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A propagator of the dynamically screened Coulomb interaction in the vicinity of a graphene monolayer is
calculated using ground-state Kohn-Sham orbitals, and the imaginary part of this propagator is used to calculate
the energy-loss rate of a static blinking point charge due to excitation of electronic modes in graphene. Energy
loss calculated for all (Q,ω) modes gives intensities of electronic excitations, including plasmon dispersions
in graphene, with low-energy two-dimensional (2D) and high-energy π1, π2, and π + σ plasmons. Plasmon
energies are in good agreement with experimental results. This spectral analysis also enables us to study the
contribution of each plasmon mode to the stopping power and potential induced by a point charge moving parallel
to the graphene. We find the bow waves that in pristine graphene appear for higher velocities (v � 2vF ) and
predominantly originate from excitation of π plasmons. Doping induces extra features which appear for lower
v ≈ vF velocities and predominantly originate from the excitation of 2D or Drude plasmons.
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I. INTRODUCTION

Graphene is a material with a very simple structure
consisting of carbon atoms arranged in a honeycomb lattice,1–4

and at the same time it is a very strong material that
can be easily synthesized.5–7 This makes graphene very
interesting for many practical applications. For example,
graphene monolayers or bilayers could become superior to
noble metals in photonics8 or plasmonics9,10 and could be a
material suitable for nanoelectronics.11 Also, since plasmon
resonance in a two-dimensional structure produces enhanced
near-field effects similar to those at noble metal surfaces, it
becomes interesting in plasmon-enhanced nanosensing12 or in
heat transfer processes.13

Proper understanding of such applications requires accurate
experimental and theoretical studies of single-particle and
collective excitations in graphene. For many applications it
is very important to understand the mechanisms affecting
the lifetime or propagation length of plasmons, which are
subject to various decay mechanisms such as the creation of
electron-hole pairs, phonons, etc.9 Even though there have
been many theoretical14–16 and experimental16–19 studies of
various plasmon excitations in graphene, there is still a lack of
proper theoretical description of plasmon decay mechanisms.
Also, for many applications it is very important to understand
the most appropriate way to design external longitudinal
(dynamical charge distribution) or transverse (electromagnetic
wave) probes able to excite plasmons in graphene selectively
and efficiently.

In this paper we focus on the investigation of efficiency and
selectivity of the simplest longitudinal probes, static blinking
point charge and the moving point charge, in exciting various
plasmons in pristine and doped graphene. Similar calculations
have been done using a simple dielectric model,20 where only
excitation of a low-energy two-dimensional (2D) plasmon was
considered, or by using the hydrodynamic model,21 where the
wake potential in carbon nanotubes has been investigated. Here
we are in the framework of more general theories established

a long time ago to investigate the energy loss and wake
potential of moving ions close to a solid surface22 or the wake
potential and self-energy of a particle moving near a metallic
surface23,24 by using simple plasmon-pole or semiclassical
approximations.25

In this work the response function and the induced po-
tential are obtained using the first-principles time-dependent
density functional theory (TDDFT) to calculate the dynamical
response function and the energy-loss rate, where we include
contributions of all electronic excitations up to 25 eV. Using
the response function, we calculate the propagator of the
dynamically screened Coulomb interaction and then use the
imaginary part to obtain the energy-loss rate of a static blinking
point charge in the vicinity of graphene. By scanning the
energy dissipation across all (Q,ω) modes, we obtain the
map of electron-hole and plasmon excitations in pristine and
doped graphene. For energies of π and π + σ plasmons at
the � point, we get 4.5 and 14.3 eV, respectively, which
is in good agreement with the reported experimental values
of 4.7 and 14.6 eV,16 or 5.1 and 14.5 eV,18 as well as
with recent theoretical results.15,26 The dispersion curve of
the low-energy 2D plasmon is not in a good agreement
with the one obtained from simple one-band 2D theory
but it is in a good agreement with previous more accurate
theoretical14,15 and experimental17 results. In our opinion, this
happens because simple one-band 2D electron gas theory is not
sufficient for realistic and accurate description of low-energy
2D plasmons. We also obtain the splitting of π plasmon for
higher-momentum-transfer vectors, which has been observed
experimentally.19,27 In accordance with this, we introduce
notation π1 for a high-energy dispersive π plasmon, and π2

for a low-energy nondispersive plasmon.
We used the imaginary part of the induced dynamically

screened Coulomb interaction ImW ind
G (Q,ω,z,z′) to calcu-

late stopping power and the real part ReW ind
G (Q,ω,z,z′) to cal-

culate the potential induced by a point charge moving parallel
to the graphene surface. For the velocity unit we used the Fermi
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velocity in the metal with density corresponding to rs = 3 (in
International System units this is vF = 1.4 × 106 m/s). We
show that in pristine graphene and for velocities v > 2vF a
moving particle produces waves of induced potential lagging
behind the particle (bow waves). We demonstrate that these
waves come from the excitation of π1 plasmons. In doped
graphene the bow wave appears for lower velocities v ≈ vF

as a consequence of excitation of low-energy 2D plasmons.
We show that a broad π + σ plasmon does not contribute
significantly to the induced potential.

