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A shape phase transition between stable octupole deformation and octupole vibrations in Th nuclei is analyzed
in a microscopic framework based on nuclear density functional theory. The relativistic density dependent point
coupling (DD-PC1) functional is used to calculate axially symmetric quadrupole-octupole constrained energy
surfaces. Observables related to order parameters are computed using an interacting-boson Hamiltonian, with
parameters determined by mapping the microscopic energy surfaces to the expectation value of the Hamiltonian
in the boson condensate. The systematics of constrained energy surfaces and low-energy excitation spectra
point to the occurrence of a phase transition between octupole-deformed shapes and shapes characterized by
octupole-soft potentials.
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The evolution of equilibrium shapes and the corresponding
excitation dynamics present one of the most intriguing aspects
of the nuclear many-body system [1–3]. The simplest low-
energy collective excitations correspond to quadrupole modes,
that is, the geometrical shape of a nucleus varies between a
sphere and a rotational ellipsoid. Most deformed nuclei display
quadrupole reflection-symmetric equilibrium shapes, and the
corresponding excitation spectra are characterized by positive-
parity rotational bands. There are, however, regions of the mass
table in which octupole deformations (reflection-asymmetric,
pearlike shapes) occur [4]. Reflection-asymmetric shapes are
distinguished by the presence of negative-parity bands, and by
pronounced electric dipole and octupole transitions. Structure
phenomena related to reflection-asymmetric nuclear shapes
have been explored in numerous studies [4–19]. Analogous
excitation patterns are also observed in other mesoscopic
systems such as molecules and, therefore, studies of octupole
collective degrees of freedom are of broad interest in many
aspects of finite quantum systems.

The transition between different nuclear shapes in most
isotopic or isotonic sequences is gradual. In some cases,
however, the addition/subtraction of only a few nucleons leads
to rather rapid changes in equilibrium shapes and, in particular,
shape phase transitions and critical-point phenomena may
occur. Phase transitions in the equilibrium shapes of nuclei
correspond to first- and second-order quantum phase transi-
tions (QPTs) between competing ground-state phases induced
by variation of a nonthermal control parameter (number of
nucleons) at zero temperature [20]. Important issues in studies
of nuclear QPT include the identification of observables that
can be related to order parameters, the degree to which
discontinuities at a phase transitional point are smoothed
out in finite nuclei, and the question of how precisely can
a point of phase transition be associated with a particular
isotope, considering that the control parameter, i.e., nucleon
number, is not continuous but takes only discrete integer
values. In the last decade nuclear QPTs have been investigated
extensively, both in experimental studies and employing a
variety of theoretical models (cf. Ref. [20] for a recent

review). Most studies have been focused on quadrupole shape
phase transitions, but several phenomenological models have
also considered possible phase transitions related to octupole
shapes [5,10,12–17].

In this Rapid Communication we analyze shape QPTs in
octupole deformed nuclei and present the first microscopic
realization of a QPT from stable octupole deformation to
octupole vibrations in the Th isotopic chain, characteristic for
the region of light actinides. This study is based on the micro-
scopic framework of nuclear energy density functionals, and
a corresponding interacting boson model [21] Hamiltonian is
constructed to calculate the excitation spectra and observables
that can be related to quantum order parameters.

At present the most comprehensive approach to nuclear
structure is based on the framework of energy density function-
als (EDFs). Nuclear EDFs enable a complete and accurate de-
scription of ground-state properties and collective excitations
over the whole nuclide chart [22]. Both nonrelativistic and
relativistic EDFs have successfully been applied to the descrip-
tion of the evolution of single-nucleon shell structures and the
related shape-transition and shape-coexistence phenomena.
The calculations reported in this Rapid Communication are
based on the relativistic EDF density dependent point coupling
(DD-PC1) [23]. This functional has been employed in a num-
ber of mean-field and beyond-mean-field studies of structure
phenomena in various mass regions [24], from the evolution
of shapes in N = 28 isotones [25], to rapid shape transitions
in superheavy nuclei [26]. Rather than using a specifically
designed potential model that by construction describes the
critical point of octupole phase transition [12–16], here we
employ a global density functional that was not specifically
adjusted nor ever before applied to studies of octupole shapes
and negative-parity states.

