
Theoretical and experimental analysis of a thin elastic
cylindrical tube acting as a non-Hookean spring

Šiber, Antonio; Buljan, Hrvoje

Source / Izvornik: Physical Review E, 2011, 83

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevE.83.067601

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:946923

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-29

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1103/PhysRevE.83.067601
https://urn.nsk.hr/urn:nbn:hr:217:946923
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:7234
https://dabar.srce.hr/islandora/object/pmf:7234


PHYSICAL REVIEW E 83, 067601 (2011)

Theoretical and experimental analysis of a thin elastic cylindrical tube acting
as a non-Hookean spring
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We analyze the (large) deformation and energy of a thin elastic cylindrical tube compressed between two
plates parallel to the tube axis. The deformation is studied theoretically using a numerical calculation and the
variational approach. The results are used to interpret the experimental data obtained by pressing tubes made
from plastic-foil transparencies. We obtain a universal scaling relation that characterizes the response of the tube.
Our results may serve as a benchmark for the application of variational methods to thin-walled nanoscale systems
in order to obtain functional relations between the energy and the deformation.
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Large deformations of elastic bodies are typical in cases
where tight packing is necessary due to particular con-
straints [1] or external pressure [2,3]. In many cases the
systems of interest are nanoscale, e.g., DNA molecules in
bacteriophage capsids [4], empty virus shells under osmotic
pressure [3], and crystals of deformable, soft particles [5]
such as fullerenes and carbon nanotubes [6]. There are also
systems on a micronlength scale characterized by tight packing
and pronounced deformation, such as epithelial tissues [7].
The elasticity of the systems of interest is often studied in
the linear elasticity regime (see, e.g., Ref. [8]) where the
characteristic deformations are small. However, to properly
account for energies of tightly packed and/or constrained
and strongly deformed structures, one needs to consider the
elastic energies in the nonlinear regime. Yet the functional
relations between force (energy) and deformation are derived
mostly in the small-deformation regime [9]. Although strongly
deformed bodies may be studied numerically using different
variants of the finite element technique, functional relations
that transparently relate energy and deformation are certainly
of special use. Such analytical expressions are of importance in
many applications, especially in nanoscale physics and cellular
biophysics [7].

In this Brief Report we introduce a spring made by
rolling a piece of thin elastic sheet to form a cylindrical
tube. We predict small and large deformations of such a
spring situated in between two parallel plates by using an
approximate but completely adequate variant of the theory
of elasticity. Our work presents a way to obtain reliable an-
alytical approximations for strongly deformed systems using
a variational approach. Although variational approaches are
very convenient when examining strongly deformed systems,
their validity and usefulness is not obvious. In particular,
it is of interest to see whether simple trial functions for
the shape of the deformed system yield a correct functional
dependence of energy on the deformation variable (generalized
extension). For the simple system that we have chosen for this
study, we derive an analytical expression for the energy in
the strongly deformed regime. To check the validity of the
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approach presented, we perform numerical calculations and
determine a universal response curve of thin-walled tubes of
different dimensions and elastic properties. We actually built
the system of interest so as to provide reliable experimental
data. The experimental data confirm the universal scaling curve
that we obtained numerically through almost four orders of
magnitude of the force.

The system that we have chosen is meant to model cases of
large deformations in materials that are made of thin sheets.
This is motivated by thin-sheet structures such as carbon
nanotubes, fullerenes, and other similar structures made of
graphene sheets [10,11], cellular membranes and vesicles
[7,12] (made of a lipid bilayer), and protein shells (made
of protein sheets), such as virus capsids [3,13,14] and mi-
crotubules [15]. One may wonder whether our (macroscopic)
experimental setup and the classical theory of elasticity can
be used as a model and an approach relevant for nanoscale
systems. It has been shown that the energies of nanoscale
thin-shelled systems (larger than about 2 nm [11]) can be very
accurately determined using the theory of elasticity [10,11]
(see also Ref. [16]), thus our work directly reflects on the
systems of present interest.

The tube is pressed between two parallel plates as depicted
in Fig. 1. The length of the parallel plates is larger than the
length of the tube h, which makes the problem effectively
one dimensional. As the tube deforms inextensionally, the
stretching of the sheet can be neglected [17] and the elastic
energy of the pressed tube is Eel = κ

∫
S
K2dS/2, where

κ is the bending (or flexural) rigidity of the sheet and
K = R−1

1 + R−1
2 , where R1 and R2 are the principal radii of

curvature at some point. We have implicitly assumed that both
radii are much larger than the thickness of the sheet d. If the
material the sheet is made of is isotropic, the bending rigidity
κ is related to the Young modulus and Poisson ratio ν of the
material as [17]

κ = Ed3

12(1 − ν2)
. (1)

Since the sheet is bent only along one direction, we can write
the elastic energy in terms of the one-dimensional integral
Eel = κh

∫
C K2dl/2, where C is the curve outlining the shape

of the cylinder base and dl is the infinitesimal arc element
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FIG. 1. (Color online) Illustration of the experimental setup.

