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Transverse single-spin asymmetry and cross section for �0 and �mesons at large Feynman x in
p" þ p collisions at

ffiffiffi
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p ¼ 200 GeV
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Measurements of the differential cross section and the transverse single-spin asymmetry, AN , vs xF for

�0 and � mesons are reported for 0:4< xF < 0:75 at an average pseudorapidity of 3.68. A data sample of

approximately 6:3 pb�1 was analyzed, which was recorded during p" þ p collisions at
ffiffiffi
s

p ¼ 200 GeV by

*Deceased.
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the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross section for

�0, including the previously unmeasured region of xF > 0:55, is consistent with a perturbative QCD

prediction, and the �=�0 cross-section ratio agrees with existing midrapidity measurements. For 0:55<

xF < 0:75, the average AN for � is 0:210� 0:056, and that for �0 is 0:081� 0:016. The probability that

these two asymmetries are equal is �3%.

DOI: 10.1103/PhysRevD.86.051101 PACS numbers: 13.88.+e, 13.85.Ni, 13.87.Fh

Awell-known prediction of collinearly factorized pertur-
bative quantum chromodynamics (pQCD) is that the cross
section for forward meson production in proton-proton
collisions should have negligible dependence on the trans-
verse polarization of the incident proton [1]. This early
prediction was contradicted by measurements [2–6] of
sizable pion transverse single-spin asymmetries (AN), de-
fined for a forward moving polarized beam scattering to the
left and with a vertical spin quantization axis as

AN � �" � �#

�" þ �# : (1)

In order to explain the large asymmetries, several ex-
tensions of the pQCD collinear framework have been
proposed. These approaches take into account the possible
spin-dependent transverse components of parton momen-
tum (Sivers effect [7]), the possible spin-dependent frag-
mentation of a scattered polarized parton (Collins effect
[8]), or higher-twist effects where transverse momenta
related to the previous approaches are included in the
hard scattering term of a collinear calculation [9–11].
A wide range of high energy polarized experiments, both
nucleon-nucleon [12–14] and lepton-nucleon [15–18],
have been performed to characterize the kinematic and
process dependences of the asymmetries, and in the case
of the latter, to directly test these approaches.

For more than 20 years, we have known that the trans-
verse asymmetries in forward pion production depend
critically on the isospin projection (I3) of the produced
mesons relative to that of the parent hadron. In proton
scattering experiments, the asymmetry for the �� meson,
which contains a down quark and an anti-up quark, has the
opposite sign relative to the asymmetries for the�þ and�0

mesons, produced from the predominant up quarks.
In this paper, we report for the first time at

ffiffiffi
s

p ¼200GeV
the transverse single-spin asymmetry for the � meson,
another member of the pseudoscalar octet that has the
same isospin projection as the �0 (I3 ¼ 0). We note that
the FNAL-E704 Collaboration previously found a large AN

for the � for Feynman-x (longitudinal momentum of the
observed particle divided by the beam energy) >0:4 atffiffiffi
s

p ¼ 19:4 GeV [19]. In addition, we report the differential
cross section for � production in the region where the spin
asymmetry is measured.

Leading-twist collinear pQCD has been successful in
describing a wide range of unpolarized cross-section
measurements at the Relativistic Heavy Ion Collider

(RHIC), from �0 at forward rapidity [20,21], to �0

[22–25], � [25–27], ��=K� [28], and jets [29] at mid-
rapidity. Such agreement is considered a strong indicator
that the given process can be interpreted within the
framework of pQCD. Therefore, the comparison between
the unpolarized cross section and the leading-twist col-
linear pQCD prediction becomes the basis on which to
apply the aforementioned theoretical extensions to the
associated transverse spin effects.
For forward �0 production, recent STAR measurements

of the cross section are consistent with next-to-leading-
order (NLO) pQCD calculations in the same region where
a large transverse spin asymmetry is found [20,21].
However, these results do not cover the large Feynman-x
(xF) region where the acceptance for the � decaying into
two photons becomes large. In this paper, we have ex-
tended the analysis of the �0 cross section and AN to xF of
0.75, where its spin asymmetry and cross section can be
directly compared to those of the � mesons.
The data were taken with the STAR forward pion detec-

