± can be connected
with the propagators of surface polaritons introduced in
Ref. 30. The propagator of the electromagnetic field near
some polarizable medium can be expressed as a series of
Feynman diagrams, shown in Fig. 5(a). After the sum of
polarization diagrams is recognized as the current-current
response functions �± [already introduced in Figs. 3(a)
and 3(b)], the propagator of the electromagnetic field can also
be expressed as in Fig. 5(b).

The induced part of electromagnetic field can be calculated
from the second term in Fig. 5(b). For example, the induced
part of the electrical field at the right surface of the left slab
can be calculated from the diagram in Fig. 6(a) and has the
form30

Eind
− = 2πQ D− (24)

and, similarly at the left surface of the right slab from the
diagram in Fig. 6(b),

Eind
+ = 2πQ D+ (25)

where

D− =vQ(ωk)
∫ 0

−L1

dz1dz2d+eβk (z1+z2)�1 (z1,z2) d−,

(26)

D+ =vQ(ωk)
∫ L2

0
dz1dz2d−e−βk (z1+z2)�2 (z1+ d,z2 + d) d+

are now propagators of surface polaritons on the left and
right inner metallic surfaces, respectively.

Comparing (26) and definitions (23), we get the connection

D− = d+P−,

D+ = d−P+.

(27)

By using (27), we can express P± in terms of D±. Hence, as
we know that D± can be divided into s and p blocks30 [as D0

in (18)–(21)],

D± =
[

Ds
± 0

0 Dp
±

]
, (28)

Π (z ,z )
i

= + +

+

+

. . .

D i D 0 D 0 D 0 D0 D0

D 0D 0 D 0

(a)

= +
D (z,z’)i D (z,z’)0 D (z,z )0

1 D (z ,z’)0
2

21

(b)

+

FIG. 5. (Color online) Propagators of the electromagnetic fields.
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Π1 Π2

D

D

D

D

0 0

00

(a) (b)

-
ind

E+
ind

E

FIG. 6. (Color online) Feynman diagrams that represent induced
electrical fields on (a) left and (b) right inner metal surfaces.

where

Dp
± =

[
D±

yy D±
yz

D±
zy D±

zz

]
. (29)

This is also valid for P±. So, for s polarization, by using (20),
we get

P s
± = −Qβkc

2

ω2
k

Ds
±. (30)

For p polarization, the procedure is not so straightforward
because detdp

± = 0, and Pp
± can not be obtained from Dp

±
directly by matrix inversion. Physically this means that the
induced polarization Pp

± is not uniquely determined by external
electrical field Dp

±, i.e., there is some freedom in determining
Pp

± from Dp
±. Of course, the electrical field is always uniquely

determined by polarization. Nevertheless, by taking into
account these two facts, we have to solve directly the system
of equations for p polarization (27), and we get

Pp
± = a±Dp

±, (31)

where

a± =
[− Q

βk
±i Q

βk
C±

0 C±

]
(32)

and where arbitrariness of determining Pp
± from Dp

± is
introduced through real arbitrary constants C±.

By using (30) and (31), Eq. (22) becomes

A =
[

Q2β2
k c4

ω4
k

Ds
−Ds

+ 0

0 a−Dp
−a+Dp

+

]
e−2βkd (33)

and the trace in (16) can be written in the compact form (as
before)

Trμ ln {1 − A} . (34)

In Sec. III B, we show that the free-energy shift can be
separated into s− and p-polarized parts for a general case, i.e.,
without the specific choice of the coordinate system Q = Qy
used in this section.

B. Separation of s- and p-polarized contributions

In the previous section, we considered the situation wherein
the electromagnetic wave was propagated in the Q = Qy
direction when the tensors d±, D±, and P± can be separated
into s and p blocks. However, in (34), electromagnetic waves

propagating in all Q directions contribute, so we have to justify
this separation in (34) for general Q. Our system is isotropic
in the (x,y) plane and the tensors that describe propagation
in different directions can be connected by using rotation
operation in the plane perpendicular to the z axis

R(θ ) =

⎡
⎢⎣

cos θ sin θ 0

− sin θ cos θ 0

0 0 1

⎤
⎥⎦ .

