
Anderson localization of partially incoherent light

Čapeta, Davor; Radić, Juraj; Szameit, Alex; Segev, Mordechai; Buljan,
Hrvoje

Source / Izvornik: Physical Review A, 2011, 84

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevA.84.011801

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:203371

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-09-12

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1103/PhysRevA.84.011801
https://urn.nsk.hr/urn:nbn:hr:217:203371
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:7239
https://dabar.srce.hr/islandora/object/pmf:7239


RAPID COMMUNICATIONS

PHYSICAL REVIEW A 84, 011801(R) (2011)

Anderson localization of partially incoherent light
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We study Anderson localization and propagation of partially spatially incoherent wavepackets in linear
disordered potentials, motivated by the insight that interference phenomena resulting from multiple scattering
are affected by the coherence of the waves. We find that localization is delayed by incoherence: the more
incoherent the waves are, the longer they diffusively spread while propagating in the medium. However, if all
the eigenmodes of the system are exponentially localized (as in one- and two-dimensional disordered systems),
any partially incoherent wavepacket eventually exhibits localization with exponentially decaying tails, after
sufficiently long propagation distances. Interestingly, we find that the asymptotic behavior of the incoherent
beam is similar to that of a single instantaneous coherent realization of the beam.
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The phenomenon of Anderson localization was conceived
in the context of disordered electronic systems [1]; however,
localization phenomena have been extensively studied also
in other systems [2–17] including optics [2,3,5–14] and
ultracold quantum gases [15–17]. For a direct observation
of the phenomena, optical and ultracold atomic systems have
some profound advantages over the condensed matter systems:
the influence of the environment such as thermal fluctuations
and phonons can be minimized to become negligible, and
nonlinearity or interactions can be controlled and virtually
turned off. Nonlinearity in optics can be controlled by the
intensity of light, whereas interactions of ultracold gases
can be tuned via Feshbach resonances. In contrast, electron-
electron and electron-phonon interactions are always present
in condensed matter systems. These influences are important
since they affect interference, and Anderson localization arises
from interference among multiple scattering events from
disorder in the medium.

Here we address Anderson localization of waves with
imperfect coherence. We ask whether an initial finite-size
partially incoherent wavepacket would spread through a linear
disordered potential or would its spreading be stopped by
virtue of disorder? We demonstrate our findings on an optical
(1 + 1)D potential and discuss their implications to other
wave systems. A superficial answer to the question above
may be that, since incoherence destroys interference effects,
a sufficiently incoherent wavepacket will diffuse through the
random medium without ever being localized. However, an
incoherent wave can be thought of as a superposition of
coherent modes with stochastically varying coefficients [18].
Each coherent mode is expected to undergo localization, hence
the entire wavepacket should localize. Our study reveals that
coherence indeed affects the properties of evolving wavepack-
ets, in a sense that more incoherent beams spread more while
propagating through the random medium. However, if the
system’s eigenmodes are all localized, as is the case for all
one-dimensional [(1 + 1)D] and two-dimensional [(2 + 1)D]
fully disordered systems [19], the incoherent wavepacket will
eventually become Anderson localized. Finally, we find that
a typical instantaneous coherent speckled realization of the

incoherent beam exhibits the same asymptotic behavior as the
time-averaged incoherent wavepacket.

The idea that localization could be observed in optics dates
back to the beginning of the 1980s [2,3]. The experiments
on so-called weak localization [4], which can be pictured
in terms of a coherent backscattering process, were soon to
follow [5,6]. Experiments on strong localization in random
media were performed in various systems [8–10]. In 1989, a
nontraditional idea for observing localization was proposed:
the transverse localization scheme [7], which exploits the
equivalence between the Schrödinger equation and the paraxial
wave equation for light. Indeed, this scheme was used for
a clear demonstration of Anderson localization in random
optical lattices [11], for the observation of Anderson modes
[12], and localization near an interface [13]. All of these have
dealt with fully coherent waves only. In a different domain, the
propagation of partially incoherent light in random media is
a subject of considerable interest (e.g., see [20]). However, in
the context of localization, the only studies on incoherent light
were on enhanced backscattering [21,22], which is considered
a precursor to Anderson localization. To the best of our
knowledge, strong localization with partially incoherent light
has never been studied.