tor (FPD). The FPD is a modular lead glass calorimeter
located at forward rapidity in the STAR interaction region
at RHIC at Brookhaven National Laboratory. Two modules
were placed on either side of the beam line, covering the
pseudorapidity region from approximately 3.3 to 4.0. Each
module contained 49 cells (glass blocks approximately 18
radiation lengths deep), forming a 7� 7 square array. The
data were collected in 2006 with transversely polarized
proton beams and an integrated luminosity of �6:3 pb�1.
The average polarization was ð56:0� 2:6Þ% for the beam
facing the FPD. As AN is a single-spin observable, the spin
state of the second beam [with ð55:0� 2:6Þ% polarization]
was integrated over for the AN at positive xF. At negative
xF, the spin state of the first beam was integrated over.
Events were recorded only when the total analog-to-digital
convertor count in either of the two modules was greater
than a fixed threshold, which was nominally equivalent to
30 GeV. Photons reconstructed within a quarter of a cell
from the detector edge were discarded. Only those events
with exactly two reconstructed photons were analyzed,
with the resulting loss of yield corrected for the cross-
section measurement. The STAR beam beam counter
(BBC) on the away side was used to reject the single-
beam background. The near side BBC was not required
to produce a signal, as most of the analyzed events already
had more than half the beam energy deposited in the
FPD. The efficiency for the away side BBC condition
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was estimated to be ð93� 4Þ% for all nonsingly diffractive
events based on previous analyses [30].

The xF coverage of the previous analysis of ANð�0Þ [12],
which included this data set, was limited by the difficulty in
separating �0 clusters from single photons with xF > 0:55.
At this point, the typical separation of two �0 decay
photons at the surface of the FPD becomes similar to the
Molière radius of the lead glass (3.32 cm) and transverse
cell size (3.81 cm). On the other hand, the � meson
acceptance lies mostly above an xF of 0.5 due to the larger
separation of its decay photons.

With the current analysis, the �0-� separation has been
greatly improved by analyzing �Log, defined as

�Log �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i
Log½ðEi þ E0Þ=GeV� � ð �x� xiÞ2

P
i
Log½ðEi þ E0Þ=GeV�

vuuuut ; (2)

where Ei and xi are the energy and the location of the ith
channel, and E0 ¼ 0:5 GeV. The ith term in the sum is
skipped if LogðEi þ E0Þ< 0. It provides a significant sen-
sitivity to the topological differences between single and
double photon clusters at high energies, as evidenced by
the clear separation between the one and two photon peaks
in Fig. 1. Also shown are the results from PYTHIA and
GEANT simulations, which closely reproduce the �Log dis-

tributions for both types of clusters up to a small offset
(� 1% of the transverse cell size). As a result, the xF
coverage for �0’s was extended from 0.55 to 0.75.

In addition, the GEANT simulation of the electromagnetic
shower in the FPD is now based on the tracking of optical
photons produced by the Cherenkov effect. Compared to
the previous method based on charged particle energy loss,
the new simulation produces a better agreement with the
data on shower shape, energy resolution, and the observed
shift in gain as a function of photon energy. Combined with

a more advanced parameterization of the shower shape
including the effects of incident angle, it allows for a
higher precision calibration needed for the cross-section
measurement.
The top two panels of Fig. 2 show data-simulation

comparisons of the diphoton invariant mass spectra. The
‘‘center cut,’’ so named because it covers roughly the
central region of the FPD acceptance, is imposed on all
event samples in order to enhance the � meson acceptance
relative to the background. It is defined as