For example, if θ denotes the angle between two directions of
propagation Qy and Q, with |Q| = Q, the relation between
the tensors D(Qy) and D(Q) is

D(Q) = RT (θ )D(Qy)R(θ ), (35)

which leads to

TrμD(Q) = Trμ{RT (θ )D(Qy)R(θ )} = TrμD(Qy).

Therefore, after choosing Qy as the referent direction, the
contributions from all other directions of propagation are the
same as in (33) and (34). Therefore, (34) can be inserted in
(16) and 
F can be divided into s and p parts:

F − F0 =
∑
i=s,p


Fi, (36)

where


Fs = kBT
∑
k=0

′
∫

dQ
(2π )2

ln

{
1 − e−2βkd

Q2β2
k c

4

ω4
k

Ds
−Ds

+

}

(37)

and


Fp = kBT
∑
k=0

′
∫

dQ
(2π )2

Trμ ln{1 − e−2βkda−Dp
−a+Dp

+}.

(38)

In (38), all tensors are now 2 × 2 matrices and μ = y,z.
Matrices a± have the explicit form (32). Calculation of the
surface polariton propagators D± is described in Ref. 30,
and expressions in the long-wavelength limit can be found
in Ref. 32.

One would like to express the logarithm in (38) in terms of
scalars rather than in terms of matrices, as, for example, in the
s-polarized case, where each of the two scalars Ds

± contains all
spectral properties of the corresponding slab. This calculation
is described in the Appendix. Hence, s and p contributions to
the Casimir free energy at finite temperature can be rewritten
in the final form as


Fs = kBT
∑
k=0

′
∫

dQ
(2π )2

ln{1 − e−2βkdRs
−Rs

+} (39)

and


Fp = kBT
∑
k=0

′
∫

dQ
(2π )2

ln {1 − e−2βkdR
p
−R

p
+}, (40)

where

Rs
− = −Qβkc

2

ω2
k

Ds−
xx , Rs

+ = −Qβkc
2

ω2
k

Ds+
xx , (41)
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R
p
− = Q

βk

Dp −
yy , R

p
+ = Q

βk

Dp +
yy . (42)

Formally, similar expressions were obtained by Lifshitz14 and
by Abrikosov, Gorkov, and Dzyaloshinski a long time ago,13

but they all treated metallic slabs using a local dielectric
function. In Sec. IV B, we show that R

s,p
− and R

s,p
+ in the

long-wavelength limit correspond to the reflection coefficients
r

s,p
± on the left and right inner metallic surfaces.

The results (39)–(42) for the Casimir energy between two
metallic slabs are beautifully simple and at the same time very
powerful. Casimir energy is expressed directly in terms of two
components of the polariton propagator matrix calculated for
each of the slabs separately, without restriction to a specific
response mechanism.

IV. DISCUSSION OF THE RESULTS

Expressions (39) and (40) for the electronic contribution
to the Casimir free energy given in terms of generalized
reflectivities (or polariton propagators) (41) and (42) are, in
principle, exact provided that we describe the electronic re-
sponse in a satisfactory approximation while other fluctuation
mechanisms remain to be included in some other, usually
phenomenological, way. In this section, we first show that
these expressions reduce to the well-known results in the
nonretarded and zero-temperature limits (where one recovers
the usual van der Waals energies), and in the long-wavelength
limit. These considerations are generally valid and do not
depend on the assumed electronic response.

The level of accuracy of our calculations depends on the
choice of the approximation that we use for the calculation of
the electronic response. We use the jellium model and calculate
self-consistent electronic wave functions in the LDA. To obtain
the response functions, we use RPA, i.e., taking into account
only the first terms in the expansions in Fig. 3(b).

A. Electrostatic zero-temperature limit and
van der Waals interaction

Before proceeding with the calculation of the Casimir free
energies (39) and (40), we show that these expressions reduce
to the correct nonretarded (c → ∞) and zero-temperature
(T → 0) limit, as well as to the standard Lifshitz result when
nonlocality of response is neglected in the long-wavelength
limit.

Transition to zero temperature is straightforward. Namely,
because of

kBT
∑
ωk=0

→ h̄

∫ ∞

0

dω

2π
,

all we have to do is to substitute the summation over discrete
frequencies in (39) and (40) by the integration over continuous
frequencies. Also, the free-energy shift becomes the energy
shift

F − F0 → E − E0 = 
Es + 
Ep.

