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Using the framework of nuclear energy density functionals we examine the conditions for single-nucleon
localization and formation of cluster structures in finite nuclei. We propose to characterize localization by the
ratio of the dispersion of single-nucleon wave functions to the average internucleon distance. This parameter
generally increases with mass and describes the gradual transition from a hybrid phase in light nuclei, characterized
by the spatial localization of individual nucleon states that leads to the formation of cluster structures, toward
the Fermi liquid phase in heavier nuclei. Values of the localization parameter that correspond to a crystal phase
cannot occur in finite nuclei. Typical length and energy scales in nuclei allow the formation of liquid drops,
clusters, and halo structures.
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Nucleons in atomic nuclei and extended nuclear matter
exhibit a variety of phases. Liquid drop aspects, for instance,
were first inferred [1] from fission properties in heavy nuclei.
Soon afterwards it was also predicted and observed that cluster
states could occur, especially in light nuclei [2]. Halo structures
in nuclei were discovered in the late 1980s [3]. Although
a number of theoretical models have been developed that
successfully describe particular features of these nucleonic
phases, open questions remain: Can nucleon crystal states
occur? Do all nucleonic phases (liquid, cluster, halo, crystal)
have a common origin and, therefore, can they be described
in a unified theoretical framework? In particular, in a recent
study [4] we have shown that the confining nuclear potential
determines the degree of localization and clustering in finite
nuclei. In the present work we analyze the emergence of
cluster states, considered as a transitional phase between a
quantum liquid (nuclear matter) and a solid (crystal). These
considerations are also relevant for the description of the crust
of neutron stars, where it is known that decreasing matter
density (further from the center of the star) leads to a transition
from the nuclear matter phase (liquid) to a Wigner crystal, with
a pasta (cluster) phase in between [5–7].

Clustering, the arrangement of nucleons in clusters of
bosonic characters, especially in light nuclei, coexists with
the nuclear mean-field. The nature of the cluster phase itself
is very much under debate: Can nuclei in the cluster phase
behave like a dilute gas of α particles [8–10]? This refers to
the localization of the α’s with respect to the size of the nucleus.
Here we first address the question of localization of nucleons:
What is the mechanism of confinement of individual nucleons
into clusters such as, for instance, α particles? Because the
majority of theoretical approaches that quantitatively describe
cluster states assume a priori the existence of such structures
(or facilitate their formation by employing Gaussian wave
functions centered at given positions in space), and the
corresponding effective interactions are adjusted to the binding
energies and scattering phase shifts of these configurations,
one cannot say that the initial localization of nucleons and the
mechanism that drives the transition from the fermionic liquid

to cluster structures are fully understood [11]. As shown in
our previous study [4], there is a direct correlation between
the effective potential that confines the neutrons and protons
to the nucleus, and the enhancement of the symmetries of the
clustering. The deformation of the nucleus also contributes to
the formation of clusters because it removes the degeneracy of
single-nucleon levels associated with spherical symmetry [2].
Clustering effects are, of course, more dominant in excited
nuclear states, and this can be understood from the fact that
the closeness to the particle emission threshold favors cluster
formation. States close to the continuum cannot be isolated
from the environment of scattering states, so cluster states
at the threshold belong to an open quantum system [12].
The origin of cluster formation, however, lies in the effective
nuclear interaction, and a fully microscopic description of
clustering necessitates a framework that encompasses both
cluster and quantum liquid-drop aspects in light and heavier
nuclei [4,13].

The issue of solid (crystal) vs quantum liquid nature of
nuclei was addressed by Mottelson, who emphasized that
the essence of the concept of independent particle motion is
the fact that the orbits of individual nucleons are delocalized
and reflect the shape and radial dependence of the effective
potential over the entire nucleus [14]. Mottelson used the
quantality parameter [15],

�=̂ h̄2

mr̄2V ′
0

, (1)

with the strength of the bare nucleon-nucleon interaction
V ′

0 ∼ 100 MeV and the inter-nucleon equilibrium distance
r̄ , to characterize the transition between quantum liquid
and crystalline solid phases. The quantality � is defined as
the ratio of the zero-point kinetic energy of the confined
particle to its potential energy, and the transition occurs in
the region � � 0.1. The typical value obtained for nuclear
matter (m being the nucleon mass), � � 0.5, is characteristic
for a quantum liquid phase [14]. However, the parameter
� is defined for infinite homogeneous systems and its
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applicability to finite nuclei is limited by the fact that it
does not include any nuclear mass or size dependence.
Cluster states in finite nuclei introduce an additional phase
of nucleonic matter. In fact, if instead of the nucleon-nucleon
potential one considers an α-α potential [16] for V ′

0 in
Eq. (1), the value of the quantality parameter decreases to
� � 0.1, entering into the liquid-to-crystal phase transition
region [17].

