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We report a high precision measurement of the transverse single spin asymmetry AN at the center of
mass energy

√
s = 200 GeV in elastic proton–proton scattering by the STAR experiment at RHIC. The AN

was measured in the four-momentum transfer squared t range 0.003 � |t| � 0.035 (GeV/c)2, the region
of a significant interference between the electromagnetic and hadronic scattering amplitudes. The mea-
sured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude,
thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the
hadronic amplitude is dominated by the Pomeron amplitude at this

√
s, we conclude that this measure-

ment addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in
polarized proton–proton elastic scattering.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

High energy diffractive hadronic scattering at small values of
four-momentum transfer squared t , is dominated by an exchange
of the Pomeron trajectory, a color-singlet object with the quan-
tum numbers of the vacuum [1,2]. The calculation of cross-sections
for small-t scattering requires a non-perturbative approach in QCD
and its theoretical treatment is still being developed. The experi-
mental data therefore provide significant constraints for theoretical
approaches and models [3,4]. The coupling of the Pomeron to the
nucleon spin is of special interest since it is predicted to be sensi-
tive to the internal dynamics of the nucleon [3,4]. Studies of the
spin dependence of proton–proton (pp) scattering at small mo-
mentum transfers and at the highest energies presently available
at RHIC offer an opportunity to reveal important information on
the nature of the Pomeron.

There are several theoretical approaches which predict non-zero
spin-dependent Pomeron amplitudes for elastic scattering. Exam-
ples include an approach in which the Pomeron–proton coupling
is modeled via two-pion exchange [5], an impact picture model
assuming that the spin-flip contribution is sensitive to the im-
pact parameter distribution of matter in a polarized proton [6],
and a model which treats the Pomeron helicity coupling analo-
gously to that of the isoscalar anomalous magnetic moment of the
nucleon [7]. Still another approach assumes a diquark enhanced
picture of the proton [8], in which a non-zero spin-flip amplitude
may arise if the proton wave function is dominated by an asym-
metric configuration, such as a quark–diquark.

Here we present a high precision measurement of the trans-
verse single spin asymmetry AN in elastic scattering of polar-
ized protons at

√
s = 200 GeV in the t-range 0.003 � |t| �

0.035 (GeV/c)2 by the STAR experiment [9] at RHIC. The single
spin asymmetry AN is defined as the left–right cross-section asym-
metry with respect to the transversely polarized proton beam. In
this range of t , AN originates predominantly from the interference
between electromagnetic (Coulomb) spin-flip and hadronic (nu-
clear) non-flip amplitudes [3]. However, it was realized that AN

in the Coulomb-nuclear interference (CNI) region is also a sensi-
tive probe of the hadronic spin-flip amplitude [8], which will be
discussed in more detail in Section 2.

A previous measurement of AN in a similar t-range and the
same

√
s, but with limited statistics, has been reported by the

PP2PP Collaboration [10]. Other measurements of AN performed at
small t were obtained at significantly lower energies. They include
high precision results from the RHIC polarimeters obtained at

* Corresponding author.
E-mail address: kinyip@bnl.gov (K. Yip).
√
s = 6.8–21.7 GeV for elastic proton–proton [11–13] and proton–

carbon [14] scattering, as well as earlier results from the BNL AGS
for pC scattering [15] at

√
s = 6.4 GeV and from FNAL E704 for pp

scattering [16] at
√

s = 19.4 GeV.
The combined analysis of all results, which covers a wide en-

ergy range and different targets, will help to disentangle contri-
butions of various exchange mechanisms relevant for elastic scat-
tering in the forward region [17]. In particular, such an analysis
will allow us to extract information on the spin dependence of the
diffractive mechanism which dominates at high energies.