Propagators in (39) and (40) remain unchanged except that
they become functions of continuous frequency iω.

From (41), it appears that Rs
± is proportional to c2, but

it is easy to show that Ds±
xx is proportional to 1/c4, so Rs

±
actually vanishes quadratically with c, which means that, in
the nonretarded limit, 
Es = 0 and we only need to consider
the p-polarized contribution.

To do this, we first need to transform the integration
in (40) to the real frequencies. R

p
± in (40) are real functions

of imaginary frequency iω, so 
Ep is real. After substituting
u = iω, closing the integration contour in the first quadrant of
the complex ω plane, and using the fact that R

p
± are analytic

functions in the upper ω plane, (40) becomes


Ep = h̄ Im
∫

dQ
(2π )2

∫ ∞

0

dω

2π
ln{1 − e2iβdR

p
−R

p
+}, (43)

where R
p
± are complex functions of real frequency, exactly as

they appear in (A12).
In order to find the c → ∞ limit of D

p±
μν in (A12), we

first relate the propagator of the electromagnetic field D to
the propagator of the screened Coulomb interaction W in the
nonretarded limit using the result30

lim
c→∞

ω2

c
Dp,ind

μν (Q,ω,z,z′)

=
[
iQ + z

∂

∂z

]
μ

[
iQ − z

∂

∂z′

]
ν

W ind(Q,ω,z,z′). (44)

Obviously, we shall apply (44) to μ,ν = y,z only.Furthermore,
the induced part of W can be related to the propagator of
surface excitations D (Q,ω),31,33–36

W ind
± (Q,ω,z,z′) = 2π

Q
D± (Q,ω) e±Q(z+z′), (45)

where + and − correspond to the right and left surfaces,
respectively. After inserting (45) in (44), with Q = Qy,
performing the derivatives, and inserting z = z′ = 0, with the
help of (24), (25), and (A12) with α → −i, we can easily show
that

R
p
± = −D±(Q,ω) (46)

so that the expression (43) for the van der Waals energy
becomes


Ep = h̄ Im
∫

dQ
(2π )2

∫ ∞

0

dω

2π

× ln{1 − e−2QdD+(Q,ω)D−(Q,ω)}, (47)

which is exactly Eq. (23) in Ref. 31. Comparison with (40)
shows that R

p
± in the c → ∞ limit play the role of surface

excitation propagators D±, including effects of nonlocality as
discussed in Ref. 31.

B. Long-wavelength (local) limit

Now we want to compare our results (39) and (40) with the
standard results for the Casimir force obtained by the usual
electromagnetic field matching procedure, which is possible
when the media have sharp boundaries and are described by
local dielectric functions. Tensors D± in (37) and (38) have
exact physical meaning as expressed in (24) and (25), where
Eind

± is the induced electrical field produced by the unit point
dipole placed at the right (left) inner surface, assuming that
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the slabs are infinitely separated, i.e., d → ∞. Expressions for
induced electrical fields in the long-wavelength limit are easily
obtainable and the transition to Q → 0 is straightforward.
For example, compact expressions for Eind

± even for arbitrary
planar configurations can be found in Ref. 32. After inserting
Eq. (2.22) of Ref. 32 into (24) and (25), we get

Ds
± ≡ Ds±

xx = − ω2
k

βkQc2
rs
± (48)

and

Dp
± = r

p
±

[
βk

Q
±i

∓i Q

βk

]
, (49)

where r
s,p
− are reflection coefficients for s- and p-polarized

electromagnetic plane waves incident on the planar configu-
ration placed in z < 0, and r

s,p
+ are reflection coefficients for

s- and p-polarized electromagnetic plane waves incident on
the planar configuration placed in z > d. These coefficients
are obtained using the boundary conditions at sharp metallic
surfaces and do not include dispersion. After inserting (48)
into (41) and matrix elements D

p±
yy of (49) into (A12), we get

Rs
± → rs

±, R
p
± → r

p
±, (50)

which again shows that R
p
± have the roles of surface reflec-

tivities. After inserting (50) into (39) and (40), we obtain, as
expected, the local expressions for the Casimir free energy in
terms of reflection coefficients


F local
s = kBT

∑
k=0

′
∫

dQ
(2π )2

ln{1 − rs
−rs

+ e−2βkd}, (51)


F local
p = kBT

∑
k=0

′
∫

dQ
(2π )2

ln{1 − r
p
−r

p
+ e−2βkd}. (52)

C. Diamagnetic and paramagnetic contributions

Photon self-energy terms shown in Fig. 2 and their lowest-
order terms given by Eqs. (12)–(15) deserve some comments
concerning their specific physical roles in the Casimir energy.

