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Starting from the adiabatic time-dependent Hartree-Fock approximation (ATDHF), we propose an efficient
method to calculate the Thouless-Valatin moments of inertia for the nuclear system. The method is based on the
rapid convergence of the expansion of the inertia matrix. The accuracy of the proposed method is verified in
the rotational case by comparing the results with the exact Thouless-Valatin moments of inertia calculated using
the self-consistent cranking model. The proposed method is computationally much more efficient than the full
ATDHF calculation, yet it retains a high accuracy of the order of 1%.
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I. INTRODUCTION

The variation of nuclear ground-state shapes is governed
by the modification of the shell structure of single-nucleon
orbitals. Far from the valley of β stability, the energy
spacings between single-nucleon levels change considerably
with the number of neutrons and/or protons. The reduction of
spherical shell closure is often associated with the occurrence
of deformed ground states and, in many cases, with the
phenomenon of coexistence of different shapes in a single
nucleus. A quantitative description of the evolution of nuclear
shapes, including regions of short-lived exotic nuclei that
are becoming accessible in experiments at radioactive-beam
facilities, necessitate accurate modeling of the underlying
microscopic nucleonic dynamics. Major advances in nuclear
theory have recently been made in studies of complex shapes
and the corresponding excitation spectra and electromagnetic
decay patterns, especially in the framework of nuclear energy
density functionals (EDFs) [1–5].

A microscopic, EDF-based description of complex col-
lective excitation spectra usually starts from a con-
strained Hartree-Fock plus BCS (HFBCS) or Hartree-Fock-
Bogoliubov (HFB) calculation of the binding energy surface
with the mass multipole moments as constrained quantities.
The static nuclear mean-field is characterized by symme-
try breaking: translational, rotational, and particle number.
Even though symmetry breaking incorporates important static
correlations (e.g., deformations and pairing), the static self-
consistent solution can only provide an approximate descrip-
tion of bulk ground-state properties such as masses and
radii. Modeling excitation spectra and transition rates in
the EDF framework necessitates a systematic treatment of
dynamical effects related to restoration of broken symmetries
and fluctuations in collective coordinates.

One possible approach to five-dimensional quadrupole
dynamics that restores rotational symmetry and allows for
fluctuations around triaxial mean-field minima is to formulate
a collective Hamiltonian, with deformation-dependent inertia
parameters determined by microscopic self-consistent mean-
field calculations. The dynamics of the collective Bohr Hamil-

tonian is governed by the vibrational inertial functions and the
moments of inertia [6]. For these quantities either the Gaussian
overlap approximation of the generator coordinate method
(GCM-GOA) (Yoccoz masses [7]) or the adiabatic time-
dependent Hartree-Fock-Bogoliubov (ATDHFB) expressions
(Thouless-Valatin masses [8]) can be used. The Thouless-
Valatin masses have the advantage that they also include the
time-odd components of the self-consistent mean field and,
in this sense, the full dynamics of a nuclear system. This
can be seen most clearly in the case of translational motion,
where the Thouless-Valatin mass corresponds to the exact
mass A · m of A nucleons [9], whereas the GCM produces the
exact value only when the center of the mass velocity is also
included as the generator coordinate [10]. The calculation of
the Thouless-Valatin masses is often simplified by adopting the
cranking formulas [11,12] that neglect the residual interaction.
The Thouless-Valatin corrections are then usually taken into
account by scaling the inertia parameters with an empirical
factor (≈1.2–1.4) [13–15].

In this work we present an efficient method to calculate the
Thouless-Valatin moments of inertia for the nuclear system.
The method is based on the rapid convergence of the expansion
of the inertia matrix. The accuracy of the proposed method is
verified in the rotational case by comparing the results with
the exact Thouless-Valatin moments of inertia calculated using
the self-consistent cranking model. The proposed method is
computationally much more efficient than the full ATDHF
calculation, yet it retains a high accuracy of the order of 1%.