In Sec. II we describe the first-principles (DFT) method
(which uses periodically repeated supercells in the z direction),
from which we obtain the Kohn-Sham (KS) orbitals in
graphene. Then we describe how to use the KS orbitals in
the calculation of the free-electron response function χ0(z,z′).
Limiting χ0(z,z) to a single unit supercell, e.g., −L/2 <

z,z′ < L/2, and using a bare Coulomb propagator, we con-
struct the random phase approximation (RPA)-Dyson equation
for the interacting electron response function χ (z,z′), which
does not include interaction with the neighboring supercells.
In Sec. III we calculate the propagator of the dynamically
screened Coulomb interaction and use its imaginary part
to obtain the energy-loss rate of a static blinking point
charge in the vicinity of graphene. By scanning the energy
dissipation across the (Q,ω) space we obtain a map of plasmon
modes in pristine and doped graphene. In Sec. IV we use
the imaginary part of the dynamically screened Coulomb
interaction propagator to calculate the stopping power of a
charged particle moving parallel to the graphene monolayer,
and in Sec. V we use its real part to calculate the potential
induced by a charged particle moving parallel to the graphene
monolayer. We analyze how the features in the stopping power
and induced potential depend on the particle velocity. In
Sec. VI we present conclusions.

II. THEORY AND COMPUTATIONAL METHODS

A. Ground-state calculation

In this section we briefly describe the calculation of the
KS wave functions and energy levels (band structure) in a
graphene monolayer that are used to calculate the independent
electron response function. A schematic representation of
a graphene monolayer is shown in Fig. 1. For electronic
structure calculations we used a plane-wave self-consistent
field DFT code (PWSCF) within the QUANTUM ESPRESSO (QE)
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FIG. 1. (Color online) Schematic representation of the graphene
monolayer. Unit cell parameter in the parallel direction is a =
4.651 a.u., in the perpendicular direction is L = 5a, and the thickness
of the electronic density is 2a.

Γ Μ ΚΚ Μ´
-20

-15

-10

-5

0

5

10

15

E
n(K

) 
- 

E
F

  (
eV

)

FIG. 2. (Color online) Graphene band structure. Blue line shows
occupied π band and red line shows unoccupied π∗ band.

package,28 and the Perdew-Zunger local density approxima-
tion (LDA) for the exchange correlation (XC) potential.29

An electronic temperature of kBT ≈ 0.1 eV was assumed
to achieve convergence in the calculation of the KS wave
functions, and all energies were then extrapolated to 0 K.
The ground-state electronic density was calculated using a
12 × 12 × 1 Monkhorst-Pack special K-point mesh, i.e., by
using 19 special points in the irreducible Brillouin zone.
In the PWSCF code we used norm-conserving LDA-based
pseudopotentials for carbon atoms,30 and we found the energy
spectrum to be convergent with a 50-Ry plane-wave cutoff.
Graphene band structure along the high-symmetry �-K-M-�
direction shown in Fig. 2 was calculated along the path with
241 k points, and it agrees with previous calculations.31 For
the graphene unit cell parameter we used the experimental
value a = 4.651 a.u. and for the unit cell in the z direction,
which represents separation between periodically repeated
graphene layers, we take L = 5a = 23.255 a.u. (to ensure that
the interlayer electronic densities do not overlap), as is shown
in Fig. 1. For the response function it is important to choose
the right thickness of the electron density, which we here take
to be 2a, as shown in Fig. 1.

B. Response function calculation

The independent electron response function matrix can be
written as

χ0
GG′(Q,ω) = 2

V

∑
K∈S.B.Z.

∑
n,m

fn(K) − fm(K + Q)

ω + iη + En(K) − Em(K + Q)

×MnK,mK+Q(G) M∗
nK,mK+Q(G′), (1)

where V = S ∗ L is the normalization volume and S is the
normalization surface. In the summation over K we have used
101 × 101 × 1 K-point mesh sampling, which corresponds
to 10 303 Monkhorst-Pack special k points in the Brillouin
zone and 901 in the irreducible Brillouin zone. Also, n,m

summation is carried out over 50 bands, which proved to be
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enough for the proper description of the high-energy π + σ

plasmon. Matrix elements in Eq. (1) have the form

MnK,mK+Q(G) = 〈�nK|e−i(Q+G)r|�nK+Q〉V , (2)

where Q is the momentum transfer vector parallel to the x-y
plane, G = (G‖,Gz) are three-dimensional (3D) reciprocal lat-
tice vectors, and r = (ρ,z) is a 3D position vector. Integration
is performed over the normalization volume V . Plane-wave
expansion of the wave function has the form

�nK(ρ,z) = 1√
V

eiKρ
∑

G

CnK(G)eiGr,

where the coefficients CnK are obtained by solving the KS
equations. For energy cutoff in the wave function expansion
we used 50 Ry, which corresponds to about 2500 G compo-
nents. The free-electron response function (1) can be Fourier
transformed in the z,z′ direction,