The diamagnetic term represents local density fluctuations
[including their higher-order corrections, screening, etc., as
shown in Fig. 3(b)], and it has its counterpart in classical
electrodynamics. When the electronic response is described in
the local approximation, e.g., by the local dielectric function
εi(ω) for the medium i, this corresponds to the sharp (steplike)
charge-density profile at the surface, and standard EM field
matching procedures can be applied. Attempts to combine
arbitrary density profiles with EM boundary conditions lead
to unavoidable difficulties, requiring additional boundary
conditions or some other approximation. As our starting
point is the microscopic description of electrons in terms of
their wave functions, we are able, by using (13), to include
diamagnetic contributions to the Casimir energy exactly, with
the electron density profile calculated from first principles.

The paramagnetic term in Fig. 3(b) and Eq. (14) represents
nonlocal current-current fluctuations, i.e., intraband and inter-
band electronic transitions, and here it was included in the
proper nonlocal description of electrons in a metallic slab.

As is obvious, e.g., from Figs. 3(a) and 3(b), these
two contributions can not be separated since each one is
modified by the self-energy terms that combine both processes.
However, in our analysis in Sec. IV E, we show that, in a
specific application, these two physically distinct contributions
to the Casimir energy can be, to a very good approximation,
identified and discussed separately.

To clarify the origin and the role of each contribution to the
photon self-energy tensor �, it is useful to explore how it is
related to the nonlocal dielectric tensor ε. For a polarizable
system of arbitrary symmetry described by the nonlocal
dielectric tensor ε in the linear response approximation,
electric field E and electric displacement D are related as

D = ε ⊗ E, (53)

where ⊗ represents matrix multiplication and convolution in
real space. The electric field in the presence of a point dipole
p then can be obtained by solving the equation30,32

{
∇ × ∇ × δ(r − r1)Î − ω2

c2
ε̂(r,r1,ω)

}
⊗ E(r1,r′,ω)

= 4π
ω2

c2
δ(r − r′)p, (54)

where Î = xx + yy + zz is the unit dyadic, and the variable
in all differential operators is r. On the other hand, using the
Dyson equation for the photon propagator

D = D0 + D0 ⊗ � ⊗ D

and the relation30

E(r,r′,ω) = ω2

c
D(r,r′,ω)p,

we can obtain the Dyson equation for the electric field

E = E0 + D0 ⊗ � ⊗ E. (55)

Acting on both sides with the operator ∇ × ∇ × −ω2

c2 , by using
Eq. (54) for vacuum (ε = 1) and the differential equation for
free photon propagator{

∇ × ∇ × −ω2

c2

}
D0(r1,r′,ω) = 4π

c
δ(r − r′)Î, (56)

we get{
∇ × ∇ × δ(r − r1)Î − ω2

c2

[
δ(r − r1)Î + 4πc

ω2
�(r,r1,ω)

]}

⊗ E(r1,r′,ω) = 4π
ω2

c2
δ(r − r′)p. (57)

By comparing (54) and (57), we can obtain the general
relationship between the dielectric tensor and the photon
self-energy �̂:

ε̂(r,r′,ω) = δ(r − r′)Î + 4πc

ω2
�̂(r,r′,ω). (58)

After Fourier transforming and substituting(12)–(14), we get

εμν(z,z′,Q,ω) = εL(z,ω)δ(z − z′)δμν + εT
μν(z,z′,Q,ω), (59)

165421-8



NONLOCAL MICROSCOPIC THEORY OF CASIMIR FORCES . . . PHYSICAL REVIEW B 83, 165421 (2011)

where

εL(z,ω) = 1 − ω2
p(z)

ω2
, (60)

εT
μν(z,z′,Q,ω) = 4πc

ω2
�para

μν (Q,ω,z,z′), (61)

and ω2
p(z) = 4πe2n(z)

m
is the local plasma frequency. εL is what is

usually called the longitudinal dielectric function, in the long-
wavelength limit. Here, it is obvious that εL is the local part of
the dielectric function related to the general (i.e., continuous)
density profile. It is derived from �dia