To analyze localization and the occurrence of clustering in
finite nuclei we need to consider a quantity that is sensitive to
the nucleon number and size of the nucleus. Two characteristic
lengths quantify the crystalline vs Fermi liquid transition,
similar to the condensed-matter case [18]: the localization
of the constituent wave functions in the system and the
average interconstituent distance. Hence, the localization of
the single-nucleon wave function, and eventually the degree
of nucleonic density clustering, can be quantified by the
dimensionless parameter α introduced in Ref. [4],

α =̂ �r

r̄
, (2)

where r̄ is the average internucleon distance, and �r the spatial
dispersion of the wave function:

�r =
√

〈r2〉 − 〈r〉2. (3)

We propose to use the parameter α to study localization effects
in nuclei. For large values of α the orbits of individual nucleons
will be delocalized and the nucleus in the Fermi liquid phase.
However, when α is small nucleons will be localized on the
nodes of a crystal-like structure. At intermediate values one
expects a transition from the quantum liquid phase to a hybrid
phase of cluster states. For finite systems such as nuclei this
transition, of course, cannot be sharp. In a first approximation
one expects that the transition occurs for α ≈ 1 because for
this value the spatial dispersion of the single-nucleon wave
function is of the same size as the internucleon distance and,
therefore, optimal for nucleons to form a correlated cluster
such as an α particle.

Localization parameters have also been considered for other
quantum systems, such as quantum dots [19], or in condensed
matter [20], to characterize the occurrence of a hybrid phase
between the liquid and crystal phases. However, in general
it will not be possible to find a universal and quantitative
localization parameter that can be applied to different quantum
systems, because the transition from the quantum liquid to the
crystal phase is controlled by the specific dynamics and length
scale of the system under consideration [19,20]. In the nuclear
case, in particular, finite size effects are important. It will
be shown that the parameter α can be used to qualitatively
characterize transitions between different phases of nucleonic
matter.

In a first, non-self-consistent, approximation one can use a
three-dimensional isotropic harmonic oscillator (HO) for the
confining nuclear potential. This approximation allows for a
qualitative discussion of the effects of the effective nuclear
interaction on the spatial arrangement of nucleons. The three-
dimensional HO wave functions ϕklm(�r) for the first s, p, and
d states, which provide the main contribution to cluster states

in light nuclei, read [21]:

ϕ0lm(�r) ∼ rl

b(3/2+l)
e
− r2

2b2 Ym
l (r̂), (4)

where b is the oscillator length defined by

b=̂
√

h̄

mω0
=

√
h̄R

(2mV0)1/4 , (5)

where R is the radius of the potential for which V = 0 and
V0 denotes the depth of the potential at r = 0. It should be
emphasized that charge radii of atomic nuclei are determined
with high precision in electron scattering experiments, in
contrast to the depth of a confining potential V0 which is
experimentally poorly constrained.

A straightforward calculation yields the spatial dispersion
�r ≈ 0.5b for the first s, p, and d HO wave functions,
and they display a Gaussian-like radial dependence [Eq. (4)].
Consequently, for a constant radius R, a deeper potential V0

implies a smaller value of the oscillator length b [Eq. (5)], and
thus a smaller dispersion. This concept can be extended to the
more general case of deformed nuclei by approximating the
confining potential with an axially deformed HO. The wave
functions are then expressed as [22,23]

ϕnr ,nz,ml
(r, φ, z) ∼ eiml

(
r

b⊥

)ml

Hnz
(z/bz)

×Lml
nr

(r2/b2
⊥)e

− 1
2

(
z2

b2
z
+ r2

b2⊥

)
, (6)

where H and L are the Hermite and Laguerre polynomials,
respectively. Equation (6) displays a radial dependence similar
to the three-dimensional (3D) isotropic case [Eq. (4)]: The dis-
persion of the wave functions depends on the oscillator lengths
bz and b⊥ in the respective directions, which in turn depend on
the depth of the potential. In the deformed HO approach, the
depth of the potential, therefore, determines the localization
of nucleon wave functions, just like in the spherical case.