II. THEORETICAL FRAMEWORK

We begin with a brief review of the adiabatic time-
dependent Hartree-Fock theory. A more detailed exposition of
this formalism can be found, for instance, in Refs. [16,17]. The
aim of the ATDHF theory is to derive in a fully microscopic
and consistent way a Hamiltonian for the description of
collective phenomena in which many nucleons act coherently.
The theory is based on two approximations: (i) in the
TDHF one assumes that the many-body time-dependent wave
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function of the system is a Slater determinant at all times;
and (ii) in the adiabatic approximation the collective motion
is slow compared to single-particle motion and, therefore,
the collective kinetic energy is a quadratic function of the
velocities.

To identify the components of the density matrix that
correspond to the coordinates and momenta of the collective
Hamiltonian, we recall that the coordinates are even and the
momenta are odd under time-reversal, and decompose the
density matrix in the following way:

ρ(t) = eiχ(t)/h̄ρ0(t)e−iχ(t)/h̄. (1)

Both matrices, ρ0(t) and χ (t), are Hermitian and time-even.
ρ0(t) represents the coordinates of the collective Hamiltonian,
and χ (t) is the “adiabaticity parameter” that must be small
compared to unity. At all times ρ(t) is a Slater determinant,
that is, ρ0(t)2 = ρ0(t) and Trρ0 = N , N being the particle
number. In the following we work in the basis in which
ρ0 is diagonal, and consequently the operators ρ0 and σ0 =
1 − ρ0 project onto hole and particle states, respectively.
This basis depends on time because ρ0(t) is a function of
time.

In the adiabatic approximation it is assumed that the total
density ρ(t) of the system is always close to the density ρ0(t),
that is, the matrix χ that introduces the time-odd components
remains small at all times. Expanding the density matrix to
second order in the operator χ , the following expression is
obtained:

ρ ≈
(

1 + i

h̄
χ − 1

h̄2 χ2

)
ρ0

(
1 − i

h̄
χ − 1

h̄2 χ2

)

≈ ρ0 + ρ1 + ρ2, (2)

where

ρ1 = i

h̄
[χ, ρ0] = i

h̄
(χρ0 − ρ0χ ), (3)

ρ2 = − 1

2h̄2 [χ, [χ, ρ0]] = 1

h̄2 χρ0χ − 1

2h̄2 (χ2ρ0 + ρ0χ
2).

(4)

ρ1 is linear in χ , time-odd, and has only ph and hp

nonvanishing matrix elements. ρ2 is quadratic in χ , therefore
time-even, and has only hh and pp matrix elements. The
many-body Hamiltonian can also be expanded to second order
in the operator χ :

hab(ρ) = tab +
∑
cd

Vadbcρcd

= tab +
∑
cd

Vadbc(ρ0)cd +
∑
cd

Vadbc(ρ1)cd

+
∑
cd

Vadbc(ρ2)cd , (5)

where t is the kinetic energy operator, and V denotes a generic
two-body interaction. The Hamiltonian contains time-even (h0

and �2) and time-odd parts (�1)

h(ρ) = h0 + �1 + �2. (6)

Consequently the time-dependent Hartree-Fock equation
ih̄ρ̇ = [h, ρ] also decomposes into two equations:

ih̄ρ̇0 = [h0, ρ1] + [�1, ρ0], (7)

ih̄ρ̇1 = [h0, ρ0] + [�1, ρ1] + [�2, ρ0]. (8)

In Eq. (8) the term [h0, ρ2] has been neglected because the
ph and hp components are small, and the pp and hh parts
vanish [17]. The total energy of the system

E =
∑
ab

tabρba + 1

2

∑
abcd

ρbaVadbcρcd, (9)

can be expressed in terms of the variables ρ0 and ρ1, or ρ0 and
χ . Terms which depend on the velocity in second order build
the kinetic energy of the collective Hamiltonian:

K =
∑
ab

(h0)ab(ρ2)ba + 1

2

∑
abcd

(ρ1)baVadbc(ρ1)cd . (10)

We recall that the matrix ρ0 projects onto the hole states and,
inserting Eqs. (3) and (4) in the expression above, the kinetic
energy can be written

K = 1

2h̄2 ( χ∗ χ )

(
A −B

−B∗ A

) (
χ

χ∗

)
, (11)

where the matrix A is Hermitian, and B is symmetric

Aphp′h′ = (εp − εh)δpp′δhh′ + Vphh′p′ , Bphp′h′ = Vphp′h′ .