μν and represents the
charge-density polarization. εT

μν is the correction to εL that
contains longitudinal and transverse components and, in the
long-wavelength (local) limit, it becomes longitudinal as
well. From (61), we can see that εT

μν is proportional to �
para
μν

and represents polarization originating from electron-hole
transitions. In other words, εT

μν is the nonlocal part of the
dielectric function and the nonlocality is taken into account
through exact calculation instead of being added through
some parametrized procedure. As we can see from Ref. 30
(Sec. II A), the tensor �

para
μν is not purely transverse, but

it consists of diagonal (longitudinal) and nondiagonal
(transverse) parts, and the transverse part vanishes in the
long-wavelength limit. From this discussion, it is obvious that
there is no direct way to connect the expressions (59)–(61)
with the transverse and longitudinal dielectric functions in a
homogeneous medium.

In the calculation of the Casimir free energy, we can, in
principle, use the dielectric tensors (59)-(61) or the polar-
ization propagator �. Also, to investigate the influence of
the nonlocal effects and density profile on the Casimir free
energy, we compare our nonlocal results with those obtained by
performing the same calculation using a local Drude dielectric
function

ε(ω) = 1 − ω2
p

ω(ω + iη)
. (62)

The plasmon frequency is ω2
p = 4πe2n+

m
inside the slab and

ω2
p = 0 outside the slab, n+ is the positive background density,

while η is the damping parameter that reflects the dissipation
inside the slabs.

D. Computational method

To apply this theory to a specific physical problem, we
need to rewrite some of the expressions used for the local and
nonlocal calculations of Casimir free energy in the form more
suitable for the numerical calculations. Propagators of surface
polaritons (26) are proportional to the induced part of the
electromagnetic field propagator Dind

± (Q,ω,z = 0,z′ = 0):30

D± = 1

vQ(ωk)
Dind

± (Q,iωk,z = 0,z′ = 0), (63)

where z = 0 is the position of the right electron density edge.
By combining (41), (42), and (63) and using h̄ = m = c = e =
1 unit system, the generalized reflectivities can be numerically
calculated by using

Rs
± = β2

k

2πγ 2
Dind,±

xx (Q,iωk,z = 0,z′ = 0), (64)

R
p
± = − ω2

k

2πβ2
k

Dind,±
yy (Q,iωk,z = 0,z′ = 0), (65)

where βk =
√
γ 2ω2

k + Q2 and γ = e2

h̄c
is the fine-structure

constant. The electromagnetic field-tensor components Dind
xx

and Dind
yy can be obtained by solving the Dyson equation for

each slab

D̂(Q,iωk,z,z
′) = D̂0(Q,iωk,z,z

′) + D̂0(Q,iωk,z,z1)

⊗ �̂
dia

(Q,iωk,z1,z2) ⊗ D̂(Q,iωk,z2,z
′)

+ D̂0(Q,iωk,z,z1) ⊗ �̂
para

(Q,iωk,z1,z2)

⊗ D̂(Q,iωk,z2,z
′), (66)

where the electron density (current) is located in the interval
z ∈ (−L,0) and ⊗ = ∫ 0

−L
dz denotes the convolution in the z

coordinate. Because the procedure is the same for both slabs,
for clarity we omit the symbol ± in the superscripts of the
tensors. By choosing Q = Qy, components of the free photon
propagator become

D0
xx(Q,iωk,z,z

′) = 2π

cβk

e−βk |z−z′ |, (67)

D0
yy(Q,iωk,z,z

′) = 2πcβk

ω2
k

e−βk |z−z′ |, (68)

D0
zz(Q,iωk,z,z

′) = 4πc

ω2
k

δ(z − z′) − 2πcQ2

βkω
2
k

e−βk |z−z′ |,

(69)

and

D0
yz(Q,iωk,z,z

′) = D0
zy(Q,iωk,z,z

′)

= 2πicQ

ω2
k

sgn(z − z′) e−βk |z−z′ |. (70)

Photon self-energies [needed to solve (66)] are explicitly
given by expressions (13) and (14), and a solution method
is described in Ref. 30. After we solve the equation (66), the
induced part of the photon propagator can be obtained as

D̂ind(Q,iωk,z = 0,z′ = 0) = D̂(Q,iωk,z = 0,z′ = 0)

− D̂0(Q,iωk,z = 0,z′ = 0).