The localization parameter α obtained using expression (5)
for the harmonic oscillator length reads

α � b

r0
=

√
h̄R

r0(2mV0)1/4
, (7)

with r0 = 1.25 fm [24]. Using the liquid drop parameterization
for the radius R = r0A

1/3, Eq. (7) reads

α =
√

h̄A1/6(
2mV0r

2
0

)1/4 � 0.67A1/6. (8)

Figure 1 displays the evolution of α with A, for a typical values
of V0 = 70 MeV. The localization parameter α generally
increases with the number of nucleons and, therefore, cluster
states are more easily formed in light nuclei, as observed
experimentally [2]. The transition from localized clusters to a
liquid state occurs for nuclei with A ≈ 30. For heavier systems
α is considerably larger than 1 and, therefore, heavy nuclei
consist of largely delocalized nucleons; this explains their
liquid drop nature and the large mean free path of nucleons.
More precisely, nuclei are in the Fermi liquid phase and
localized cluster states (hybrid phase) can be formed in light
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FIG. 1. The localization parameter α [Eq. (8)] as a function of the
number of nucleons (solid line). The average values of α for 16O 20Ne,
24Mg, 40Ca, and 90Zr, calculated for the microscopic self-consistent
solutions obtained using the functional DD-ME2, are denoted by
squares.

nuclei. Figure 1 also nicely illustrates the fact that a crystal
phase (α � 0.8) cannot occur in finite nuclei. However, nature
may offer the possibility of existence of nucleonic crystals
in the crust of neutron stars, where crystallization is caused
by the long-range Coulomb interaction in a gravitationally
constrained environment [6]. The transition between the
Wigner crystal and the quantum liquid in the neutron star
crust can be described by various models: gelification [25],
Coulombic frustration [26], or quantum melting [20].

In a fully microscopic analysis, the first two columns of
Table I display the values of the localization parameter α,
calculated from Eq. (2) using the self-consistent ground-state
solutions for the N = Z nuclei 20Ne, 24Mg, 28Si, 32S, and
also the heavy 208Pb nucleus, obtained with the functionals
SLy4 [27] and DD-ME2 [28]. These two functionals are
representative of the two standard classes of nuclear energy
density functionals (EDFs), the nonrelativistic and relativistic
functionals, and in Ref. [4] they were used to calculate the
self-consistent equilibrium mean-field solution for 20Ne. Both
functionals reproduce the empirical ground-state properties
(binding energy, charge radius, matter radius) with a typical
accuracy of 1%, as well as the quadrupole deformation of
the equilibrium shape. However, as it will be also shown
in this study, the density calculated with SLy4 displays a
smooth behavior characteristic of a Fermi liquid, whereas

TABLE I. (Left) The localization parameter α [Eq. (2)] calculated
from the fully self-consistent equilibrium solutions obtained with the
EDFs SLy4 [27] and DD-ME2 [28]. (Right) The same but using the
3D harmonic oscillator approximation [Eq. (7)], for which SLy4 and
DDME2 are used to determine the corresponding nuclear radii and
depth of the confining potentials (see text).

Self-consistent HO + EDF

SLy4 DDME2 SLy4 DDME2

20Ne 0.99 0.97 1.00 0.97
24Mg 1.00 0.95 1.02 0.96
28Si 0.99 0.96 1.05 1.00
32S 0.99 0.96 1.06 0.99
208Pb 1.28 1.31 1.46 1.40

the functional DD-ME2 predicts an equilibrium density that
is much more localized, with pronounced cluster structures.
The dispersions �r correspond to the self-consistent single-
nucleon Nilsson state [1101/2], which gives a pronounced
contribution to clustering in these nuclei [4]. Taking r̄ = 0.9 fm
as a characteristic internucleon equilibrium distance [14], we
determine the corresponding values of the cluster parameter α
[Eq. (2)], displayed in the first two columns of Table I. In the
four lighter nuclei 20Ne, 24Mg, 28Si, 32S the α values calculated
with DD-ME2 are systematically smaller than those obtained
using SLy4, reflecting the more pronounced localization of
the nucleonic densities that was already observed in our
previous study in Ref. [4]. While for light nuclei α � 1, in
the case of 208Pb α is considerably larger than 1 and this
unambiguously characterizes the quantum liquid phase of
nucleonic matter in this nucleus. Note that for 28Si which is
oblate in the equilibrium state, the dispersion is calculated for
the Nilsson state [1011/2]. We have verified that similar values
are obtained for other single nucleons states that build the
cluster structures in these nuclei and, also, that the localization
parameter α averaged over all occupied states increases with
mass number.

For completeness, in the last two columns of Table I we
also list the values of the localization parameter α obtained
using the HO expression Eq. (7) for the dispersion. In this
calculation, however, the nuclear radius R and the depth of
the potential V0 are determined microscopically using the
self-consistent equilibrium solutions calculated with the EDFs
SLy4 and DD-ME2. The trend is similar to that obtained in
the fully microscopic calculation; that is, DD-ME2 predicts
systematically smaller values of the localization parameter
α. Note that this conclusion holds even when we replace
the nucleon bare mass in the denominator of Eq. (7) with
the effective mass m∗. The effective nucleon mass for the
functional SLy4 is 0.70m, and for DD-ME2 it is 0.66m. In
this case the value of the parameter α increases by a factor
(m/m∗)1/4 � 1.1, but the ratio between values that correspond
to SLy4 and DD-ME2 is not altered by more than 1%.