The analysis starts by performing constrained
self-consistent relativistic mean-field calculations for
axially symmetric shapes in the (β2,β3) plane, with constraints
on the mass quadrupole Q20, and octupole Q30 moments. The
dimensionless shape variables βλ (λ = 2, 3) are defined in
terms of the multipole moments Qλ0: βλ ≡ (4π/3ARλ)Qλ0,
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FIG. 1. (Color online) Microscopic DD-PC1 self-consistent relativistic Hartree-Bogoliubov (RHB) axially symmetric energy surfaces of
the nuclei 222−232Th in the (β2, β3) plane, symmetric with respect to β3 = 0 axis. The contours join points on the surface with the same energy,
and the separation between neighboring contours is 1 MeV. In each panel, the minimum is indicated by a open diamond.

with R = 1.2A1/3 fm. The relativistic Hartree-Bogoliubov
(RHB) model [27] is used to calculate constrained energy
surfaces (cf. [28] for details), the functional in the particle-hole
channel is DD-PC1, and pairing correlations are taken into
account by employing an interaction that is separable in
momentum space and is completely determined by two
parameters adjusted to reproduce the empirical bell-shaped
pairing gap in symmetric nuclear matter [24,29].

Figure 1 displays the contour plots of deformation energy
surfaces in the (β2,β3) plane for the isotopes 222−232Th. The
plots are symmetric with respect to the β3 = 0 axis. Already at
the mean-field level the RHB model predicts a very interesting
structural evolution. A soft energy surface is calculated for
222Th, with the energy minimum close to (β2, β3) ≈ (0, 0). The
quadrupole deformation becomes more pronounced in 224Th,
and one also notices the development of octupole deformation.
The energy minimum is found in the β3 �= 0 region, located
at (β2, β3) ≈ (0.15, 0.1). From 224Th to 226,228Th a rather
strongly marked octupole minimum is predicted. The deepest
octupole minimum is calculated in 226Th whereas, starting
from 228Th, the minimum becomes softer in β3 direction. Soft
octupole surfaces are obtained for 230,232Th, the latter being
completely flat in β3.

A quantitative study of shape transitions must go beyond
a simple mean-field calculation of potential energy surfaces
and, particularly in the case of a possible QPT, it must include
the computation of observables that can be related to quantum
order parameters. In this Rapid Communication we employ the
interacting boson model (IBM) [21] to calculate spectroscopic
properties associated to quadrupole and octupole deforma-
tions. The building blocks of the IBM include the monopole
s and the quadrupole d bosons, corresponding to collective
Jπ = 0+ and 2+ pairs of valence nucleons, respectively
[30]. To describe reflection-asymmetric deformations and
the corresponding negative-parity states, in addition to the
positive-parity bosons, the model space must include the

octupole (Jπ = 3−) boson f [8,21]. Here we employ the
following sdf -IBM Hamiltonian similar to the one used in
Ref. [31]

Ĥ = εd n̂d + εf n̂f + κ2Q̂ · Q̂+ αL̂d · L̂d + κ3 : V̂
†

3 · V̂3 : (1)

where n̂d = d† · d̃ and n̂f = f † · f̃ denote the d and f

boson number operators, respectively. The third term is
the quadrupole-quadrupole interaction with the quadrupole
operator Q̂ = s†d̃ + d†s + χd [d† × d̃](2) + χf [f † × f̃ ](2).
The angular momentum operator in the sd space reads
L̂d = √

10[d† × d̃](1), and the last term in Eq. (1) denotes
a specific octupole-octupole interaction expressed in
normal-ordered form with V̂

†
3 = s†f̃ + χ3[d† × f̃ ](3).

For each nucleus the Hamiltonian parameters: εd , εf ,
α, κ2, κ3, χd , χf , and χ3, are determined by employing
the procedure of Ref. [32]: the microscopic self-consistent
mean-field energy surface is mapped onto the equivalent IBM
energy surface, that is, on the expectation value of the IBM
Hamiltonian 〈φ|Ĥ |φ〉 in the boson condensate state |φ〉 [33]
(see Refs. [32,34] for details). |φ〉 = 1√

NB !
(λ†)NB |−〉, with

λ† = s† + β2d
†
0 + β3f

†
0 . NB and |−〉 denote the number of

bosons, that is, half the number of valence nucleons [30],
and the boson vacuum (a core with doubly closed shells),
respectively. In the present case the doubly magic nucleus
208Pb plays the role of the boson vacuum. Thus, NB varies
between 6 and 12 for the 220−232Th nuclei. By equating
the expectation value of the sdf IBM Hamiltonian as a
function of β2 and β3 to the microscopic energy surface in the
neighborhood of the minimum, the Hamiltonian parameters
can be determined without invoking any further adjustment
to data. Once the parameters are specified, the Hamiltonian
of Eq. (1) is numerically diagonalized by using the code
OCTUPOLE [35] to generate energy spectra and transition rates.