Consider the propagation of a partially spatially incoherent
optical beam, linearly polarized, originating from a quasi-
monochromatic continuous-wave source. Such a beam can be
constructed by sending a laser beam through a rotating diffuser
(e.g., see [23]). Its state at a given propagation distance z

can be described in terms of the mutual coherence function
[18], B(x1,x2,z) = 〈E∗(x2,z,t)E(x1,z,t)〉t , where 〈· · · 〉t is
the time-average, and E is the stochastic field. Instead of
B(x1,x2,z), the state of the system can be described by an
orthonormal set of modes ψj (x,z) (j = 1,2, . . .), and their
modal weights λj , which are obtained from the eigenvalue
equation [18]:

∫
dx2B(x1,x2,z)ψj (x2,z) = λjψj (x1,z); i.e.,

B(x1,x2,z) = ∑
j λjψ

∗
j (x2,z)ψj (x1,z).

We analyze linear propagation of such a beam in the
transverse localization scheme [7], in a waveguide array
defined by the index of refraction n2

index = n2
0 + 2n0δn(x),

where n0 is a constant term, while δn(x) describes disorder.
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The propagation of the beam along the z axis is governed by
the Schrödinger equation [11],

i
∂ψ

∂z
= − 1

2k

∂2ψ

∂x2
− δn(x)k

n0
ψ, (1)

where k = n0ω/c is the wave vector, ω is the temporal
frequency of the beam carrier, and c is the speed of light.

In our simulations, we analyze the evolution of Gaussian
input beams: B(x1,x2,0) = I0 exp[−(x1 + x2)2/4σ 2

I − (x1 −
x2)2/σ 2

C], where σI and σC are the spatial and the coherence
widths of the beam, respectively. In disordered media, the
propagation depends on the particular realization of the
random potential δn(x). Hence, we calculate the mutual
coherence for many realizations of the disorder to find the
disorder ensemble average [11]: 〈B(x1,x2,z)〉d .

The disordered potential used in our simulations is illus-
trated in Fig. 1(a). The index of refraction varies randomly
(with uniform distribution) between δn = 0 and δn = 1.2 ×
10−3. The width of every rectangular potential unit shown in
Fig. 1(a) is 2.7 μm, but their mutual distances are random:
first we fix the leftmost rectangle in its position, and then add
the adjacent ones to the right such that their distance (center
to center) is between 5 and 9 μm (chosen at random), and so
on. Such a disordered medium can be created experimentally
by using the ultrafast direct laser-writing technique [13].

Because the system is linear, the dynamics is described in
terms of the modes of the system un and their propagation
constants βn, which obey

βnun = 1

2k
u′′

n(x) + δn(x)k

n0
un, n = 1,2, . . . . (2)

The βns are arranged in decreasing order (equivalent to
increasing order of energies in quantum systems). Every
initial coherent wave ψj (x,0) is projected onto the system’s
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FIG. 1. (Color online) The disordered potential and its eigen-
modes. (a) Small section of the dimensionless disordered potential
V (x) = −2δn(x)(kx0)2/n0, where k = 2πn0/λ, λ = 514 nm, x0 =
1 μm, n0 = 1.45. (b, c) Typical eigenfunctions of the structure
with a smaller (b) and larger (c) spatial extent, in a sample of
width L = 4 mm. (d) Logarithmic plot of |un(x)| from (b) with
exponentially decaying tails, which are the fingerprint of Anderson
localization.

modes un: cj,n = ∫
dxψj (x,0)u∗

n(x), yielding ψj (x,z) =∑
n cj,nun(x)eiβnz, that is,

B(x1,x2,z) =
∑

j,n,m

λj c
∗
j,ncj,mu∗

n(x2)um(x1)ei(βm−βn)z. (3)

It is reasonable to conjecture that after sufficiently long
propagation z, the mutual coherence is approximately

B(x1,x2,z → ∞) =
∑

j,n

λj |cj,n|2u∗
n(x2)un(x1). (4)

From Eqs. (3) and (4), we clearly see that if the medium
is infinitely broad and the potential is fully random, then,
since all the eigenmodes un are Anderson localized, any initial
finite-width partially incoherent beam will not diffuse during
propagation despite its incoherence. One can expect that,
after sufficiently long propagation, the tails of the incoherent
beam will become exponentially decaying: B(x,x,z → ∞) ∝
exp(−γ |x|), with γ corresponding to the excited eigenmode
un, which has the slowest decay. However, in reality, all
samples have finite transverse (L) and longitudinal (Z) size;
hence, we explore the finite-size effects.