(12)

The effective interaction Vadbc can often be written as a sum
of separable terms

Vadbc =
∑

r

Qr
abVrQ

r∗
cd , (13)

where Qr denotes the single-particle operator characteristic
for the channel index r . As discussed in Ref. [18], this is
particulary the case for the relativistic point-coupling models,
but the statement holds also for the meson-exchange relativistic
Hartree models. The single-particle operators Qr can be either
even or odd under time reversal. The time-odd operators
correspond to the isoscalar and isovector currents j (r) and
�τ j (r). By inserting the decomposition (13) into the Eq. (10),
we obtain the following expression:

1

2

∑
abcd

(ρ1)baVadbc(ρ1)cd =
∑

r

Tr(Qrρ1)VrTr(Qrρ1)∗. (14)

Since the matrix ρ1 is time-odd, the traces vanish for the
time-even operators Qr , i.e., only the time-odd components
of the residual interaction contribute to the kinetic energy of
the collective Hamiltonian.

The equation of motion (7) can be written into the following
form:(

ρ̇0

ρ̇∗
0

)
= 1

h̄2

(
A −B

−B∗ A∗

) (
χ

χ∗

)
≡ M−1

(
χ

χ∗

)
. (15)
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To perform realistic calculations the dimension of the
problem has to be reduced, that is, one has to select a small
number of active degrees of freedom q1, . . . , qf . This means
that we are able to generate a subset of time-even Slater
determinants, characterized by the parameters q, with the
following property: the solution of the ATDHF problem will
always remain within this subset of Slater determinants. In
other words, we have found a path ρ0(t) = ρ0[q(t)] from which
we can calculate the velocity

ρ̇0(t) = q̇(t)
∂ρ0

∂q
. (16)

Next we define the operator P with the relation:

∂ρ0

∂q
= − i

h̄
[P, ρ0] , (17)

and obtain the following expression for the kinetic energy:

K = 1

2

f∑
μ,ν=1

Mμν(q)q̇μq̇ν , (18)

where Mμμ′(q) denotes the real collective mass tensor

Mμμ′(q) = 1

h̄2 (P ∗ −P )μ M
(

P

−P ∗

)
μ′

. (19)

To evaluate M, we have to invert the matrix

M−1 =
(

A −B

−B∗ A∗

)
= M−1

0 + V (20)

in Eq. (15). For this purpose we decompose the matrix into
a diagonal part containing the energies of particle and hole
states (

M−1
0

)
php′h′ = (εp − εh)δpp′δhh′ , (21)

and the residual interaction V , and use the fact that
the interaction matrix elements are in most cases much
smaller than the ph energies. This is because only the
time-odd components of the residual interaction contribute.
Therefore the matrix M can be written in the following
form:

M = [
M−1

0 + V
]−1 = M0[1 + VM0]−1. (22)

We expand the factor in the square bracket and obtain

M = M0 − M0VM0 + M0VM0VM0 + · · · . (23)

Since M−1
0 is diagonal, inverting this matrix is trivial and

the problem is reduced to simple matrix multiplications.
The zero-order term, of course, yields the Inglis-Belyaev
formula:

M0
μμ′(q) = 1

h̄2 (P ∗ −P )μM0

(
P

−P ∗

)
μ′

= 2

h̄2

∑
ph

|P̂ph|2
εp − εh

.

(24)

The first- and the second-order terms

M1 = −M0VM0, M2 = M0VM0VM0 (25)

represent the leading corrections to the Inglis-Belyaev for-
mula. The purpose of this exploratory study is to determine
the convergence of the expansion (23), as well as the level of
agreement with the Thouless-Valatin formula. In this work we
only consider the moments of inertia for collective rotation,
that is, the operator P̂ corresponds to the components of the
angular momentum vector.