ð��� � 3:65Þ2 þ tan2ð���Þ< 0:15; (3)

where ��� is the pseudorapidity of the diphoton center of

mass relative to the polarized beam, and ��� is its azimu-

thal angle. The distributions of�0 and� events in the FPD,
and the subset of each that passes the center cut are shown
in Fig. 3. A full simulation based on PYTHIA 6.222 and
GEANT 3 was compared to the data. The reflectivity and

absorption properties of the aluminized mylar wrapped
glass blocks were varied to minimize the discrepancies
between the photon shower shape in the simulation and
that measured in the data. While detailed knowledge of
the glass-mylar interface remains a limiting factor in the

 (FPD transverse cell size)Logσ
0.4 0.6 0.8

Y
ie

ld

0

100

200

300

400 data
 clustersγMC 1 
 clustersγMC 2 

MC total

FIG. 1 (color online). The distribution of �Log, as defined in
the text, for Ecluster > 65 GeV for data and simulation, in units of
FPD transverse cell size (3.81 cm). For comparison, the one and
two photon cluster peaks from simulation were independently
normalized and uniformly shifted by þ0:01 transverse cell size
(1 bin) to account for the small difference in the average size of
clusters between simulation and data.
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FIG. 2 (color online). (a) Diphoton invariant mass, M��, dis-
tributions in data and simulation for E�� > 45 GeV, with the

‘‘center cut’’ as defined in Eq. (3). The simulation results were
normalized to have the same number of events as the data in the
�0 mass region (0:08<M�� < 0:19 GeV=c2). The symbol h�i
indicates the average pseudorapidity of the photon pair. (b) Same
as (a), but plotted using an expanded linear scale to illustrate the �
mass region. For the dashed line, the � signal was removed from
the simulation at the PYTHIA level. (c) AN vs M�� for the above

mass distribution. The error bars are statistical uncertainties only.
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precise modeling of the shower development, the agree-
ment in the widths of mass peaks between the simulation
and data has been improved significantly over previous
analyses [12,20,21]. Furthermore, the data-simulation
agreement in the continuum region between the �0 and
� peaks is very good, allowing for a simulation-based
background estimation for the � signal. Corrections for
the remaining data-simulation discrepancies in mass reso-
lution were applied to the cross-section measurements. The
� to �0 cross-section ratio in the simulation has been set at
0.45 to be consistent with the data. The bottom panel of
Fig. 2 shows the invariant mass dependence of AN, which
exhibits a suppression in the continuum region. Within the
large statistical uncertainty, the asymmetry for this region
does not show a significant xF dependence. In the simula-
tion, this mass region is dominated by approximately equal
contributions from a pair of photons from two different �0

decays, and a charged hadron combined with a photon.
The energy resolution of the FPD is estimated to be

about 7%–8% of the total energy based on the comparison
of invariant mass and diphoton separation distributions
between data and Cherenkov shower simulation. Coupled
to the rapidly falling cross section in energy, more than half
of events in any measured energy bin originate from lower
true energy bins. For the cross-section measurements, we
unfolded the energy smearing by applying the Bayesian
iterative method [31] to the smearing matrices obtained
from the simulation. The unfolding procedure combines
the statistical and systematic uncertainties from the origi-
nal data points.

The upper panel of Fig. 4 shows the differential cross
sections for�0 and�. The center cut [Eq. (3)] was imposed
on both mesons. Full pythiaþ geant simulations were used
to obtain the detector efficiency corrections including the
� ! 2� branching ratio. Also shown are the previously
published STAR results for the �0 cross section in similar
kinematic regions. The error band corresponds to the NLO
pQCD theory prediction for the �0 cross section [32],
based on the CTEQ6M5 parton distribution function [33]
and the DSS fragmentation function [34]. The uncertainty

for the theory prediction was obtained by increasing the
factorization and renormalization scales from � ¼ pT to
� ¼ 2pT . We note that the DSS fragmentation function
includes in the fit the previously published STAR results at
pseudorapidity of 3.3 and 3.8 [20], along with other RHIC
results. The error bars include both statistical and system-
atic uncertainties. The major sources of systematic uncer-
tainties are the absolute energy calibration uncertainty of
3%, which dominates the �0 cross section, and the uncer-
tainty from the unfolding process, which dominates the �
cross section at high energies. The normalization uncer-
tainty was estimated at 12.5%, including the uncertainty of
the BBC coincidence cross section of 7.6% [30].
The lower panel of Fig. 4 shows the � to �0 cross-