2. Hadronic spin-flip amplitude in elastic collisions

Elastic scattering of two protons is described by five indepen-
dent helicity amplitudes: two helicity conserving (φ1 and φ3), two
double helicity-flip (φ2 and φ4), and one single helicity-flip am-
plitude (φ5) — see [3] for definitions. At very high

√
s, such as

available at RHIC, and very small |t| < 0.05 (GeV/c)2, the proton
mass m can be neglected with respect to

√
s and t can be ne-

glected with respect to m, which simplifies kinematical factors in
the following formulas. The elastic spin-averaged cross-section is
given by:

dσ

dt
= 2π

s2

(|φ1|2 + |φ2|2 + |φ3|2 + |φ4|2 + 4|φ5|2
)
, (1)

while the single spin-flip amplitude φ5 gives rise to the single spin
asymmetry, AN , through interference with the remaining ampli-
tudes:

AN
dσ

dt
= −4π

s2
Im

{
φ∗

5(φ1 + φ2 + φ3 − φ4)
}
. (2)

Each of the amplitudes consists of Coulomb and hadronic con-
tributions: φi = φem

i + φhad
i , with the electromagnetic one-photon

exchange amplitudes φem
i described by QED using the measured

anomalous magnetic moment of the proton [18]. The optical theo-
rem relates the hadronic amplitudes to the total cross-section:

σtotal = 4π

s
Im

(
φhad

1 + φhad
3

)∣∣
t=0, (3)

which provides an important constraint on the parameterization of
these dominant helicity conserving hadronic amplitudes.

The contribution of the two double spin-flip hadronic ampli-
tudes φhad

2 and φhad
4 to the asymmetry AN is small, as indicated by

both experimental results [19,20] and theoretical predictions [21].
Thus, the main contribution to AN is given by:

AN
dσ

dt
= −8π

s2
Im

(
φem∗

5 φhad+ + φhad∗
5 φem+

)
, (4)

where φ+ = (φ1 + φ3)/2.

mailto:kinyip@bnl.gov
http://creativecommons.org/licenses/by/3.0/
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Fig. 1. (Color online.) The layout of the experiment. The Roman Pot stations are located on both sides of the STAR IP. The positive z direction is defined along the outgoing
“Blue” beam (the West direction). Positive y is pointing up and positive x is pointing away from the center of the RHIC ring. The detectors are placed on the outgoing beams.
The figure is not to scale.
The parametrization of φhad
5 is usually done in terms of φhad+ :

φhad
5 (s, t) = (

√−t/m) · r5(s) · Imφhad+ (s, t), where m is the proton
mass. Thus r5 is the measure of the ratio of the hadronic single
spin-flip amplitude (φ5) to hadronic single non-flip amplitudes (φ1
and φ3). Using this parametrization the following representation
of AN can be derived [3]:

AN =
√−t

m

[κ(1 − ρδ) + 2(δ Re r5 − Im r5)] tc
t − 2(Re r5 − ρ Im r5)

( tc
t )2 − 2(ρ + δ) tc

t + (1 + ρ2)
,

(5)

where tc = −8πα/σtotal, κ is the anomalous magnetic moment of
the proton, ρ = Reφ+/ Imφ+ is the ratio of the real to imaginary
parts of the non-flip elastic amplitude, and δ is the relative phase
between the Coulomb and hadronic amplitudes [3]:

δ = α ln
2

|t|(B + 8/Λ2)
− αγ , (6)

where B is the slope of the forward peak in elastic scattering, α =
1/137 is the fine structure constant, γ = 0.5772 is Euler’s constant,
and Λ2 = 0.71 (GeV/c)2.

3. Detection of elastic proton–proton collisions at RHIC

The protons, which scatter elastically at small angles (�2 mrad),
follow the optics of the RHIC magnets and are detected by a sys-
tem of detectors placed close to the beam inside movable vessels
known as “Roman Pots” (RPs) [22]. The Roman Pot stations are lo-
cated on either side of the STAR interaction point (IP) at 55.5 m
and 58.5 m with horizontal and vertical insertions of the detectors,
respectively. The coordinate system of the experiment is described
in Fig. 1. There are eight Roman Pots, four on each side of the
IP. Four approach the beam horizontally WHI, WHO (EHI, EHO)
and four approach the beam vertically WVU, WVD (EVU, EVD)
as shown in Fig. 1. The location of the RPs was optimized so
that, combined with proper accelerator magnet settings, it pro-
vides so-called “parallel-to-point focusing”, i.e. the (x, y) position
of the scattered protons at the RPs depends almost exclusively
on their scattering angles and is nearly insensitive to the trans-
verse position of the interaction point. As shown in Fig. 1, there
are five major magnets between the RPs and the collision point,
two dipole magnets DX and D0, which bend beams into collision,
and the focusing triplet of quadrupoles Q1–Q3. The dipole mag-
nets scatter out particles with momentum which is not close to
the beam momentum. The detector package inside each RP con-
sists of four 0.4 mm thick silicon micro-strip detector planes with
a strip pitch of about 100 μm, two of them measuring the horizon-
tal (x) and two the vertical (y) position of a scattered proton. The
sensitive area of the detectors is 79 × 48 mm2. Scintillation coun-
ters covering this area are used to form a trigger for elastic events.
More details on the experiment and the technique can be found in
Refs. [22,23].