of the curve C (dS = h dl). The force exerted by the pressed
cylinder onto the plates can be measured by using a simple
scale located below the bottom plate (see Fig. 1). It is useful
to recognize that the effective mass me measured by the scale
can be thought of as a mass that presses the spring from above
due to gravity (the mass of the spring being neglected here).
With this picture in mind, the total energy of the system is

E = Ep + Eel = 2megb + κh

2

∫
C
K2dl, (2)

where 2b is the separation between the plates. For a given
mass me, there is an equilibrium value of b at which ∂E/∂b =
0. The difficult part of the problem is to find the curve C
that minimizes the elastic energy Eel for a given separation
between the plates 2b; the minimization should be performed
with two constraints: The length of the curve is fixed (the sheet
is inextensible) and the height of the object depicted by C
is 2b.

To explore the energetics of the problem analytically, we
use two qualitatively different Ritz trial solutions (Ansätze) for
curve C: (i) the stadium-shaped curve made of two identical
semicircles connected by two straight lines that touch the
press plates (this profile is expected to be a good model for
sufficiently large pressing forces and is often used for vesicles
and cells in contact; see, e.g., Ref. [7]) and (ii) an ellipse
(expected for small forces) that touches each plate at one point.

The energy of the stadium profile is calculated as follows.
Flat pieces of the profile contribute nothing to the elastic energy
since there K = 0; the curved parts are two halves of a cylinder
of height h and radius b, where K = b−1, so that we have

E = 2megb + πκh

b
. (3)

The spring will be in equilibrium when dE/db = 0, i.e., when

b =
√

κπh

2meg
. (4)

This solution is expected to be correct only for sufficiently
large loads. Note that the stadium profile fulfills the inexten-
sionality requirement when b < b0.

The elastic energy when C is an ellipse with a circumference
equal to 2πb0 (this is the inextensionality requirement; b0 is
the radius of the cylinder in its unladen state) can be expressed
in terms of elliptic integrals. However, since this Ansatz makes
sense only for small deformations where the major and minor

FIG. 2. (Color online) Theoretical predictions for the spring
energies. The circles show the numerical results, the dotted line is
the prediction of the variational method based on the stadium profile,
and the dashed line corresponds to the elliptic profile. The solid line
shows the stadium profile energy multiplied by 0.912.

axes of the ellipse, a and b, are close, these integrals can be
Taylor expanded to yield

lim
a→b

Eel = πhκ

b

(
5(b0/b) − 4 (b0/b)2 − 2

3 − 4(b0/b)

)
. (5)

The energy [Eq. (5)] differs from the elastic energy of the
stadium profile by the multiplicative factor in large parenthe-
ses, which is smaller than one in the interval b ∈ [0.80b0,b0],
where the elliptic profile is the better Ansatz. From Eq. (5)
we derive the spring equilibrium for small deformations:
b = b0 − megb3

0/7πhκ (only first-order terms are kept).
The curve C that minimizes the elastic energy for a given

separation between the press plates can be found numerically.
To this end we discretize the profile of the deformed spring
in N points and reformulate the elastic energy functional
to depend on coordinates of these points. The functional is
minimized using a particular variant of the conjugate gradient
minimization (see, e.g., Refs. [3,11,14]). The constraints of
the inextensibility of the sheet and the impenetrability of the
top and bottom press surfaces are implemented through energy
penalty for all configurations that violate the constraints.

In Fig. 2 we show the theoretical predictions for the spring
energy. The circles show the numerically obtained energies,
the dotted line is the prediction based on the stadium profile,
and the dashed line is the prediction based on the elliptical
profile. We see that the calculation for the stadium profile
quite nicely follows the trend of the numerical results in the
range b/b0 > 0.7. In fact, multiplying the stadium results by
a factor 0.912 gives a solid line that fits the numerical data to
a precision better than 0.8% in the range 0.15 < b/b0 < 0.7,
clearly vindicating the utility of the stadium Ansatz and the
analytical trend that it predicts. The energies based on the
elliptical profile are, as expected, accurate only when b ≈ b0.

The solution of the problem can be scaled so that it becomes
universal. This means that appropriately scaled measurements,
irrespective of the spring properties (equilibrium radii b0,
heights h, and bending rigidities κ), should all fall on the
universal curve. Such a scaled solution depends only on an
adimensional parametrization: The adimensional parameter
that uniquely determines the spring shape is b/b0 and an
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FIG. 3. (Color online) Half of the separation between the plates
b vs scale reading me for four springs made from identical foils. The
dashed line shows the slope expected for the b ∝ m−1/2

e dependence.
The thin dotted line shows b = 0.7〈b0〉. See text for details.

appropriate scale of elastic energy is πκh/b0. The energy-
shape dependence can thus be written as

b0

πκh
Eel = U

(
b

b0

)
≡ Ēel, (6)

where U (b/b0) is the universal function characteristic for our
problem. The appropriately scaled energy (adimensional) is
denoted by an overline (Ēel), as all the adimensional quantities
will be in the following.