(71)

By inserting xx and yy components of (71) first into (64) and
(65) and then into (39) and (40), and performing a simple
frequency summation and wave-vector integration, we get the
Casimir free energy.

For the local calculation of the Casimir free energy, we use
expressions (51) and (52) and the reflectivity coefficients taken
from Ref. 32:

r
s,p
± = r

s,p

v/m

Ds,p

(1 − e−2β ′
kd ), (72)

where Ds,p = 1 − [rs,p

v/m]2e−2β ′
kd and

rs
v/m = βk − β ′

k

βk + β ′
k

, r
p

v/m = ε(ωk)βk−β ′
k

ε(ωk)βk+β ′
k

(73)

are the reflectivity coefficients for s- and p-polarized elec-
tromagnetic waves incident on the vacuum (metal) interface.
Here, β ′

k =
√
γ 2ε(ωk)ω2

k + Q2, the thickness d of the slab is
chosen to correspond to the jellium background thickness,
and the dielectric function is given by (62). For the plasmon
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frequency, we have chosen ωp = 9.07 eV, which corresponds
to the jellium bulk plasma frequency of silver, while the
damping parameter needs to be determined phenomenolog-
ically by fitting the results for the reflection coefficients to the
experimental data, and for silver it is η = 100 meV.37

E. Application to silver films

To demonstrate the scope of our theory, we apply it to
investigate Casimir energy between two silver slabs. The
electronic structure of silver films will be described using
a jellium model. For a silver metallic slab, we choose a
positive background of thickness 31a0 and the density that
corresponds to rs = 3. The self-consistently calculated work
function is φ = 3.51 eV, and there are seven occupied states.
The corresponding density profile is shown by a (thick solid)
line in Fig. 7.

The conductivities inside each metallic slab are calculated
using these eigenstates and density, as well as the previously
described RPA method, which means that we do not include
any dissipation that would lead to finite conductivity. In order
to describe more realistic metallic slabs, all ohmic losses
should be included, i.e., even though we have calculated the
contribution of electron-hole excitations to a very high level of
accuracy, there are other processes (phonons, impurities, etc.)
that we have neglected.

The Drude model includes all dissipation mechanisms
through the plasmon damping parameter η, which is de-
termined phenomenologically by fitting the results for the
reflection coefficients to the experimental data. This means
that the Drude model calculations, even though relatively
simple compared to our calculations, can give more realistic
results for the Casimir energies since they include all the
dissipation mechanisms, but they do not provide a way
to distinguish among these mechanisms nor explore their
individual influence on the Casimir force. Our formulation
includes only collective and single-particle effects of electron-
electron interaction, both included by means of a detailed,
nonlocal calculation, exact within the model used to describe
the response of the metallic slabs. The purpose of our

-30 -20 -10 0 10 20 30
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0.008
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FIG. 7. Thin solid line: rectangular electronic density profile that
corresponds to jellium edges. Thick solid line: LDA electron density
profile. The corresponding parameters are presented in the text.

calculations is not to obtain more accurate results than the
ones obtained by the, e.g., Drude model, but to compare
them with the ones obtained by the Drude model (with and
without dissipation). This will give us information about the
importance of low-energy electron-hole excitations.

Our model enables us to evaluate selectively different
contributions [diamagnetic, paramagnetic, s(TE), or p(TM)]
to the Casimir energy. The results show that, e.g., if only
diamagnetic contribution is included, it corresponds to a
system without dissipation, i.e., with the system with infinite
dc conductivity, and the results are the same as those obtained
by the Drude model without dissipation (η = 0). On the
other hand, the Casimir force obtained using a simple Drude
dielectric function with realistic damping parameter is in
excellent agreement with the one obtained using the experi-
mental dielectric function3,4,21 and with the one obtained from
experiments at room temperature.5 It means that the Drude
model can provide a good description of the room-temperature
Casimir force and also that inclusion of the paramagnetic
contribution in our dielectric function can tell us exactly how
much electron-hole pairs participate in this process.