section ratio, which is found to be around 50%. The error
bars include both statistical and systematic uncertainties.
The latter is dominated by the 1.5% relative energy scale
uncertainty, caused by the acceptance differences for �0

and � decay photons, and the localized variations in cell-
to-cell calibration. The absolute calibration is common to
both mesons, and largely cancels for the ratio.
In pQCD, large-xF production of both �0 and � arises

from hard-scattered partons fragmenting into mesons with
large momentum fraction z (ratio of hadron momentum to
the momentum of its parent parton). The fragmentation
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filled boxes indicate events that pass the center cut [Eq. (3)].
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process generally does not depend on the details of the hard
scattering, and a single set of pion fragmentation functions
explains a wide variety of RHIC data [22,25,35]. While
there are currently no NLO pQCD predictions for the
forward � production cross section, we note that our
measurement of the �0 cross section is consistent with
the NLO prediction, and the �=�0 cross-section ratio is
consistent with the recent NLO pQCD extraction of the �
fragmentation function [36].

Figure 5 shows the AN , calculated using the ‘‘cross
ratio’’ formula [12,37], as a function of xF for �0 and �
after correcting for the underlying background. Also
shown is the previous STAR result [12] for ANð�0Þ at lower
xF, which utilized the same data set as the current analysis
but without the center cut. The two �0 results are consis-
tent within their correlated errors. The background correc-
tion, which only significantly affects the � asymmetry at
medium energy, is obtained from a simulation sample
corrected for the � yield and mass resolution, and the
assumed background AN of 0:005� 0:016 extracted from
Fig. 2(c). The error bars indicate statistical uncertainties
only, while the error boxes indicate the systematic uncer-
tainties. The main source of the systematic uncertainty is
the background correction; the polarization uncertainty is
negligible in comparison. The AN for negative xF is con-
sistent with zero for both mesons.

For the data points between xF of 0.55 and 0.75, a four-
point Z test results in 2.8% confidence level for the

hypothesis that ANð�Þ � ANð�0Þ is consistent with zero.
Alternatively, the Kolmogorov-Smirnov test returns 3.3%
confidence level for the same hypothesis. The comparison
of AN for �0 and � mesons is of particular interest given
their similar up and down quark content, with wave func-
tions of both mesons containing u �u and d �d pairs. The �
differs from the �0 mainly in that it is in an isospin singlet
state, and that it contains s�s in the wave function. The latter
results in � being significantly more massive than the �0.
In conclusion, STAR has measured the xF dependences

of the cross section and transverse single-spin asymmetries
for �0 and � mesons produced at an average pseudorapid-
ity of 3.68 in

ffiffiffi
s

p ¼ 200 GeV polarized proton collisions.
In this kinematic region, both the �0 cross section and the
�=�0 cross-section ratio are consistent with NLO pQCD
expectations. This suggests that the measured � asymme-
try can be understood within the framework of pQCD.
While several calculations exist for pion and kaon asym-
metries [10,38–41], the first pQCD calculation of AN for
the �meson was performed only recently [42]. This model
generates an � asymmetry that is substantially larger than
that for the �0 via a sizable initial-state twist-3 effect for
strange quarks. The calculated � asymmetry rises to about
12% at xF of 0.4, well above our measured asymmetry, but
then agrees quantitatively with the data for xF > 0:5. It is
yet unknown if a similar difference can arise from the
fragmentation process via the Collins effect. A higher
statistics measurement of the AN for the � meson in this
kinematic region is necessary to make a precise compari-
son to that for the �0. Understanding the exact nature of
these asymmetries can be further aided by complementary
measurements of AN for final states that lack Collins con-
tributions, such as jets and prompt photons.
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