The preliminary alignment was done by surveying the detec-
tor packages during their assembly and after installation inside the
Roman Pots with respect to the beam line of the accelerator. The
displacement of the RPs during data taking was measured by linear
variable differential transformers (LVDTs). The final alignment was
done using elastic events in the overlapping regions of horizontal
and vertical RPs, which allowed a relative position measurement
of the RPs on each side of the IP with a precision better than
0.1 mm. Collinearity of the elastic events and Monte Carlo simu-
lations of the acceptance boundaries due to limiting apertures in
the quadrupole magnets were used to further constrain the geom-
etry and to estimate systematic errors.

The data were taken during four dedicated RHIC stores between
June 30 and July 4, 2009 with special beam optics of β∗ = 22 m
in order to minimize the angular divergence at the IP [24]. The av-
erage luminosity over the four stores during which the data were
collected was L ≈ 2 · 1029 cm−2 s−1. The closest approach of the
first strip to the center of the beam was about 10 mm or about
12σ of the transverse beam size. A total of 33 million elastic trig-
gers were recorded.
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Fig. 2. (Color online.) Distribution of δθy vs. δθx for both detector pairs in horizontal RPs (a) and their projections in δθy (b) and δθx (c). The overlaid curves represent the
fits with a Gaussian signal and a linear background. The σ values of distributions are ≈58 μrad, consistent with beam angular divergence, and the background-to-signal ratio
under the Gaussian distributions in ±3σ is ≈0.4%.
4. Data selection and reconstruction of elastic scattering events

The selection of elastic events in this experiment is based on
the collinearity of the scattered proton tracks. A single track was
required on each side of the IP. Noisy and dead strips were re-
jected, with a total of five out of ≈14 000 in the active detector
area. Track reconstruction started with the search for hits in the
silicon detectors. First, adjacent strips with collected charge val-
ues above 5σ from their pedestal averages were found and com-
bined into clusters. A threshold depending on the cluster width
was applied to the total charge of the cluster, thus improving the
signal-to-noise ratio for clusters of 3 to 5 strips, while wider clus-
ters were rejected. The cluster position was determined as a charge
weighted average of strip coordinates. For each RP a search was
performed for matching clusters in the pairs of planes measuring
the same coordinate. Two clusters in such planes were considered
matched if the distance between them was smaller than 200 μm,
approximately the width of two strips. A matching pair with the
smallest matching distance was chosen and its cluster coordinates
were averaged. If only one cluster in the pair of planes was found,
we just use its coordinate for the analysis. If more than one clus-
ter or no match was found, no output from this RP was selected.
An (x, y) pair found in an RP was considered a track. About 1/3
of all reconstructed tracks were found in the region of overlap-
ping acceptance between the horizontal and the vertical RPs; for
those tracks the average of the kinematic variables was used. To
minimize the background contribution from beam halo particles,
products of beam–gas interactions, and detector noise, fiducial ar-
eas were selected to cut edges of the silicon detectors near the
beam and boundaries of the magnet apertures.