χ0
G‖G′

‖
(Q,ω,z,z′) =

∑
GzG′

z

χ0
GG′(Q,ω)eiGzz−iG′

zz
′
, (3)

which is a periodic function in the z,z′ direction, just as, e.g.,
LDA self-consistent electronic density, which follows periodi-
cally repeated graphene layers. Such behavior is schematically
shown in Fig. 3. We are interested in the polarizability of
electrons placed in just one of the periodically repeated
samples, e.g., electrons located between −L/2 and L/2,
as shown in Fig. 3. Since χ0 represents the polarizability
of noninteracting electrons with nonoverlapping densities in
different layers, the response function χ0 restricted to the
interval −L/2 < z,z′ < L/2 describes the polarizability of
electrons in the corresponding graphene layer, without any
influence from, or interaction with, electrons in surrounding
graphene layers. In other words, contribution to the induced
potential produced by a test charge placed at any position z

coming from polarization of electrons placed in the interval
−L/2 < z,z′ < L/2 without any influence of electrons in
the rest of the system can be calculated by using the
expression

W ind
G‖ (Q,ω,z,z′) =

∫ L/2

−L/2
dz1dz2 v2D

G‖ (Q,z,z1) χ0
G‖0(Q,ω,z1,z2)

× v2D
0 (Q,z2,z

′), (4)

z,z’

-L L
2 2

χ  (z,z’),0 n(z)

-a a

FIG. 3. Schematic representation of independent electron re-
sponse function or LDA ground-state electronic density in period-
ically repeated graphene layers.

where v2D
G‖ (Q,z,z′) = 2π

|Q+G‖|e
−Q|z−z′ | is a 2D Fourier transform

of the bare Coulomb interaction. In order to take into account
the electron-electron interaction we need to replace the
free-electron response function χ0

G‖G′
‖

by the intralayer RPA

response function χG‖G′
‖ obtained as the solution of the Dyson

equation

χG‖G′
‖ (Q,ω,z,z′) = χ0

G‖G′
‖
(Q,ω,z,z′) +

∑
G‖1

∫ L/2

−L/2
dz1dz2

×χ0
G‖G‖1

(Q,ω,z,z1) v2D
G‖1(Q,z1,z2)

×χG‖1,G′
‖ (Q,ω,z2,z

′). (5)

Since integrations in Eq. (5) are performed from −L/2 to
L/2, the density fluctuation created in the corresponding
graphene layer (completely independent of other layers!) can,
via Coulomb propagator v2D

G‖1
(Q,z1,z2), interact only with

density fluctuation in the same layer, and interaction with
polarization in surrounding layers is completely excluded.
This means from this point on that our calculation is actually
performed for a single graphene layer, and it does not depend
on the choice of L, assuming that L is large enough to avoid
the overlap of the electron orbitals in adjacent layers.

Using Fourier expansion (3), and a similar one for χ , Dyson
equation (5) becomes a matrix equation:

χGG′(Q,ω) = χ0
GG′(Q,ω) +

∑
G1G2

χ0
GG1

(Q,ω) VG1G2 (Q)

×χG2G′(Q,ω), (6)

where the Coulomb interaction matrix elements have the
explicit form

VG1G2 (Q)

= 4π

|Q + G1|2 δG1G2 − pGz1pGz2

4π (1 − e−|Q+G‖1|L)

|Q + G‖1|L

× |Q + G‖1|2 − Gz1Gz2(|Q + G‖1|2 + G2
z1

)(|Q + G‖1|2 + G2
z2

)δG‖1G‖2 (7)

with

pGz
=

{
1; Gz = 2kπ

L

−1; Gz = (2k+1)π
L

, k = 0,1,2,3, . . . .

Solution of Eq. (6) has the form

χGG′(Q,ω) =
∑
G1

E−1
GG1

(Q,ω)χ0
G1G′(Q,ω), (8)

where we have introduced the dielectric matrix

EGG′(Q,ω) = δGG′ −
∑
G1

VGG1 (Q)χ0
G1G′(Q,ω). (9)

Using Eqs. (3) and (4) (where χ0
G‖G′

‖
should be replaced by

χG‖G′
‖), the propagator of the induced dynamically screened

Coulomb interaction can be written in terms of the matrix
elements (8) (Ref. 32):

W ind
G‖ (Q,ω,z,z′) =

∑
Gz1Gz2

v2D
G‖ (Q,z,Gz1) χG‖0(Q,ω,Gz1,Gz2)

× v2D
0 (Q,Gz2,z

′), (10)
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where

v2D
G‖ (Q,Gz,z

′) = [
v2D

G‖ (Q,z,Gz)
]∗

=
∫ L/2

−L/2
dze−iGzz v2D

G‖ (Q,z,z′)

and index zero means that G′
‖ = 0. If we consider that at

z = a the graphene ground-state electronic density vanishes,
then for z,z′ > a the dynamically screened induced Coulomb
interaction can be written as