The tubes that were used in our experiments are constructed
from thin transparent foils (made of polymer material), which
are usually used for plastic covers for strip and spiral book
binding. Their size is that of A4 paper, W = 210 mm and L =
297 mm. The tube is made by rolling a foil in a cylinder, either
along its width W or its length L (L > W ), and by using the
adhesive tape to fix the cylinder. For accurate measurements,
the width of the overlapping region where the adhesive tape
is applied should be as small as possible (∼2 mm in our
measurements). The response of the spring is measured in
a press with two parallel plates as illustrated in Fig. 1. The
upper plate is driven by a wing nut with a known pitch that
enables one to precisely determine the shift of the top plate. An
ordinary kitchen scale located below the lower plate measures
the force that the tube exerts on the plates.

In Fig. 3 we show four sets of measurements on four tubes
showing the half of the separation between the two press
surfaces, b, as a function of the mass read on the scale, me.
Every tube was made from nominally identical foils (denoted
set 1) from the same package with the thickness 190 ±
7 μm. We have rolled the foils along their longer side so
that h = 210 mm. We see that the dependence b ∝ m

−1/2
e is

obeyed by the data for sufficiently pressed foils, b < 0.7〈b0〉.
From the numerical analysis we conclude that an easy, yet very
accurate way to obtain the bending rigidity of the foils is to fit
the experimental data to the

b =
√

0.912κπh

2meg
(7)

dependence in the region b < 0.7b0.
In addition to this, we investigate experimentally the

predicted universality of the system by studying different
springs. To this end, we have constructed two tubes from

FIG. 4. (Color online) Scaled forces as specified by Eqs. (9) (line)
and (8) (symbols). Circles and crosses correspond to the two sheets
from set 1 rolled along the longer and shorter sides, respectively.
Triangles and squares correspond to the two sheets from set 2 rolled
along the longer and shorter sides, respectively. Pluses correspond to
a measurement on a sheet from set 3 rolled along its longer side. The
solid line shows the numerical results. The inset shows the calculated
profiles of the spring for different pressing forces.

set 1 foils by rolling them along their length and width. We
have tested two additional sets of sheets. For set 2 foils we
used binding covers (A4 format) of smaller thickness (146 ±
8 μm). For set 3 we used A4 foils of thickness 412 ± 4 μm.
For all measurements, we scaled the mass readings to produce
the adimensional experimental force F̄exp as

F̄exp = 2megb2
0

πκh
. (8)

The scale of force can be derived from the scale of energy
πκh/b0 simply by dividing it by the scale of length, b0 in our
case. The quantity in Eq. (8) can be compared directly to its
counterpart obtained from the numerical analysis,

F̄num = − dĒel

d(b/b0)
. (9)

Note that the factor of 2 in Eq. (8) arises from the fact that
deformation of the tube where b changes by �b requires
applying the force of meg on a distance of 2�b; the same
factor of 2 is present in Eq. (2). The comparison of the scaled
experimental readings with the numerical results is shown in
Fig. 4. One can see that the scaling predicted by the numerical
results is evident in the experimental data through an interval

TABLE I. Properties of the sheets used in experiments shown in
Fig. 4 and bulk Young moduli of the sheets E calculated assuming
a Poisson ratio of ν = 0.3.

Sheet h (cm) d (μm) κ (mJ) E (GPa)

set 1 29.7 190 1.58 2.52
set 1 21.0 190 1.59 2.53
set 2 29.7 146 0.87 3.05
set 2 21.0 146 0.71 2.48
set 3 21.0 412 13.2 2.06
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of almost four orders of magnitude of the force (in both the
small- and large-deformation regimes). In the inset of Fig. 4
we show the profiles obtained by the numerical method (due to
symmetry, it is sufficient to show only quarters of the profiles)
corresponding to different parts of the universal curve.

A summary of the bending rigidities obtained for the sheets
shown in Fig. 4 is shown in Table I. The fifth column of data
contains the bulk Young modulus E of the sheets obtained
from Eq. (1) using a value of κ determined experimentally and
a Poisson ratio of ν = 0.3 that is typical for most materials.
The bulk Young moduli are indeed in the range expected for
polymeric materials such as nylon (E ∼ 2–4 GPa).

In conclusion, we have investigated theoretically and
experimentally small and large radial deformations of a tube
made from a sheet of thin elastic material. We have obtained a
(scaled) universal response curve of the system. The numerical

solution of the problem was compared with two simple Ansatz
trial functions that represent the linear (ellipse) and nonlinear
(stadium) responses of the tube. The stadium profile of the
pressed cylinder is found to be an excellent approximation
when compared to our numerical simulations and it predicts a
correct analytical dependence of the energy and the reaction
force of the deformed tube.

Note added in proof. We would like to mention a recently
published paper related to our work by Kashcheyevs [18].

We thank Hrvoje Mesić for helping to design the experi-
mental setup and suggesting the use of a kitchen scale below
the press to measure force, Tomislav Vuletić for designing
the setup that we actually used, and the Croatian Ministry of
Science for financial support (Grants No. 035-0352828-2837
and No. 119-0000000-1015).
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