Planar angles θRP
x , θRP

y and coordinates xRP, yRP of protons at a
given RP relate to the angles θx, θy and coordinates x, y at the IP
by the transport matrix M:
⎡
⎢⎢⎣

xRP

θRP
x

yRP

θRP
y

⎤
⎥⎥⎦ = M

⎡
⎢⎢⎣

x

θx

y

θy

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a11 Leff
x a13 a14

a21 a22 a23 a24

a31 a32 a33 Leff
y

a41 a42 a43 a44

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
θx

y
θy

⎤
⎥⎥⎦ . (7)

For example, the transport matrix M for the horizontal Roman Pot
in the West side of the IP (WHI,WHO) is:

M =

⎡
⎢⎢⎣

−0.0913 25.2566 m −0.0034 0.0765 m

−0.0396 m−1 0.0137 −0.0001 m−1 0.0057

−0.0033 −0.1001 m 0.1044 24.7598 m

0.0002 m−1 0.0083 −0.0431 m−1 −0.6332

⎤
⎥⎥⎦ .

For the case of parallel-to-point focusing, and in the absence of
x–y mixing, the transport matrix is simplified and the so-called
“effective” length, Leff, terms dominate. The Leff values are in the
range of 22–26 m for this experiment. The angles of the scattered
protons at the IP can then be reconstructed independently for the
East (E) and West (W) arms with respect to the IP:

θx = xRP/Leff
x , (8)

θy = yRP/Leff
y . (9)

Because non-dominant terms in the transport matrix are small and
result in a negligible correction of about 4 μrad to the reconstruc-
tion of the scattering angles, we used a 2 × 2 matrix (Leff

x , a14; a32,
Leff

y ), which was obtained by neglecting those small terms of the
transport matrix. Once the planar angles at IP were reconstructed,
a collinearity requirement was imposed using χ2 defined as:

χ2 = [
(δθx − δθ̄x)/σθx

]2 + [
(δθy − δθ̄y)/σθy

]2
, (10)

where δθx,y = [θ W
x,y − θ E

x,y] and the mean values δθ̄x,y and widths
σθx,y are taken from the fits to data performed for each data sam-
ple. An example is shown in Fig. 2. The small non-zero mean
values (≈10 μrad) are consistent with the uncertainties of angle
determinations discussed in the next section. Fig. 2 shows a typical
distribution of δθy vs. δθx and its projections, fitted with a Gaus-
sian and a linear background. Based on these fits, the non-collinear
background contribution is estimated to be 0.3–0.5%. The require-
ment of χ2 < 9 left about 21 million events for the asymmetry
calculations.

The polar scattering angle θ and azimuthal angle ϕ (mea-
sured counterclockwise from the positive x axis) for an event
were then calculated as an average of those obtained from East
and West arms, and the four-momentum transfer squared, t , was
assigned to the event using t = −2p2(1 − cos θ) ≈ −p2θ2 with
p = 100.2 GeV/c.

5. Single spin asymmetries

The azimuthal angle dependence of the cross-section for the
elastic collision of vertically polarized protons is given [25] by:

d2σ

dt dϕ
= 1

2π

dσ

dt
· [1 + (PB +PY )AN(t) cosϕ

+PBPY
(

AN N(t) cos2 ϕ + A S S(t) sin2 ϕ
)]

, (11)

where higher order terms are ignored, dσ/dt is the spin-averaged
cross-section, PB and PY are the beam polarizations for the two
colliding beams (called Blue and Yellow). The double spin asymme-
try AN N is defined as the cross-section asymmetry for scattering
of protons with spin orientations parallel and antiparallel with re-
spect to the unit vector n̂, normal to the scattering plane. The
asymmetry A S S is defined analogously for both beams fully po-
larized along the unit vector ŝ in the scattering plane and normal
to the beam.
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Table 1
AN values in five t ranges with associated uncertainties. Statistical errors for t are negligible and combined systematic errors are shown (see the text for details). Statistical
errors and systematic errors on AN are also shown, where δAN (syst.) is a scale error due to the beam polarization.