W ind
G‖ (Q,ω,z,z′) = e−[|Q+G‖|z+Qz′]D(Q + G‖,ω), (11)

where we have defined the graphene response function

D(Q + G‖,ω)

=
∑

Gz1Gz2

χGz1Gz2 (Q,ω)FGz1 (Q + G‖)F ∗
Gz2

(Q) (12)

and the form factors F are

FGz
(Q) = pGz

vQ√
L

1 − e−QL

Q + iGz

. (13)

Equations (11)–(13) provide an important theoretical frame-
work which enables us to study various physical processes near
a graphene monolayer. For the response function calculation
we have taken the unit cell thickness L = 23.255 a.u.,
which corresponds to five unit cell parameters in the parallel
direction. We have neglected crystal local field effects in the
parallel but not in the perpendicular direction. By this we
mean that, while solving the Dyson equation (6) to obtain the
response function, we neglect all G‖ 
= 0 components, so it
becomes

χGzG′
z
(Q,ω) = χ0

GzG′
z
(Q,ω) +

∑
Gz1Gz2

χ0
GzGz1

(Q,ω) VGz1Gz2 (Q)

×χGz2G′
z
(Q,ω). (14)

In the Fourier expansion over Gz’s we have used the energy
cutoff of 20 hartrees, which corresponds to the matrix of
dimension 47 × 47. This cutoff proved to be sufficient to give a
smooth, monotonically decaying tail of induced charge density
for z > a.

In the next section we use this formulation to calculate the
energy loss of the blinking static charge near graphene and
the induced potential of the particle moving parallel to the
graphene monolayer.

III. ENERGY LOSS OF A BLINKING POINT CHARGE
CLOSE TO THE GRAPHENE MONOLAYER

The energy-loss rate P (t) or the power loss of an arbitrary
external dynamical charge distribution ρ(r,t) which induces
charge density fluctuations in a polarizable medium can
be written in terms of the propagator of induced Coulomb
interaction in such a system as

P (t) =
∫

dr1

∫
dr2

∫ ∞

−∞
ρ(r1,t)

∂

∂t
W ind(r1,r2,t − t1)

× ρ(r2,t1). (15)

The polarizable medium in our case is the graphene monolayer,
and the propagator of the induced Coulomb interaction in the

graphene

cos(ωt)z

z0

R x

FIG. 4. (Color online) Static blinking point charge placed at
position r0 = (R,z0) close to the graphene monolayer.

real space, expanded in a Fourier series, is

W ind(r,r′,t − t ′) =
∑
G‖

∫
dQ

(2π )2
ei(G‖+Q)ρe−iQρ ′

×
∫

dω

2π
e−iω(t−t ′)W ind

G‖ (Q,ω,z,z′),

(16)

where Fourier coefficients are given by Eq. (10).
As a simple example we consider the energy loss of a

blinking static point charge, i.e., a point particle placed at
r0 = (R,z0), as shown in Fig. 4, with the charge oscillating as

ρ(r,t) = δ(r − r0) cos(ωt). (17)

Then by using Eqs. (15)–(17) the energy-loss rate (or the
rate at which the charge loses energy to excitations) becomes32

P (ω,r0) = −ω

2

∑
G‖

eiG‖R
∫

dQ
(2π )2

ImW ind
G‖ (Q,ω,z0,z0). (18)

Most experiments do not provide information about the spatial
variation of the energy-loss rate; e.g., in electron-energy-loss
spectroscopy (EELS) experiments the electron passes through
or reflects from graphene so the information we obtain is a
spatial average value of the energy loss. This means that we
can neglect the spatial variation of the energy-loss rate within
the unit cell in the parallel direction and it is sufficient to keep
only the G‖ = 0 Fourier component in Eq. (18). Also, in order
to get the loss function with Q resolution we have to take a
single Q Fourier component, which gives

P (ω,Q,z0) = −ω

2
ImW ind

G‖=0(Q,ω,z0,z0). (19)

The advantage of this expression is that it has spatial,
frequency, and momentum resolution; i.e., it tells us how much
power is lost to the excitation of charge density oscillations
at the wave vector Q and frequency ω, if the driving point
charge is placed at a point z0 from the center (z = 0) of the
graphene monolayer. Using expressions (11) and (12), the in-
duced potential at point z0 can be written in terms of the
graphene response function as

W ind
G‖=0(Q,ω,z0,z0) = e−2Qz0D(Q,ω), (20)

where

D(Q,ω) =
∑

Gz1Gz2

χGz1Gz2 (Q,ω)FGz1F
∗
Gz2

(21)

and the form factors F are given by Eq. (13). As we have
previously shown,33 the dependence of the excitation intensity
and frequency on the propagation direction Q/Q is negligible.
Therefore, it is appropriate to calculate the average value of
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FIG. 5. (Color online) Spectrum of electronic excitations in
pristine graphene.