It has to be noted that the deformed RPA equation built on
top of the stationary ground-state solution (i.e., without the
external quadrupole constraint) exhibits a Goldstone mode.
As discussed in Chap. 8 of Ref. [17], the rotational invariance
of the Hamiltonian [H, Jx] = 0 leads to the zero-frequency
spurious solution for the operator P = Jx ,

M−1

(
P

P ∗

)
=

(
A −B

−B∗ A∗

)(
P

P ∗

)
= 0. (26)

The explicit inversion of the matrix M−1 is technically
complicated because it has to be carried out in the space
orthogonal to the Goldstone mode. However, the method
proposed in this work avoids this difficulty. In each order of
the expansion of the matrix M [see Eq. (19)], we multiply the
vector (

P

−P ∗

)
, (27)

which is orthogonal to the Goldstone mode, thus eliminating
all spurious contributions. It also has to be emphasized that the
problem of the Goldstone mode occurs only at the stationary
points of the energy surface, where the quadrupole constraint
vanishes. For all other points, the quadrupole constraint is finite
and since it does not commute with the angular momentum
operator, the Goldstone mode does not exist.

As a specific example of the nuclear energy density
functional we consider the point-coupling implementation of
a relativistic EDF—the functional PC-F1 [19]:

ERMF =
∫

drERMF(r)

=
A∑

i=1

∫
drψ̄i(r)(−iγ∇ + m)ψi(r) +

∫
dr

[
1

2
αSρ

2
S + 1

3
βSρ

3
S + 1

4
βSρ

4
S + δSρS�ρS + 1

2
αV jμjμ + 1

4
γV (jμjμ)2

+ 1

2
δV jμ�jμ + 1

2
αT V (jT V )μ(jT V )μ + 1

2
δT V (jT V )μ�(jT V )μ + 1

2
αT Sρ

2
T S + 1

2
δT SρT S�ρT S + e

2
ρpA0

]
, (28)
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where ψ denotes the Dirac spinor field of a nucleon, and the
local isoscalar and isovector densities and currents

ρS(r) =
A∑

i=1

ψ̄i(r)ψi(r), (29)

ρT S(r) =
A∑

i=1

ψ̄i(r)τ3ψi(r), (30)

jμ(r) =
A∑

i=1

ψ̄i(r)γ μψi(r), (31)

j
μ

T V (r) =
A∑

i=1

ψ̄i(r)γ μτ3ψi(r), (32)

are calculated in the no-sea approximation: the summation
runs over all occupied states in the Fermi sea. This means
that only occupied single-nucleon states with positive energy
explicitly contribute to the nucleon self-energies. In Eq. (28)
ρp is the proton density, and A0 denotes the Coulomb
potential.

The matrix elements of the residual interaction are derived
from the EDF Eq. (28)

Vadbc = ∂2ERMF

∂ρba∂ρcd

, (33)

where generic indices (a, b, c, d, . . .) denote quantum num-
bers that specify the single-nucleon state {ψa}. These belong
to three distinct sets: the index p (particle) denotes unoccupied
states above the Fermi sea, the index h (hole) is for occupied
states in the Fermi sea, and with α we denote the unoccupied
negative-energy states in the Dirac sea. The calculation of
the moments of inertia involves only the time-odd terms
of the residual interaction, for which the isoscalar-vector
channel plays the dominant role. The time-odd contributions
of the isovector-vector and the electromagnetic fields are
omitted because the corresponding couplings are small in
comparison to the isoscalar-vector coupling. Here we make
a further simplification by assuming that the nonlinear and
the derivative terms can be neglected, that is, it is sufficient
to retain only the linear isoscalar-vector term (see Fig. 1 and
Table I):

Vadbc = −αV

∫
[ψ†

aαψb][ψ†
dαψc]d3r . (34)

III. NUMERICAL TEST

To verify our assumption that the time-odd part of the
residual interaction can be approximated by the linear vector
term, we have analyzed the contributions of the different
time-odd terms to the moments of inertia by performing
a self-consistent cranking calculation (see Refs. [3,20], and
references cited therein). In the cranking framework there are
two types of moments of inertia: the kinematic (or static)
moment of inertia I (1), and the dynamic moment of inertia
I (2). They are defined as

I (1)(�) = J

�
, I (2)(�) = dJ

d�
. (35)

FIG. 1. (Color online) The moment of inertia Ix of 154Sm
computed using the cranking RMF framework. The various curves
correspond to calculations that successively include the following
terms of the residual interaction: the time-even part (Inglis-Belyaev
formula denoted by IB), the linear (VL), nonlinear (VNL), and
derivative (VD) time-odd terms in the isoscalar-vector channel.