−t [(GeV/c)2] 0.003–0.005 0.005–0.01 0.01–0.015 0.015–0.02 0.02–0.035

No. of events 444 045 2 091 977 2 854 764 2 882 893 2 502 703

〈−t〉 [(GeV/c)2] 0.0039 0.0077 0.0126 0.0175 0.0232
δt [(GeV/c)2] (syst.) 0.0001 0.0002 0.0003 0.0004 0.0004

AN 0.0403 0.0299 0.0227 0.0196 0.0170
δAN (stat.) 0.0016 0.0008 0.0007 0.0007 0.0007
δAN (syst.) 0.0021 0.0016 0.0012 0.0010 0.0009
For each of the four RHIC stores, the event sample satisfying
the requirements for elastic scattering was divided into five t-bins.
Within each t-bin, the ϕ distributions were subdivided into bins
of 10◦ . The raw asymmetry, εN (ϕ), was calculated using geometric
means [26], the so-called “square root formula” for each pair of ϕ
and π − ϕ bins in the range −π/2 < ϕ < π/2:

εN(ϕ) = (PB +PY )AN cos(ϕ)

1 + ν(ϕ)

=
√

N↑↑(ϕ)N↓↓(π − ϕ) − √
N↓↓(ϕ)N↑↑(π − ϕ)√

N↑↑(ϕ)N↓↓(π − ϕ) + √
N↓↓(ϕ)N↑↑(π − ϕ)

, (12)

where the “↑” and “↓” indicate the spin direction of the trans-
versely polarized colliding proton beam bunches, N is the number
of events detected in the respective spin and respective ϕ states
and ν(ϕ) =PBPY (AN N cos2(ϕ) + A S S sin2(ϕ)).

In the square root formula (12), the relative luminosities of
different spin direction combinations cancel out. In addition, the
detector acceptance and efficiency also cancel out, provided they
do not depend on the bunch polarization. Results of Ref. [19] and
preliminary results of this experiment [20] show that both AN N

and A S S are very small ≈0.005 (and compatible with zero), con-
straining ν(ϕ) to ≈0.002, which can be safely neglected.

For each RHIC store, the obtained raw asymmetries were di-
vided by the sum of polarizations of both beams for this particular
store, and then averaged over the stores. The resulting asymme-
tries for each t bin are shown in Fig. 3(a)–(e) as a function of ϕ .
The solid lines represent the best fits to Eq. (12).

Along with the raw asymmetry, εN , which is proportional to the
sum of the beam polarizations (PB +PY ), other asymmetries can
be obtained using different combinations of bunch spin directions.
For instance, the asymmetry proportional to the beam polarization
difference (PB −PY ) is defined as follows:

ε′(ϕ) = (PB −PY )AN cos(ϕ)

1 − ν(ϕ)

=
√

N↑↓(ϕ)N↓↑(π − ϕ) − √
N↓↑(ϕ)N↑↓(π − ϕ)√

N↑↓(ϕ)N↓↑(π − ϕ) + √
N↓↑(ϕ)N↑↓(π − ϕ)

. (13)

Provided that the beam polarizations (PB and PY ) have the same
values, which is approximately valid in this experiment, one would
expect ε′ = 0. The derived values of ε′ may be used to estimate
false asymmetries, which remain after applying the “square root”
method. The distribution of the asymmetry ε′ , obtained for the
whole t-range, together with its fit, is shown in Fig. 3(f).

During data taking, 64 bunches (16 ↑↑, 16↓↓, 16↑↓, 16↓↑) of
the 90 proton beam bunches collided with usable spin patterns,
and were used for εN and ε′ calculations.

The major systematic uncertainties of the experiment are due
to the error of the beam polarization measurement, the reconstruc-
tion of t and a small background contribution as shown in Fig. 2.
The two main contributions to the uncertainty in the t reconstruc-
tion are due to the uncertainties of the Leff values and the position
Fig. 3. (Color online.) The asymmetry ε(ϕ)/(PB + PY ) for the five t-intervals as
given in Table 1 (a)–(e). The asymmetry ε′(ϕ) for the whole measured t-range (f).
The red curves represent the best fit to Eq. (12) (a)–(e) and Eq. (13) (f).

of the beam center at the RP location. The former is mostly due
to the uncertainty on values of the magnetic field strength in the
Q1–Q3 focusing quadrupoles, which is mainly due to uncertainties
in the magnet current and field measurements. The correction to
the strength was derived using the correlation between the angle
and position in the RPs for the tracks in the regions where the
detector acceptance overlaps. An overall correction to the strength
of the focusing quadrupoles of 0.5% was applied. The residual sys-
tematic error of the field calculation was estimated to be ≈0.5%,
leading to ≈1% uncertainty in Leff and ≈1.4% uncertainty in t [27].