In Fig. 2 we plot the microscopically determined values of
the IBM Hamiltonian parameters εd , εf , χd , χf , and χ3 for
Th isotopes, as functions of the mass number. The decrease of
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FIG. 2. (Color online) Variation of the derived parameters εd , εf ,
χd , χf , and χ3 as functions of the mass number.

the d-boson energy εd in Fig. 2(a) reflects the enhancement of
quadrupole collectivity in heavier Th isotopes (cf. Fig. 1). εd

is nearly constant from 226Th up to 230Th. The f -boson energy
εf also decreases from 220Th to 226Th, and from that isotope its
value increases with mass. An interesting feature to be noted
in Fig. 2(a) is that εf is of the same order of magnitude as εd ,
and this implies that the octupole deformation can be as pro-
nounced as the quadrupole one. In fact, the octupole minimum
on the RHB energy surfaces is rather deep for A� 226 (Fig. 1).
We note that, in contrast, most phenomenological sdf -IBM
studies have assumed a rather weak coupling between positive
and negative-parity bosons, εd � εf [8].

Figure 2(b) shows that the quadrupole parameter χd

increases in magnitude with A, and its value is close to
the SU(3) limit of the sd IBM χd = −√

7/2 ≈ 1.3 [21] for
A � 228. In the same panel, both χf and χ3 exhibit a rapid
change from 222Th to 224Th, corresponding to the onset of
quadrupole and octupole deformations. Starting from 226Th,
χf is rather constant, whereas the value of χ3 decreases in
magnitude reflecting the softness of the octupole minimum
(Fig. 1).

Nearly constant values are adopted for the remaining
strength parameters: κ2 ≈ −0.06 MeV and κ3 ≈ −0.015 MeV.
The coupling constant of the L̂d · L̂d term α ≈ −0.02 MeV is
determined separately so that the cranking moment of inertia
in the IBM intrinsic state, corresponding to the minimum on
the β2 axis, becomes identical to the one computed in the
mean-field model [36].

A signature of stable octupole deformation is a low-
lying negative-parity band Jπ = 1−, 3−, 5−, . . . located close
in energy to the positive-parity ground-state band Jπ =
0+, 2+, 4+, . . . , thus forming an alternating-parity band. Such
alternating bands are typically observed for states with spin
J � 5 [4]. In the case of octupole vibrations the negative-parity
band is found at higher energy, and the two sequences of
positive- and negative-parity states form separate collective
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FIG. 3. (Color online) Isotopic dependence of the excitation
energies of levels of the positive-parity ground-state band (Kπ = 0+

1 )
(a), and the lowest negative-parity band (Kπ = 0−

1 ) (b), for 220−232Th.
In each panel lines and symbols denote the theoretical and the
experimental [37] values, respectively.

bands. Therefore, a systematic increase with nucleon number
of the energy of the negative-parity band relative to the
positive-parity ground-state band indicates a transition from
stable octupole deformation to octupole vibrations [4].

In Fig. 3 we display the systematics of calculated excitation
energies of the ground-state band (Kπ = 0+

1 ) and the lowest
negative-parity band (Kπ = 0−

1 ) in 220−232Th, in comparison
to available data [37]. For all isotopes these two bands are
formed by zero f -boson and one f -boson states, respectively.
Even without any adjustment to the data, that is, by simply
using parameters determined by the microscopic calculation
of potential energy surfaces, the IBM quantitatively reproduces
the isotopic dependence of excitation energies of levels
belonging to the lowest bands of positive and negative parity.