First we calculate the eigenvectors/eigenvalues of the
potential δn(x). We use the LAPACK implementation of the
MRRR algorithm [24], with Dirichlet boundary conditions
un = 0 at x = ±L/2. Typical eigenfunctions are shown in
Figs. 1(b)–1(d). Up to some critical value of n, the spatial
extent of the eigenfunctions un is smaller than L [see Fig. 1(b)],
whereas above this value they extend to one or both of the
boundaries [see Fig. 1(c)]. From Fig. 1(d), we see that the am-
plitude of localized un(x) decays exponentially, log |un(x)| ∝
exp(γnx), which is a fingerprint of Anderson localization
in this system. From these eigenmodes, we calculate their
Lyapunov exponents as follows: We form a set {|un(xmax)|}
of local maxima of |un(x)|, and then fit −γn|x − xc| + b to
the set of points log |un(xmax)|, to obtain γn for every un. For
the lowest eigenstates with too few local extrema, |un| was
fitted. The Lyapunov exponents, averaged over 40 different
realizations of the random potential, are shown in Fig. 2(a)
as a function of n; the standard deviation is as small as the
thickness of the line implying the self-averaging property of
the exponents. A different calculation of Lyapunov exponents
via the transfer matrix approach [19] (for an essentially infinite

0 1000 2000
0

0.1

0.2

0.3

n

γ n [μ
m

−
1 ]

0 2000 4000
10

−5

10
0

10
5

n

Z
 [m

]

(a) (b)

FIG. 2. (Color online) (a) Lyapunov exponents γn extracted from
the eigenfunctions un (solid blue line) and via the transfer matrix
approach (black squares). Shown are averages over 40 different
realizations of the random potential; the standard deviation is smaller
than the thickness of the line. (b) The Thouless (solid blue line) and
the Heisenberg (dashed red line) times (propagation distances) vs. n

for the system with L = 4 mm. Horizontal line depicts Z = 10 cm.
See text for details.
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FIG. 3. (Color online) Intensities of the incoherent beam after
Z = 10 cm of propagation, for different system parameters, averaged
over 40 realizations of the disorder. (a,b) Beam intensity for absorbing
(a) and reflecting (b) boundary conditions for beams with σI =
10 μm, and σC = 1 μm (top black line), 3 μm (middle blue line), and
5 μm (bottom red line); L = 4 mm. (c) Beam intensity for absorbing
boundary conditions and three values of L: 2, 4, and 8 mm (top to
bottom) [σI = 10 μm, σC = 1 μm]. (d) The intensity for one specific
instantaneous initial realization of the incoherent field (lower blue
line) and the time-averaged intensity (upper black line) [σI = 10 μm,
σC = 1 μm, L = 8 mm, absorbing boundary conditions].

sample), displayed as black squares in Fig. 2(a), underpins our
results. The overall trend is such that the Lyapunov exponents
decrease with increasing n (decreasing βn), except for a small
hump, which is a consequence of relatively small fluctuations
in distances between adjacent potential peaks [Fig. 1(a)] (if we
allow larger fluctuations the hump disappears).

In an experiment with finite-size samples, a partially
incoherent initial wavepacket is likely to excite both modes that
are Anderson localized on a scale smaller than L and modes
extending to the boundary. To investigate the finite-size effects,
we numerically evolve the wavepacket with absorbing bound-
ary conditions [Fig. 3(a)], and then with reflecting boundary
conditions [Fig. 3(b)]. In experiments, reflecting boundary
conditions can be obtained via total internal reflection, and
absorbing boundary conditions can be obtained by placing a
properly designed layer of highly absorbing material on the
sample edges. The initial size of the beam is σI = 10 μm,
and the degree of coherence varies: σC = 1,3, and 5 μm;
L = 4 mm. Reflecting boundary conditions are taken into
account by using Eq. (3) with un obeying Dirichlet boundary
conditions. Absorbing boundary conditions are included as an
imaginary index of refraction, Im δnabs > 0, present only close
to the boundaries: δnabs = 0 for |x| < 0.96L

2 .
From the simulations with absorbing edges we find that,

after sufficiently long propagation, the intensity structure
has exponentially decaying tails: 〈I 〉d ∝ exp(−γ |x|). All
graphs have approximately the same value for the slope,
γ = 3.2 × 10−3 μm−1. This is in accordance with our analysis
of eigenstates. The part of the beam exciting eigenstates
that touch (or are in the very vicinity of) the edges gets
absorbed during propagation. The remaining part excites only

exponentially decaying eigenstates, which yields the intensity
plotted in Fig. 3(a). The value of γ found from graphs in
Fig. 3(a) correspond to the slowest decay rate γn of the
eigenstate un, which is excited and which does not overlap
with the absorbing boundary, i.e., 〈un|δnabs(x)|un〉 ≈ 0 (one
should take into account a factor 2 because I = 〈|E|2〉t ).