The position of the beam center is the reference point for
the scattering angle calculations and effectively absorbs a large
set of geometrical unknowns such as beam crossing angles and
transverse beam positions at the IP, beam shifts from the beam
pipe center at the RP location, as well as survey errors. To ac-
commodate all these uncertainties, corrections to the survey were
introduced based on the comparison of the simulated to the mea-
sured (x, y) distributions at the horizontal RPs on both sides of
the IP. The simulation of the transport of elastically scattered pro-
tons through the RHIC magnets and the apertures was done and
the detector acceptance was calculated. The acceptance boundaries
from that simulation and the data were compared. No correction
was found for the West side, while for the East side a correc-
tion of (�x,�y) = (2.5,1.5) mm was obtained. The uncertainty
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of that correction was estimated to be 400 μm. After applying that
alignment correction, the collinearity, defined as the average an-
gle difference δθ̄x,y (see Eq. (10)), was reduced from ≈55 μrad to
≈10 μrad. The remaining alignment uncertainty leads to a value
of δt/t = 0.0020 [GeV/c]/√t and was added in quadrature to the
uncertainty due to Leff. The number of background events in the
data is less than 1% in all t-bins (e.g. see Fig. 2). Assuming the
background is beam polarization independent, the asymmetry will
be diluted by the same amount, δAN/AN < 0.01. This value results
in a negligible contribution to the total error, when statistical and
systematic errors are added in quadrature.

The polarization values of the proton beams were determined
by the RHIC CNI polarimeter group. Polarizations and their uncer-
tainties (statistical and systematic combined) for the four stores
were: 0.623 ± 0.052, 0.548 ± 0.051, 0.620 ± 0.053, 0.619 ± 0.054
(Blue beam), 0.621 ± 0.071, 0.590 ± 0.048, 0.644 ± 0.051, 0.618 ±
0.048 (Yellow beam) [28]. The overall luminosity-weighted av-
erage polarization values for all four stores are 〈PB + PY 〉 =
1.224 ± 0.038 and 〈PB − PY 〉 = −0.016 ± 0.038. Taking into ac-
count the overall uncertainty for normalization in polarization
measurements, the total polarization error δ〈PB +PY 〉/〈PB +PY 〉
is 5.4%.

If the false asymmetry εF were proportional to the beam po-
larization values, it would be indistinguishable from AN . On the
contrary, if it does not depend on the polarization, it contributes
equally to both εN and ε′:

εN = AN(PB +PY ) + εF , (14)

ε′ = AN(PB −PY ) + εF , (15)

and a direct estimate on the false asymmetry can be obtained:

εF = ε′(PB +PY ) − εN(PB −PY )

2PY
≈ ε′ − εN

PB −PY

PB +PY
. (16)

The values of the raw asymmetries, measured in the whole t-
range, are εN = 0.0276 ± 0.0004 and ε′ = −0.0007 ± 0.0004. This
gives a false asymmetry of εF = −0.0004 ± 0.0010. Thus the con-
clusion is that the false asymmetry is consistent with zero and
very small compared to the measured raw asymmetry εN .

The results of the AN measurements in the five t-bins are sum-
marized in Table 1 together with associated uncertainties and −t
range boundaries. Two independent analyses of the data performed
with slightly different selection criteria by two different groups
gave consistent results. We have also done the cross checks to
extract AN using the beam polarizations of the two beams. The
resulting AN were found to be compatible with those in Table 1
within their statistical uncertainties.