Positive-parity levels, shown in Fig. 3(a), systematically
decrease in energy with mass number, reflecting the increase
of quadrupole collectivity (cf. Fig. 1). 220,222Th exhibit a
quadrupole vibrational structure, whereas pronounced ground-
state rotational bands with E(4+

1 )/E(2+
1 ) ≈ 10/3 are found in

226−232Th.
In Fig. 3(b) the calculated excitation energies of the

negative-parity band form a parabolic structure centered
between 224Th and 226Th. The approximate parabola of 1−

1
states displays a minimum at 226Th, in which the octupole
deformed minimum is most pronounced (cf. Fig. 1), in
agreement with the mass dependence of the experimental
1−

1 level: E(1−
1 ) = 251, 230, and 328 keV in 224,226,228Th

nuclei, respectively [37]. Starting from 226Th, the energies
of negative-parity states systematically increase and the band
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becomes more compressed. A rotational-like collective band
based on the octupole vibrational 1−

1 state, that is, on the state
that corresponds to nonstatic octupole deformation, develops.
This result correlates with the systematics of microscopic
energy surfaces that become softer in β3 starting from 226Th
(Fig. 1), and with the increase (decrease) of the parameter εf

(|χ3|) shown in Fig. 2(a) [2(b)]. The calculated negative-parity
states for the lightest nuclei 220,222Th are somewhat higher in
energy when compared to the data [Fig. 3(b)]. The reason is
that the valence space may not be large enough for these nuclei.

The vertex of the parabola of the calculated negative-parity
states [Fig. 3(b)] can be associated with a QPT between
stable octupole deformations and octupole vibrations
characteristic for β3-soft potentials, with the excitation energy
of the negative-parity band (e.g., the 1−

1 bandhead energy)
representing the order parameter for this shape transition.
Phenomenological studies (e.g., [12–15]) were only able to
reproduce this QPT by employing Hamiltonians in which the
degree of quadrupole-octupole correlations is controlled by
a model parameter adjusted to the empirical position of the
critical point. In contrast, the framework used in this Rapid
Communication provides a fully microscopic prediction of
the QPT. The shape phase transition occurs as a function
of the physical control parameter—the nucleon (neutron)
number, and the isotope 226Th is found to be closest to the
critical point. As we have already emphasized, in the case of
atomic nuclei the control parameter of shape QPTs is discrete
and, therefore, it is not always possible to associate a specific
isotope to the critical point.
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FIG. 4. (Color online) Theoretical (a) and experimental [37]
(b) energy ratios E(J )/E(2+

1 ) of the yrast states of 220−232Th,
including both positive (J even) and negative (J odd) parity, as
functions of the angular momentum J .

Another indication of the phase transition between octupole
deformation and octupole vibrations for β3-soft potentials
is provided by the odd-even staggering in the energy ratio
E(J )/E(2+

1 ). Figure 4 displays the ratios E(J )/E(2+
1 ) for

both positive- and negative-parity yrast states of 220−232Th
as functions of the angular momentum J . Below 226Th the
odd-even staggering is negligible, indicating that positive and
negative parity states are lying close to each other in energy.
The staggering only becomes more pronounced starting from
228Th, and this means that negative-parity states form a
separate rotational band built on the octupole vibration. In
particular, the energy ratio E(J )/E(2+

1 ) for negative-parity
(odd-J ) states could be considered as an order parameter
for the octupole shape transition. We note that the predicted
staggering of yrast states is in very good agreement with
data [37].

To illustrate in more detail the level of quantitative
agreement between our microscopic model calculation and
data, in Fig. 5 we display the energy spectrum of positive and
negative parity yrast states of the octupole-soft nucleus 230Th,
including the in-band B(E2) values and the B(E3; 3−

1 → 0+
1 )

(both in Weisskopf units), and the branching ratio B(E1; 1−
1 →

2+
1 )/B(E1; 1−

1 → 0+
1 ). The E1, E2, and E3 operators read

T̂ (E1) = e1(d† × f̃ + f † × d̃)(1), T̂ (E2) = e2Q̂ and T̂ (E3) =
e3(V̂ †

3 + V̂3), respectively, with the effective charges e2 = 0.19
eb and e3 = 0.19 eb3/2 taken from previous empirical studies
in Refs. [9] and [11], respectively. One notices a very good
agreement with experiment [37,38], not only for excitation
energies but also for transition probabilities.