D(Q,ω) over high-symmetry directions. First we calculate
D(Q,ω) for a particular point in the �-M direction, then for
the corresponding (so that |Q�K | = |Q�M | = Q) point in the
�-K direction, and the average value D(Q,ω) is then

D(Q,ω) = D(Q�M,ω) + D(Q�K,ω)

2
. (22)

After substituting Eq. (22) in Eq. (20) and then in Eq. (19),
the expression for the average (with respect to the angle of Q)
energy-loss rate becomes

P (ω,Q,z0) = −ω

2
e−2Qz0 ImD(Q,ω). (23)

This expression can now be used to scan all the graphene
electronic modes with respect to frequency and wave vector,
which is important for understanding the induced potential
which appears behind the moving point charge (as is dis-
cussed later). For some distance z0 and wave vector Q the
energy-loss rate P is proportional to −ImD(Q,ω), which
gives the spectrum of electronic excitations in the graphene
monolayer.

Figure 5 shows the spectrum and intensities of electronic
excitations in the pristine graphene. Lighter areas indicate
frequencies and wave vectors of excitations to which most
of the energy can be dissipated. At lower frequencies we can
clearly see a wide interband π → π∗ electron-hole continuum
which forms a linearly increasing band about 4 eV wide. On
the upper edge of this electron-hole continuum we can see
the π plasmon with very regular linear dispersion, starting
from about 4.3 eV at the � point. Also we can see the
splitting of the π plasmon for higher wave vectors, starting
from Q ≈ 0.2 a.u., which is a consequence of π -plasmon
dispersion anisotropy. Namely, as shown before,33 the π

plasmon splits only if it propagates in the �-M direction, so
here the splitting is a consequence of calculating the average
value over high-symmetry directions. At higher frequencies,
at about 14 eV at the � point, we can see a very broad π + σ

plasmon.
We have also used the previous formalism to calculate the

excitation spectrum in the doped graphene with the doping
parameter EF = 1 eV, which is shown in Fig. 6. We see that
doping does not affect the high-energy part of the spectrum,
but affects the low-energy excitations. Since now the π∗ band

FIG. 6. (Color online) Spectrum of electronic excitations in
doped graphene, EF = 1 eV. The white line marks the frequencies
and wave vectors of the modes that can be excited by a moving charge
at velocity v = vx̂.

is partially filled, there is a low-energy π∗ → π∗ intraband
electron-hole continuum with low weight, but at its upper edge
there is a very strong (very light line starting from Q = 0) 2D
plasmon.14 The interband π → π∗ electron-hole continuum is
shifted to higher energies and in between there is a gap which
can be seen as a small dark region above the 2D plasmon. Also
we see that the 2D plasmon is strong only for very low wave
vectors, while at about Q = 0.1 a.u. it merges with the lower
edge of the π → π∗ electron-hole continuum and completely
disappears.

In the next section we show that all electronic excitations
on the vQx line shown in Fig. 6 contribute to the potential
induced by the particle moving with velocity v parallel to the
graphene monolayer. Since the dominant excitations on that
line are collective plasmon excitations, we first briefly analyze
them analytically.

Since the doping does not influence π plasmons, the most
general plasmon spectrum can be obtained using the loss data
for doped graphene shown in Fig. 6. The plasmon dispersion
curves shown in Fig. 7 are obtained by tracking the intensity
maxima in the spectrum shown in Fig. 6. In Fig. 7 the
π + σ plasmon is not shown because it is too high in energy
and does not contribute to the induced potential. Dispersion
curves of plasmons labeled as π1 and π2 are fitted to linear
curves,

ω(Q) = ω0 + vπQ, (24)

and the 2D plasmon in the long-wavelength limit is fitted to a
square root curve

ω(Q) = ω0

√
Q, (25)

where Q is in atomic units and fitting parameters are listed in
Table I.

As the velocity unit we use the Fermi velocity vF of a
free-electron gas with the density corresponding to rs = 3,
which is vF = 1.4 × 106 m/s. The frequency of π plasmons
at the � point is in good agreement with the experimental
value of 4.7 eV obtained in Refs. 16 and 18. On the other
hand, dispersion of the 2D plasmon disagrees with the simple
2D electron gas theory in the long-wavelength limit. Namely, if
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FIG. 7. (Color online) Plasmon dispersion curves in a doped
graphene monolayer with EF = 1 eV, obtained by tracking the
intensity maxima in Fig. 6, represent π1 plasmon (blue squares),
π2 plasmon (red dots), and 2D plasmon (black diamonds). Solid
lines represent the corresponding linear [Eq. (24)] and square root
[Eq. (25)] fits. Parameters are listed in Table I. Dotted lines represent
vQx for v = 1,2,3,4,5vF . The black dashed line represents the upper
edge of π∗ → π∗ intraband e-h transitions.

electrons in the partially filled π∗ band (electrons in the Dirac
cone) are treated as a 2D electron gas then plasmon dispersion
in the long-wavelength limit is given by Eq. (25), where
ω0 = √

2HaEF
14 where Ha = e2

a0
= 27.2 eV. For EF = 1 eV,

which is the doping used here, ω0 = 7.37 eV, which disagrees
substantially with the result presented in Table I. We attribute
this discrepancy to the fact that this simple 2D theory does
not take into account interband π → π∗ transitions, and also
transition matrix elements (2) are not as in the simple 2D
theory. Moreover, the 2D plasmon dispersion curve joins the
upper edge of π∗ → π∗ intraband e-h transitions (shown by
black dashed line in Fig. 7) which agrees with the curve
presented in Ref. 14 where both interband π → π∗ e-h
transitions and tight-binding matrix elements are taken into
account.