6. Results and conclusions

The measured values of AN are shown in Table 1 and presented
in Fig. 4 together with parameterizations based on formula (5):
the dashed line corresponds to no hadronic spin-flip contribution,
i.e. r5 = 0, while the solid line is the result of the fit using r5
as a free parameter. Other parameter values used in the fit are:
σtotal = 51.79 ± 0.12 mb, ρ = 0.1278 ± 0.0015 taken from fits to
the world pp and pp data [29,30] and B = 16.3 ± 1.8 (GeV/c)−2

from Ref. [23].
The value of r5 resulting from the fit described above is shown

in Fig. 5 together with 1σ confidence level contours.
In Table 2, we show the central value of the fit and uncertain-

ties on Re r5 and Im r5 due to the listed effects. In the first row
of the table, the statistical error to the fit with the central value
of the parameters is shown. The remaining rows show changes
of Re r5 and Im r5, when each parameter was varied one by one
Fig. 4. (Color online.) The measured single spin asymmetry AN for five −t inter-
vals. Vertical error bars show statistical uncertainties. Statistical error bars in −t
are smaller than the plot symbols. The dashed curve corresponds to theoretical cal-
culations without hadronic spin-flip and the solid one represents the r5 fit.

Fig. 5. (Color online.) Fitted value of r5 with contours corresponding to statistical
error only (solid ellipse and cross) and statistical + systematic errors (dashed ellipse
and cross) of 1σ .

Table 2
The fitted r5 values including the uncertainties. (1): Statistical uncertainties.
(2)–(4): Systematic uncertainties associated with this measurement. (5)–(7): Sys-
tematic uncertainties associated with the values used in the fit function. See the
text for details.

Central value Re r5 = 0.0017 Im r5 = 0.007

uncertainties δ Re r5 δ Im r5

1 statistical 0.0017 0.030
2 δt (Leff) 0.0008 0.005
3 δt (alignment) 0.0011 0.011
4 δP 0.0059 0.047

5 δσtotal 0.0003 0.002
6 δρ <0.0001 <0.001
7 δB <0.0001 <0.001

total syst. error 0.0061 0.049
total stat. + syst. error 0.0063 0.057

by ±1σ during the fit procedure. Rows 2 and 3 show the effect
due to the systematic uncertainty in Leff and alignment, row 4
due to the beam polarization (vertical scale uncertainty of AN )
and rows 5–7 systematic contributions due to the uncertainty of
fit parameters. The dominant source of the systematic uncertainty
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Fig. 6. (Color online.) Measurements of Im(r5) values for (a) this experiment,
(b) RHIC pp2pp at

√
s = 200 GeV [10], (c) RHIC H-jet target at

√
s = 21.7 GeV

[13], (d) FNAL E704 at
√

s = 19.4 GeV [16], (e) RHIC H-jet target at
√

s = 13.7 GeV
[11], (f) RHIC H-jet target at

√
s = 7.7 GeV [13], and (g) RHIC H-jet target at√

s = 6.8 GeV [12]. Theoretical calculations shown are (1) anomalous moment [7],
(2) quark–diquark picture [8], (3) two-pion exchange model [5], and (4) impact pic-
ture [6]. The theoretical calculations are either energy independent (1,2,3) or done
at

√
s = 200 GeV (4). The vertical dashed line indicates where Im(r5) = 0. All error

bars shown include both statistical and systematic errors.

is due to the beam polarization uncertainty. The total systematic
uncertainty, including the effects related to rows 2–7 of Table 2, is
obtained by adding the error covariance matrices. The final result
on r5 is shown in Fig. 5 together with both statistical and sys-
tematic uncertainties. The obtained values Re r5 = 0.0017 ± 0.0063
and Im r5 = 0.007 ± 0.057 are consistent with the hypothesis of no
hadronic spin-flip contribution at the energy of this experiment.

Since the maximum AN in the CNI region can be evaluated
as κ − 2 Im r5 in Eq. (5), theoretical calculations emphasize values
of Im r5. Measurements of Im r5 at different energies in the range
6.8 GeV �

√
s � 200 GeV are shown in Fig. 6, together with pre-

dictions of theoretical models of the hadronic spin-flip amplitude
as discussed above. All of the experimental results, including that
reported here, are consistent with the assumption of no hadronic
spin-flip contribution to the elastic proton–proton scattering. The
high accuracy of the current measurement provides strong limits
on the size of any hadronic spin-flip amplitude at this high energy,
hence significantly constraining theoretical models which require
hadronic spin-flip.
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