In addition to the localization parameter obtained from the
HO length [Eq. (8)], in Fig. 1 we have also included the average
values of α for 16O (0.94), 20Ne (1.02), 24Mg (1.02), 40Ca
(1.08), 90Zr (1.22), calculated fully microscopically using the
functional DD-ME2. These values are obtained by averaging
the microscopic dispersions Eq. (2) for all occupied proton and
neutron orbitals in the self-consistent ground-state solution
and dividing by the characteristic internucleon equilibrium
distance r̄ = 0.9 fm [14]. The microscopic average localiza-
tion parameter describes the gradual transition from the hybrid
phase, characterized by the spatial localization of individual
nucleons, toward the Fermi liquid phase in heavier nuclei.

The localization of single-nucleon states can be analyzed
in the HO approximation but, of course, a harmonic oscilla-
tor potential cannot give rise to clustering. Energy density
functionals, however, implicitly include many-body short-
and long-range correlations through their explicit density
dependence and, therefore, should allow formation of clus-
terlike substructures [13]. Most modern EDFs, for instance,
reproduce the binding energy and size of the α particle even
though their parameters are not specifically adjusted to very
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FIG. 2. (Color online) Self-consistent ground-state densities of
20Ne, calculated with the EDFs SLy4 (top) and DD-ME2 (bottom).
The densities (in units of fm−3) are plotted in the the intrinsic
frame of reference that coincides with the principal axes of the
nucleus.

light nuclei. The different localization properties predicted
by the functionals SLy4 and DD-ME2 are reflected in the
corresponding nucleon density distributions. In Fig. 2 we
display the corresponding axially and reflection symmetric
self-consistent equilibrium nucleon density distributions of
20Ne. Although these functionals predict similar values for
the binding energy, charge and matter radii, and quadrupole
deformation, the corresponding equilibrium density distri-
butions are rather different. SLy4 yields a simple axially
deformed prolate ellipsoid, with only a slight indication of
possible cluster formation. DD-ME2, however, predicts two
regions of pronounced localization at the outer ends of the
symmetry axis and an oblate deformed core. The sharper
density peaks will, of course, greatly enhance the probability
of formation of α clusters in excited states. We note that
a similar quasimolecular α-12C-α structure, although with
somewhat less pronounced clustering, was also obtained in the
Hartree-Fock calculation of Ref. [13], using the SkI3 Skyrme

FIG. 3. (Color online) Same as described in the caption to Fig. 2
but for the nucleus 28Si.

functional. Because the nucleon effective masses for the two
functionals are very similar (0.70m for SLy4 and 0.66m for
DD-ME2), the different level of localization and clustering
predicted by SLy4 and DD-ME2 is partly related to the depth of
the corresponding confining Kohn-Sham potentials [4], similar
to the HO case [Eq. (7)]. In Figure 3 we show another example,
the equilibrium density distributions of 28Si calculated with
SLy4 and DD-ME2. In this case the equilibrium shape is oblate
(β ≈ −0.35), and again we find that DD-ME2 predicts the
formation of clusterlike structures, whereas nucleonic density
shows a smooth gradual decrease from the center of the oblate
ellipsoid calculated with SLy4.

The present discussion can qualitatively be related to
delocalized wave functions of halo states in light nuclei [29].
Several subtle effects are at work in halo structures, such as the
inversion between the p and the s orbitals and the coupling to
the continuum [30]. Here we only examine the delocalization
of single-particle wave functions. When the confining nuclear
potential is approximated by a square well, the oscillations of
the wave function of a state of energy E (<0) are determined
by the wave number h̄2k2 = 2m(E + V0), whereas outside of
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the potential the decay of the wave function is governed by
h̄2k′2 = −2mE, favoring a large radial extension for weakly
bound states. However, inside the potential a larger k favors
localization, and this occurs when the potential is deeper and/or
E gets closer to zero. The degree of localization depends
on the difference E − (−V0), and a deep potential favors the
localization of the wave function for the spatial region located
inside the potential. Also, a weakly bound state will be more
localized, and this means that the confinement of nucleons into
clusters is more likely to occur for weakly bound states close
to the emission threshold. This in agreement with the Ikeda
picture, as well as subsequent studies [2,8,31]. Therefore, a
common feature of localized states (clusters) and halos is that

the energy of a state determines its spatial behavior either
inside the potential (clusters) or outside the range of the
effective potential (halo states).

An important characteristic of nuclei is that quantitatively
the dispersion of the single-nucleon wave function can be of the
same order of magnitude as the internucleon distance, leading
to clustering as discussed above. More generally, the typical
values of length scales and energies allow the formation of
liquid drops, clusters, and halos in nuclei, but not crystals.

This work was supported by the Institut Universitaire de
France and by the Croatian Ministry of Science, Project
No. 1191005-1010.
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