To investigate this, we compare the Drude model without
dissipation, our nonlocal calculations, and the Drude model
with realistic damping. Figure 8 shows the calculated Casimir
free energies as functions of separation between slabs at room
temperature T = 300 K. The solid (black) lines represent
results obtained from the Drude model with dissipation where
η = 100 meV is taken from literature,37 the dashed (red) lines
represent the results of our nonlocal theory, i.e., calculated
from the expressions (39)–(42), and the dotted (blue) lines
represent results obtained from the Drude model without
dissipation (η = 0). The left set of graphs shows the Casimir
free energies at shorter separations (0.2–1 μm), while the
right set shows Casimir free energies at larger separations
(1.2–5 μm).

In all figures, we see a reduction of Casimir energies with
respect to the calculation that does not include dissipation.
This has been observed before,3,4,21–23 where the calculations
were performed using the local Drude models with and
without dissipation, and it was concluded that dissipation is
indeed responsible for the effects. Namely, the k = 0 term in
expression (51) has a finite value if no dissipation is taken into
account, while it is equal to zero as soon as any dissipation is
included. This is also in agreement with our results in which
we have shown that the effect results from the electron-hole
excitations, which occur in the paramagnetic term.

The decomposition to s and p contributions shown in the
four bottom graphs provides additional understanding. We
see that the p contribution in all three models is almost the
same. On the other hand, for the s mode at short separations,
reduction due to the low-energy electron-hole excitations is
almost half of the Drude reduction. At larger separations
(especially as d approaches 5 μm), reduction due to this
mechanism is negligible compared to all other dissipation
mechanisms that cause the Drude model result to drop to zero
at large separations.

This influences the total Casimir energy in a very delicate
way. At large separations (3 μm < d < 5 μm), the Drude
result with dissipation is exactly half of the Drude result
without dissipation. This is because, at such separations,
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FIG. 8. (Color online) Casimir free energies for two silver slabs with thicknesses 31a0 at room temperature (T = 300 K) calculated in the
jellium model, as a function of distance between the slabs. Solid (black) lines: Drude model with dissipation; dashed (red) lines: nonlocal
calculation without dissipation; dotted (blue) lines: Drude model without dissipation. Graph (a) shows distances up to 1 μm while graph (b)
shows distances from 1 to 5 μm. The four graphs in the bottom show s(TE) and p(TM) contributions of the Casimir energies of the graphs
above them.

Drude reflectivities without dissipation behave like perfect
metal reflectivities, i.e., s and p contributions are equal, and
when dissipation is included, the s contribution drops to zero
while the p contribution is not influenced. On the other hand,
electron-hole pairs do not influence the s mode that much, and
the total Casimir force at large separation is close to the result
obtained by the Drude model without dissipation. Therefore,
at large separations, the nonlocal effects are not important,
while other dissipation mechanisms reduce the Casimir force
exactly by a factor of 2.4

However, at smaller separations (d < 1 μm), the influence
of nonlocality is not so unimportant since about 1/2 of the total
s reduction is caused by the dissipation originating from the
nonlocal effects. To support this, we have performed careful
analysis of the s reflectivity around ω = 0 and found that
this reduction is due to the low-energy intraband electron-hole
excitations. They cause the s reflectivity to drop to zero for
ω = 0, while the excitation of the interband electron-hole pairs
does not influence s reflectivities at all.

V. CONCLUSION

The results presented in this paper and discussed in Sec. IV
show that we have developed a fully self-consistent nonlocal
microscopic theory of the Casimir effect exactly within the
used model. Diamagnetic, i.e., density fluctuations are treated
microscopically and expressed in terms of the calculated
electron density (instead of some externally introduced density
and dielectric function). Another important feature is that the
theory properly treats the paramagnetic contribution, including
electron-hole excitations.

The main advantage of this contribution to the theory
of Casimir energy is the method of calculating surface
reflectivities, which includes dispersion and can be applied
for smooth charge-density profiles, and is directly related to
the surface polariton propagators.30

This formulation is applied to investigate the Casimir force
between two silver slabs. As it is well known, treating metallic
slabs as perfect conductors leads to incorrect results for the
Casimir force, inconsistent with experiments, while a realistic
description that includes dissipation (even through the simple
Drude model) gives physically acceptable Casimir force.
This is mainly because dissipation cancels the s-polarized
contribution and the Casimir force drops to one-half of the
perfect metal result.