IV. STOPPING POWER OF THE MOVING PARTICLE

Previous formulation can be extended to calculate the power
loss and the induced potential of a point charge moving with
constant velocity v parallel to the graphene surface. If a particle
moves at height z0 from the graphene center, as shown in Fig. 8,
then the external charge density distribution can be written
as

ρ(r,t) = δ(x − vt)δ(y)δ(z − z0). (26)

TABLE I. 2D and π -plasmon fitting parameters.

Plasmon type ω0 (eV) vπ (vF )

π1 4.53 0.56
π2 4.34 0.15
2D 5.13

(ρ,z  )0 (vt,z  )0

z

x
graphene

z z0 0

FIG. 8. (Color online) Point charge moving parallel to the
graphene monolayer. Red dot shows the current position of moving
charge, and blue dot shows the point at which the potential is
calculated.

After inserting Eq. (26) into Eq. (15) and using Fourier
expansion (16), the power loss becomes

P (v,z0,t)

= −i v
∑
G‖

eiGxvt

∫
dQ

(2π )2
Qx W ind

G‖ (Q,ω = Qxv,z0,z0).

(27)

We see that the time dependence of the power loss is periodic,
with the time period related to the lattice period in the direction
of motion. This could be expected because the particle moves at
constant height z0 from the graphene center, so the dissipation
power follows surface corrugation. Since such time variations
are often very fast, we can calculate the average value of
P (v,z0,t) in the x = vt direction, but we can do the same
in the y direction as well, which means that we keep only the
G‖ = 0 terms in Eq. (27) and it becomes

P (v,z0) = −i v

∫
dQ

(2π )2
Qx W ind

G‖=0(Q,ω = Qxv,z0,z0).

(28)

Moreover, after using the symmetry properties of the induced
potential W ind

W ind(−Qx) = [W ind(Qx)]∗, W ind(−Qy) = W ind(Qy)

and Eq. (20), which is valid under the assumption that the
moving particle is outside the graphene electron density (z0 >

a), Eq. (28) can be rewritten as

S(v,z0) = P (v,z0)

v
= 1

π2

∫ ∞

0
dQx Qx

∫ ∞

0
dQy e−2Qz0

× ImD(Q,ω = Qxv), (29)

where S represents the force that needs to be applied on the
particle to make it move at constant velocity v and is well
known as the stopping power.

Figure 9 shows the stopping power for a charged particle
moving parallel to the graphene layer as a function of its
velocity v and for z0 = 10 a.u. The result for pristine graphene
is shown by red dots and the result for doped graphene
(EF = 1 eV) is shown by blue squares. As can be seen from
Eq. (29), the contributions to stopping power can come from
all excitations which lie on the ω = Qxv line, schematically
shown by the white line in Fig. 6 or by dashed lines (for
v = 1, . . . ,5vF ) in Fig. 7. In pristine graphene the stopping
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FIG. 9. (Color online) Stopping power S(v,z0) for particle in
parallel motion as a function of its velocity v for pristine (red dots)
and doped (blue squares) graphene. Doping parameter is EF = 1 eV
and z0 = 10 a.u. The vertical dashed line denotes velocity which
corresponds to a graphene cone constant γ = 0.63vF .

power first slowly increases (e.g., as S ∼ vα, α � 2), then at
about v ≈ γ (where γ is the graphene cone constant which
in the velocity units we use corresponds to 0.63vF , also
denoted in Fig. 7) begins to rise more rapidly. This is because
the ω = vQx line enters into the region of interband π -π∗
electron-hole excitations, whose lower edge is limited by the
ω = γQx line, and it becomes the main contribution to particle
energy loss. For v > γ , stopping power has an almost linear
trend because then the main contributions come from the
excitation of π plasmons, which strength linearly increases
as Qx decreases.

For doped graphene the situation is different. For v < γ

stopping power is above the result for pristine graphene and
has a linear character. This is because the ω = vQx line is now
below the ω = γQx line which, in doped graphene, represents
the upper edge of intraband π∗-π∗ electron-hole transitions
which are then the dominant contributions to stopping power.
For v > γ , intraband π∗-π∗ electron-hole transitions are
not contributing any more but stopping power continues to
increase with an even bigger slope. This is a consequence of
excitation 2D plasmon, which has strong intensity in the gap
between intra- and interband continua.