Finally, we note that the connection between the evolution
of collective excitations and the occurrence of a nuclear shape
QPT has, in many studies, been investigated using symmetry-
dictated approaches, including the IBM. In these studies the
concept of a QPT is closely related to the group structure
of a schematic IBM Hamiltonian, that is, a Hamiltonian
of Ising type [20]. Since the number of shape degrees of
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FIG. 5. (Color online) Experimental [37,38] and calculated yrast
states of positive and negative parity in 230Th. The in-band B(E2)
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units), and the branching ratio B(E1; 1−
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(dashed-dotted) are also shown.
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freedom becomes rather large when octupole deformation
is taken into account, a major challenge is to develop a
symmetry-dictated approach that captures the physics of
both quadrupole and octupole collective degrees of freedom,
thereby providing a phase diagram in the parameter space
associated to a certain symmetry structure of the Hamiltonian.
In the present work, on the other hand, the Hamiltonian in
Eq. (1) takes the simplest possible form and the parameters are
determined solely from the basic topology of the microscopic
energy surface in the vicinity of its minimum and, therefore,
no symmetry structure is imposed on the Hamiltonian. The
development of a symmetry-dictated description of shape
phase transitions considered in this Rapid Communication
presents an interesting problem for future studies.

In summary, we have performed a microscopic analysis
of a transition between stable octupole deformation and
octupole vibrations in Th isotopes. A global relativistic EDF,
not specifically adjusted to octupole degrees of freedom nor
applied to reflection-asymmetric nuclei, has been used to
calculate axially symmetric constrained energy surfaces in the
(β2,β3) plane. The sdf -IBM Hamiltonian has been constructed
by mapping the microscopic energy surface onto the equivalent
one in the boson system, providing the low-energy excitation

spectra and transition rates, that is, observables that can be
related to quantum order parameters. The microscopic model
predicts a transition from spherical shapes near 220Th to
stable octupole and quadrupole deformations around 226Th,
and the development of octupole vibrations characteristic for
β3-soft potentials in heavier Th nuclei. The EDF constrained
microscopic energy surfaces (Fig. 1) and the systematics
of low-energy excitation spectra (Figs. 3 and 4) point to
the occurrence of a shape phase transition near 226Th. With
increasing neutron number the octupole deformation appears
to be β3 unstable (soft) and remains such up to 232Th.
This result is in excellent agreement with available data and
previous phenomenological studies of phase transitions in
octupole collective degrees of freedom. Based on a comparison
with previous work, it appears that Th presents the best case
for octupole deformations in atomic nuclei.

The authors would like to thank R. V. Jolos and J. Zhao for
useful discussions. K.N. acknowledges support by the JSPS
postdoctoral programs for research abroad. Calculations were
partly performed on the ScGrid of the Supercomputing Center,
Computer Network Information Center of Chinese Academy
of Sciences.
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Leander, P. Möller, and E. Ruchowsa, Nucl. Phys. A 429, 269
(1984).

[7] P. Bonche, P.-H. Heenen, H. Flocard, and D. Vautherin, Phys.
Lett. B 175, 387 (1986).

[8] J. Engel and F. Iachello, Nucl. Phys. A 472, 61 (1987).
[9] T. Otsuka and M. Sugita, Phys. Lett. B 209, 140 (1988).

[10] D. Kusnezov and F. Iachello, Phys. Lett. B 209, 420 (1988).
[11] P. D. Cottle and N. V. Zamfir, Phys. Rev. C 58, 1500 (1998).
[12] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C 70, 064319

(2004).
[13] D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, and P. Yotov,

Phys. Rev. C 71, 064309 (2005).
[14] D. Lenis and D. Bonatsos, Phys. Lett. B 633, 474 (2006).
[15] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C 77, 024320

(2008).
[16] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C 81, 034320

(2010).
[17] R. V. Jolos, P. von Brentano, and J. Jolie, Phys. Rev. C 86,

024319 (2012).
[18] R. Rodrı́guez-Guzmán, L. M. Robledo, and P. Sarriguren, Phys.

Rev. C 86, 034336 (2012).
[19] N. Minkov, S. Drenska, M. Strecker, W. Scheid, and H. Lenske,

Phys. Rev. C 85, 034306 (2012).
[20] P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155

(2010).

[21] F. Iachello and A. Arima, The Interacting Boson Model
(Cambridge University Press, Cambridge, 1987).

[22] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003).
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