In a self-consistent calculation with very small values of the
rotational frequency, J (2)(�) is identical to the Thouless-
Valatin moment of inertia, the linear response to the external
Coriolis field. At the band-head in even-even nuclei the
two quantities J (1) and J (2) coincide and we use in the
figures the character I for this quantity. Calculations that
neglect the time-odd fields and take into account only the
Coriolis operator �Ĵx in the Dirac equation, underestimate
the empirical moments of inertia by roughly 30% [21]. As an
illustrative example, in Fig. 1 we plot the dynamic moment of
inertia for the ground state band in 154Sm. By including only
the linear time-odd term (VL) in isoscalar-vector channel the
moment of inertia is enhanced by 34%, while the remaining
two contributions: the nonlinear term (VNL) and the derivative
term (VD) yield less than 3%. The results are summarized in
Table I, where we list the contributions of the linear vector,
nonlinear vector and vector derivative terms to the moment of
inertia. Thus in the remaining calculations the model includes
only the linear time-odd term.

TABLE I. Contributions to the moment of inertia Ix of different
terms of the residual interaction: the time-even part (Inglis-Belyaev
formula denoted by IB), the linear (VL), nonlinear (VNL), and
derivative (VD) time-odd terms in the isoscalar-vector channel. The
calculation is performed using the cranking RMF framework with the
PC-F1 interaction, and the cranking frequency is � = 0.001 MeV.

I IB
x IVL

x IVNL
x IVD

x

55.53 18.99 −0.31 1.44
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FIG. 2. (Color online) The moment of inertia Ix of 154Sm
computed at the zeroth-, first-, and second-order in the expansion
Eq. (23) based on the PC-F1 density functional, and compared with
the values obtained at the corresponding iteration steps in the cranking
RMF based on the same density functional.

To estimate the convergence of the expansion formula (23),
we have used it to calculate the moment of inertia Ix for the
154Sm isotope, in comparison with the exact Thouless-Valatin
moment of inertia computed with the cranking code. In Fig. 2
the latter is compared with the zeroth-, first-, and second-order
in the expansion Eq. (23). Moreover, we also display the
cranking results for each iteration step in the self-consistent
cranking calculation, starting from the stationary solution
without the cranking term (cf. Appendix). As one expects, the
moment of inertia obtained after the first iteration is equal to the
Inglis-Belyaev moment of inertia. The next two iterations are
compared to the first and second order in the expansion formula
(23). We note that the values obtained after the second and third
iteration steps are in complete agreement with the first- and
the second-order corrections, respectively. In the Appendix
we demonstrate that these values have to be identical, thus
the results displayed in Fig. 2 provide a crucial test for the
numerical implementation of the expansion Eq. (23). Further
iteration steps contribute to the value of the moment of inertia
by less than 1%, that is, the convergence is quite rapid. We
also emphasize that it is necessary to include the contributions
from the negative-energy single-nucleon Dirac states in the
calculation of the matrix M. Omitting the negative energy
states leads to a significant overestimation of the second-order
correction to the moment of inertia.

Finally, in Fig. 3 we display the moments of inertia Ix

for the sequence of even-even isotopes 152−164Sm. The values
computed at the zeroth-, first-, and second-order in the expan-
sion Eq. (23) are compared with the exact Thouless-Valatin
moment of inertia calculated using the RMF cranking model.
Through the whole isotopic chain the expansion method,
truncated to second order, yields values very close to the
exact Thouless-Valatin moments of inertia, with the relative
deviation ∼1%. We note that the enhancement of the moment

FIG. 3. (Color online) The moments of inertia Ix of 152−164Sm.
The values computed at the zeroth-, first-, and second-order in the
expansion Eq. (23) are compared with the exact Thouless-Valatin
moment of inertia calculated using the RMF cranking model (upper
panel). For the same nuclei the ratio of the Thouless-Valatin and
Inglis-Belyaev moments of inertia (lower panel).

of inertia in comparison to the Inglis-Belyaev value ranges
of 1.28∼1.39.

IV. SUMMARY AND OUTLOOK

Starting from the adiabatic time-dependent Hartree-Fock
theory, we have introduced an efficient approximate method
to calculate the Thouless-Valatin moments of inertia for the
nuclear system. The method is based on the fact that the
expansion of the inertial parameters converges rapidly because
the matrix elements of the time-odd components of the residual
interaction are usually small in comparison to the ph energies.
This approximation is computationally much less demanding
than the full ATDHF calculation, yet it retains high accuracy
of the order of 1%. The accuracy of this method has been
verified by comparing the results to the exact Thouless-Valatin
rotational moments of inertia calculated within the cranking
model.