V. INDUCED OR WAKE POTENTIAL OF THE MOVING
PARTICLE

The potential at point (ρ,z0) and at time t induced by an
arbitrary external dynamical charge distribution ρ(r,t) can be
written in terms of induced Coulomb propagator (10) as23,24

V (ρ,z0,t) =
∫

dr1

∫ ∞

−∞
dt1 W ind(ρ,z0,r1,t − t1)ρ(r1,t1).

(30)

Assuming that the external charge is a point charge moving
with constant velocity v parallel to the graphene surface at
height z0 from the graphene center, as shown in Fig. 8, then the
charge distribution is given by Eq. (26) which after inserting

into Eq. (30) gives the induced potential

V (ρ,z0,t) =
∫ ∞

−∞
dt1 W ind(ρ,z0,vt1,z0,t − t1). (31)

Furthermore, after inserting the Fourier transform of the
induced Coulomb propagator

W ind(ρ,z0,vt1,z0,t − t1)

=
∑
G‖

eiG‖ρ
∫

dQ
(2π )2

eiQ(ρ−vt1)

×
∫

dω

2π
e−iω(t−t1)W ind

G‖ (Q,ω,z0,z0), (32)

we can perform t1 integration and the induced potential
becomes

V (ρ,z0,t) =
∑
G‖

eiG‖ρ
∫

dQ
(2π )2

eiQ(ρ−vt) W ind
G‖ (Q,Qv,z0,z0).

(33)

Here we explore the structures in the induced potential with
dimensions larger than the unit cell, and then in Eq. (33) it is
enough to take just the G‖ = 0 component. Also, if we assume
that the particle moves in the x̂ direction, i.e., v = vx̂, then real
(imaginary) parts of W ind become symmetric (antisymmetric)
functions of Qx and symmetric functions of Qy . Then the Q
integration can be explicitly written as

V (x − vt,y,z0)

= 1

π2
Re

∫ ∞

0
dQxe

iQx (x−vt)
∫ ∞

0
dQy cos(Qyy)

×W ind
G‖=0(Q,Qxv,z0,z0). (34)

Using Eq. (20), the induced potential also can be written in
terms of the graphene response function (22):

V (x − vt,y,z0)

= 1

π2
Re

∫ ∞

0
dQxe

iQx (x−vt)
∫ ∞

0
dQy cos(Qyy) e−2Qz0

×D(Q,vQx). (35)

This is the final expression we use to calculate the potential
induced behind the moving particle. It should be noted here
that because of the x − vt dependence in Eq. (35) the induced
potential is stationary (time independent) in the reference
frame of the moving particle. Watching from the system at rest,
we see induced potential moving with velocity v but without
changing its shape. From this we can conclude that the moving
particle can only excite the modes with phase velocity in the x

direction exactly equal to the velocity of the moving particle.
In other words, only excitations with phase velocity equal to
vx̂ contribute to the induced potential, i.e., all excitations with
frequencies ω(Q) [as can be seen from Eq. (35)] satisfying the
relation

Qxv = ω(Q), (36)

where Q =
√

Q2
x + Q2

y . Because of the assumed isotropy

the minimal wave vector at which the vQx line crosses the
particular plasmon dispersion curve has components Qx =
QC and Qy = 0. Then for each Qx > QC there will be two
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FIG. 10. (Color online) Intensities of the potential induced by point charge moving at distance z0 = 10 a.u. from the center of the pristine
graphene monolayer (EF = 0) as functions of coordinates (x − vt,y).

±Qy [according to Eq. (36)] plasmons contributing to the
induced potential. However, the contributions of excitations
with Qy 
= 0 are weak, and we neglect them. Then the
frequencies ω and wave vectors Qx of plasmons which
dominantly contribute to the induced potential are defined
simply as the point where the vQx line crosses the plasmon
dispersion curve along the x axis:

vQx = ω(Qx). (37)

We first analyze the potential induced by the charged
particle moving parallel to the pristine graphene monolayer,
shown in Fig. 10. Figures show induced potentials at z0 =
10 a.u. as functions of parallel coordinates (x,y) in the
reference frame of the moving particle. For v = 0, as expected,
the induced potential is isotropically distributed around the
point charge. It is a standard static screening result, and its
detailed analysis as a function of separation z0 and the radial
coordinate is presented in Ref. 34. For v = vF we see a minor
deformation, i.e., the sphere is shifted, which is probably due to
excitation of π → π∗ electron-hole transitions lagging behind
the particle. In Fig. 7 we see that for v = vF the line vQx

crosses the π1 and π2 plasmon dispersion curves at large
Qx where they are still very weak and do not contribute.
For v = 2vF the sphere is more elongated, which is due
to excitations of continuum π → π∗ interband electron-hole
transitions. However, for higher particle velocities v � 3vF

there is a new feature in the potential which behaves as a
wave left behind the moving particle, and we suggest that it
originates from excitations of the π1 plasmon. This can be
checked by comparing the plasmon wavelength