Next we consider the Thouless (ZT ) and Heisenberg (ZH )
times (propagation distances) in our system. The former tells
us the average time it takes for a particle to diffuse across
the sample, and the latter is the longest time the particle can
travel inside the sample without visiting the same region twice
(e.g., see [14]). In our case, ZT corresponds to the inverse
linewidth (1/�βn) of the eigenstates with absorbing boundary
conditions. In calculating ZT (n), we have averaged 1/�βn

over 20 adjacent eigenstates and then over 40 realizations of the
potential. In the same fashion, we have calculated the average
inverse level spacing, which yields ZH (n). Figure 2(b) shows
ZT and ZH vs. n. Evidently the Thouless time is effectively
infinite for n < 1 200, indicating Anderson localization in our
finite sample, whereas for greater n values the two times are
on comparable scales.

From Fig. 3(a) we conclude that the more coherent the light
is, the stronger the localization effect is, in a sense that less
power is absorbed by the walls. The slope γ is identical for
every σC , because in every case the highest of the localized
modes was excited. It is interesting to note that the values γ

obtained after transport simulations (expansion) depend on the
size of the sample L and scale approximately as γ ∝ L−1. We
checked this trend for L = 2,4, and 8 mm; see Fig. 3(c). The
observed scaling is found to be in agreement with Ref. [25],
where it was shown that the logarithm of the dimensionless
resistance scales as the length in case of localization.

Figure 4 shows a typical change in the spatial power
spectrum for propagation with different boundary conditions.
In the case of absorbing edges, there is a clear cutoff in k space,
indicating that the modes un composed of plane waves with
k values above the cutoff spread to the absorbing boundaries.
Such absorption increases the spatial coherence of the beam.
For reflecting boundary conditions, the final spectrum has the
same shape as the initial spectrum, with fluctuations on top of
the average.
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FIG. 4. (Color online) Spatial power spectrum of the incoherent
beam after Z = 10 cm of propagation in a disordered medium with
absorbing (thin dashed blue line) and reflecting (solid red line) edges,
for an initial beam (thick solid black line) defined by σI = 10 μm,
σC = 1 μm. All plots are averages over 40 realizations of the disorder.
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A partially spatially incoherent (quasimonochromatic)
beam can be thought of as a train of fully coherent fields with
intricate field structures, which are replaced on a time scale
∼�tc (the temporal coherence time); quasimonochromatic
means that �tc � Z/c. In experiments, one instantaneous
realization of the incoherent field is obtained by stopping the
diffuser [23]. Interestingly, we find that one instantaneous field
realization will asymptotically have exponentially decaying
tails similar to those of the time-averaged intensity [see
Fig. 3(d)]. The asymptotic intensity evidently depends both
on the degree of coherence and the spatial structure of the
input field.

We can extend our conclusions to hold for spatially and
temporally incoherent beams of light (�tc < Z/c), such as
the one made from an incandescent light bulb in Ref. [26].
In this case, a space-time mutual coherence function describ-
ing the beam can be transformed into the space-frequency
domain [18,27]. Because our results hold for every frequency
component separately (with different numerical values for
different frequencies), due to linear superposition, they also
hold for the whole beam.

In conclusion, we have predicted the properties of Anderson
localization of partially spatially incoherent beams in disor-
dered linear (1 + 1)D photonic structures. We conclude that
more incoherent light will diffusively spread more through the

random medium than coherent light; however, the incoherent
wavepacket will display exponentially decaying tails after
sufficiently long propagation. We have discussed the finite-
size effects and extended our conclusions for spatially and
temporally incoherent light beams. Finally, we note that our
results correspond to partially condensed noninteracting Bose-
Einstein condensates (BECs) in 1D disordered potentials, the
strongly interacting 1D Bose gases [28], and noninteracting
1D Fermi gases [29]. To mimic partially condensed interacting
BECs [30], one should include nonlinearity, which we leave
for further studies.

Note added in proof. Recently, related work [31] appeared
on the arXiv, suggesting that in some disordered potentials
Lyapunov exponents can increase with the increase of energy
(in some interval). This is exactly the phenomenon observed
in our Fig. 2(a): The small bump therein. In this Rapid
Communication, we have shown that this effect exists in a
classical wave system.
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035601 (2002).
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