One might, of course, encounter problems in regions
of level crossings, where the ph energies are no longer
necessarily small compared to the matrix elements of the
residual interaction V . In that case the matrix M−1 in Eq. (20)

034334-5
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has to be decomposed in a different way as, for instance, by
shifting the diagonal elements of V to M−1

0 , or by adding and
subtracting complex diagonal elements.

The present investigation has been restricted to the rota-
tional moments of inertia, only one specific energy density
functional has been considered and the pairing correlations
have been neglected. Further studies will include the calcula-
tions of the vibrational masses. As compared to the rotational
moments of inertia, the main complication comes from the fact
that the momentum operator is not known a priori. Several
methods have already been proposed to tackle this problem
[13,22,23] and we hope to solve it by the expansion method,
similar to the one described in the manuscript. The described
method can be used with other energy density functionals
by simply replacing the time-odd residual interaction and the
pairing correlations can easily be included by expanding the
inverse of the QRPA instead of the RPA matrix. Work along
these lines is already in progress.
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APPENDIX: ITERATIVE SOLUTION OF THE
CRANKING EQUATION

In this Appendix it is demonstrated that the moment of
inertia calculated at each step of the iterative solution of the
cranking equation, coincides with the corresponding order
of the expansion introduced in Sec. II. We assume that the
cranking frequency in the equation of motion

[h(ρ) − �jx, ρ] = 0, (A1)

is an infinitesimal quantity, that is, second and higher order
terms in � can be safely neglected. As the initial point we
choose the self-consistent solution ρ0 for frequency � = 0.
The corresponding equation of motion reads

[h0, ρ0] = 0. (A2)

In the first step of the iteration we diagonalize the operator
h0 − �jx , and compute the density ρ0 + δρ0 determined by
the following relation:

[h0, δρ0] = � [jx, ρ0] . (A3)

In the basis which diagonalizes h0, the only nonvanishing
matrix elements of δρ0 are ph and hp. Using the definition of
the matrix M0 Eq. (21), we obtain(

δρ0

δρ∗
0

)
= �M0

(
jx

j ∗
x

)
. (A4)

In the following the shorthand notation is used:

δρ̃0 ≡
(

δρ0

δρ∗
0

)
and j̃x ≡

(
jx

j ∗
x

)
, (A5)

that is, δρ̃0 = �M0j̃x . After the first iteration we obtain the
Inglis-Belyaev moment of inertia:

I0 = 1

�
Tr(jxδρ0) = 1

�
(j ∗

x jx)

(
δρ0

δρ∗
0

)
= j̃ †

xM0j̃x ≡ I IB.

(A6)

In the second iteration we diagonalize the operator:

h1 − �jx = h(ρ0 + δρ0) − �jx = h0 + Vδρ0 − �jx

= h0 − �(jx − VM0j̃x), (A7)

where VM0j̃x denotes the matrix

(VM0j̃x)ab

=
∑

php′h′
VahbpM0php′h′(jx)p′h′ + VapbhM0hph′p′ (jx)∗p′h′ .

(A8)

The density ρ0 + δρ1 is the solution of the equation of motion

[h0 − �(jx − VM0j̃x), ρ0 + δρ1] = 0 . (A9)

Again, δρ1 has only ph-matrix elements and, therefore, we
need only these elements of the matrix (A8) and find

δρ̃1 = �M0(1 − VM0)j̃x . (A10)

The moment of inertia obtained in the second iteration
coincides with that defined by Eq. (25)

I2 = 1

�
Tr(jxδρ1) = (

j ∗
x jx

) (
δρ1

δρ∗
1

)

= j̃ †
xM0 (1 − VM0) j̃x . (A11)

Obviously this can be continued, and finally we obtain the
expansion for the full moment of inertia

I = j̃ †
x (M0 − M0VM0 + M0VM0VM0 − · · ·) j̃x , (A12)

which is equivalent to the expansion of the matrix M in
Eq. (23).
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