λC = 2π

QC

, (38)

at which the vQx line crosses the π1 dispersion curve (an
example is shown in Fig. 7) with the wavelength of the
induced potential λind obtained as a distance between two
maxima in the cross section of the induced potential, along

the x axis (not shown here). In Table II we compare λC and
λind in pristine graphene for velocities v = 3,4,5vF . This nice
correlation between the wavelengths confirms that the waves
of the induced potential following the particle (Fig. 10 for
v � 3vF ) come predominantly from the excitation of the π1

plasmon.
Now we examine the behavior of the induced potential in

the vicinity of a doped graphene monolayer. Figure 11 shows
the potential induced by a charged particle moving at z0 = 10
a.u. from the center of a doped graphene monolayer, where
EF = 1 eV. Induced potential is calculated as a function of
x-y coordinates for z = z0 and in the reference frame of the
moving particle. The main difference between the doped and
undoped graphene is that doped graphene supports low-energy
2D plasmons, shown by the light line starting from ω = 0 in
Fig. 6 or by the black diamonds in Fig. 7. We see that all Qxv

lines cross the 2D plasmon for substantially low Qx’s where
the 2D plasmon is still quite strong. Because of that, as we see
in Fig. 11, the waves of the induced potential appear already
at v = vF , in contrast to the pristine graphene. For higher
velocities the Qxv line crosses the 2D plasmon for lower Qx’s,
causing stronger peaks (light areas behind the particles for
v = 2,3vF ) in the induced potential. As the velocity increases,
the first peak increasingly lags behind the particle and, for
v = 3vF , comes to the edge of the image. In order to check that
for velocities v = 1,2,3vF the induced potential really comes
from 2D plasmons, in Table III we compare the induced poten-
tial wavelengths and λC = 2π

QC
, where QC is now a wave vector

TABLE II. Comparison between λC for π1 plasmon and λind

shown in Fig. 10 for pristine graphene.

v (vF ) 3 4 5

λC (a.u.) 59.2 83.2 108.3
λind (a.u.) 58.6 85.1 110.1
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FIG. 11. (Color online) Intensities of the potential induced by point charge moving at distance z0 = 10 a.u. from the center of doped
graphene monolayer (EF = 1 eV) as a function of coordinates (x − vt,y).

for which the Qxv line crosses the 2D plasmon dispersion
curve.

We see that the discrepancy increases as velocity increases.
This is because for higher velocities the Qxv line crosses the
2D plasmon dispersion for very small Qx’s, making it very
difficult to determine the intersection points exactly. Also, for
v = 3vF convolution with the π1 plasmon contribution should
be taken into account. However, agreement is good enough
to say that the 2D plasmon dominantly deforms the induced
potential for lower (up to 3vF ) velocities. For higher velocities,
v = 4vF and 5vF , we see waves appearing in the induced
potential similar to those in Fig. 10 for pristine graphene. This
could be expected because for higher velocities the Qxv line
does not cross or even touch the 2D plasmon dispersion for
very low Qx’s where the density of plasmon states is very low.
On the other hand, high-energy π1 plasmons which give the
dominant contribution to the induced potential are unaffected
by doping.

In Fig. 10 we marked the wave front of the induced
potential to show that the wave propagates in the direction
corresponding to the wave vector Q = QC(1,ctgθ ); i.e., the
propagation in not parallel to the x axis. The reason for this
is the retardation effect in the propagation of the Coulomb
interaction, i.e., retardation in the plasmon formation (which
gives the main contribution in this case). The plasmon creation
is not instantaneous, which means that at the time when the
particle excites the plasmon at some position, the plasmon
earlier created at some of the particle’s previous positions has
already moved in the y direction. Since the phase velocity

TABLE III. Comparison between λC for 2D plasmon and λind

shown in Fig. 11 for doped graphene.

v (vF ) 1 2 3

λC (a.u.) 85 273 570
λind (a.u.) 87 252 373

of such creation remains exactly v, this causes inclination of
the wave front from the direction of propagation, by an angle
θ = π

4 , as shown in Fig. 10.

VI. CONCLUSION

This paper demonstrates, in a clear formal way, the
usefulness of the nonlocal dynamical Coulomb interaction
in theoretical investigation of graphene response to arbitrary
external longitudinal perturbation. To test this approach we
used the simplest longitudinal probes, blinking stationary
point charge and a moving point charge. We calculated the
energy-loss rate of a point blinking charge in the vicinity
of graphene from the imaginary part of nonlocal dynamical
Coulomb interaction. By scanning the energy dissipation
across all (Q,ω) space we obtained the map of collective
and single-particle excitations in pristine and doped graphene,
with energies in very good agreement with previous experi-
mental and theoretical results. We use the imaginary part of
the dynamically screened Coulomb interaction to calculate
stopping power, and we used its real part to calculate the
induced potential caused by a point charge moving parallel to
the graphene monolayer. We showed that for velocities up to
v ≈ 3vF the dominant contribution to the induced potential
bow waves occurring behind the moving charge comes from
excitations of a 2D or Drude plasmon existing only in doped
graphene. On the other hand, for higher velocities v > 3vF the
dominant contribution to induced potential bow waves comes
from excitation of π1 plasmons.
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