In our calculation, we only included the electronic collec-
tive and single-particle excitations, neglecting other physical
processes, and showed that, at large (macroscopic) separations
(d > 5 μm), the resulting Casimir force is the same as for
the perfect metal case, which means that the low-energy
electron-hole excitations are not important for large sepa-
rations between the slabs. However, at smaller separations
(d < 1 μm), our correction of the perfect metal result is
definitely not negligible. The result presented here is that about
1/2 of the total s reduction calculated by the Drude model
caused by low-energy electron-hole excitations.

The relative insensitivity of the Casimir force to the precise
shape of the response mechanism is easy to explain. The
Casimir force is an integrated quantity and includes all possible
fluctuations, so the contributions e.g., from the low-energy tail
of the damped Drude plasmon and from the continuum of the
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electron-hole pairs are difficult to distinguish. The situation,
however, is different in the calculation of quantum friction,38

where the response mechanism is exactly the same, but the
excitation spectrum appears in the final state, so the above two
cases can be easily distinguished.
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APPENDIX: CASIMIR FREE ENERGY IN TERMS OF
GENERALIZED REFLECTIVITIES

We want to evaluate the trace in (38) and, specifically, the
product of the matrices in the logarithm. We first notice that
matrices dp

± have linearly dependent rows

d
p
±,zμ = ∓α d

p
±,yμ, μ = y,z (A1)

where α = −i Q

βk
. After inserting (A1) into (27), the matrices

Dp
± become

Dp
± =

[
D

p ±
yy D

p ±
yz

±α D
p ±
yy ±α D

p ±
yz

]
. (A2)

By multiplying the two and two matrices and using Tr ln A =
ln det A, the trace in (38) can be written as

ln det{1 − MNe−2βkd}, (A3)

where

M =
[

Myy XMzz

1
X

Myy Mzz,

]
, N =

[
Nyy YNzz

1
Y
Nyy Nzz,

]
, (A4)

Myy = −α(αC− + i)Dp −
yy , Mzz = −αC−D

p −
yz ,

Nyy = −α(αC+ + i)Dp +
yy , Nzz = αC+D

p +
yz ,

(A5)

and where X = αC−+i

C−
, Y = − (αC++i)

C+
. The determinants of the

matrices M and N are equal to zero, as well as det MN, so
after using

ln det(1 − A) = ln(1 − TrA + det A),

(A3) becomes

ln

{
1 −

[
Myy + X

Y
Mzz

] [
Nyy + Y

X
Nzz

]
e−2βkd

}
. (A6)

After inserting (A5), X, and Y in (A6), we get

ln{1 − e−2βkd R̃
p
−R̃

p
+}, (A7)

where

R̃
p
− = −αC− + i

αC+ + i
R

p
−, R̃

p
+ = −αC+ + i

αC− + i
R

p
+

and

R
p
− = α

[
(αC+ + i)Dp −

yy − C+Dp −
yz

]
,

(A8)

R
p
+ = α

[
(αC− + i)Dp +

yy + C−Dp +
yz

]
.

Because R̃
p
± in (A7) appear in a product, the result obviously

does not depend on the ratio between C+ and C−, so without
losing the generality, we can put C+ = C− = C and the
logarithm (A7) can be written as

ln{1 − e−2βkdR
p
−R

p
+}, (A9)

where

R
p
− = α

[
(αC + i)Dp −

yy − CDp −
yz

]
,

(A10)

R
p
+ = α

[
(αC + i)Dp +

yy + CDp +
yz

]
.

Now, one can conclude that the result for the Casimir force
depends on an arbitrary constant C and is not unique.
But, because surface propagators in general satisfy the
relations D

p±
yz = −D

p±
zy , and after combining with (A2),

we find that

Dp±
yz = ∓αDp±

yy . (A11)

Because of (A11), the terms in (A10) containing the constant
C exactly cancel and we get

R
p
− = iαDp −

yy ,

(A12)

R
p
+ = iαDp +

yy .

Expressions (A12) are the generalized reflectivities that now
contain both geometric dispersion (i.e., Q dependence) and
dispersion due to nonlocal description of electron response
included in D

p±
yy (Q,iωk). Inserting α, one obtains the results

given in (42).
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