
Long-range angular correlations of π, K and p in p–Pb
collisions at √sNN = 5.02 TeV

(ALICE Collaboration) Abelev, B.; ...; Antičić, Tome; ...; Gotovac, Sven;
...; Mudnić, Eugen; ...; Planinić, Mirko; ...; ...

Source / Izvornik: Physics Letters B, 2013, 726, 164 - 177

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1016/j.physletb.2013.08.024

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:578031

Rights / Prava: Attribution-NonCommercial-NoDerivatives 4.0 International / Imenovanje-
Nekomercijalno-Bez prerada 4.0 međunarodna

Download date / Datum preuzimanja: 2025-01-15

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1016/j.physletb.2013.08.024
https://urn.nsk.hr/urn:nbn:hr:217:578031
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:7398
https://dabar.srce.hr/islandora/object/pmf:7398


Physics Letters B 726 (2013) 164–177
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Long-range angular correlations of π , K and p in p–Pb collisions
at

√
sNN = 5.02 TeV ✩

.ALICE Collaboration �

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 July 2013
Received in revised form 7 August 2013
Accepted 9 August 2013
Available online 19 August 2013
Editor: L. Rolandi

Angular correlations between unidentified charged trigger particles and various species of charged
associated particles (unidentified particles, pions, kaons, protons and antiprotons) are measured by
the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV in the
transverse-momentum range 0.3 < pT < 4 GeV/c. The correlations expressed as associated yield per
trigger particle are obtained in the pseudorapidity range |ηlab| < 0.8. Fourier coefficients are extracted
from the long-range correlations projected onto the azimuthal angle difference and studied as a function
of pT and in intervals of event multiplicity. In high-multiplicity events, the second-order coefficient for
protons, vp

2, is observed to be smaller than that for pions, vπ
2 , up to about pT = 2 GeV/c. To reduce

correlations due to jets, the per-trigger yield measured in low-multiplicity events is subtracted from
that in high-multiplicity events. A two-ridge structure is obtained for all particle species. The Fourier
decomposition of this structure shows that the second-order coefficients for pions and kaons are similar.
The vp

2 is found to be smaller at low pT and larger at higher pT than vπ
2 , with a crossing occurring at

about 2 GeV/c. This is qualitatively similar to the elliptic-flow pattern observed in heavy-ion collisions.
A mass ordering effect at low transverse momenta is consistent with expectations from hydrodynamic
model calculations assuming a collectively expanding system.

© 2013 CERN. Published by Elsevier B.V. All rights reserved.
1. Introduction

Measurements of the correlations of two or more particles are a
powerful tool to study the underlying mechanism of particle pro-
duction in collisions of hadrons and nuclei at high energy. These
studies often involve measuring the distributions of relative angles
�ϕ and �η, where �ϕ and �η are the differences in azimuthal
angle ϕ and pseudorapidity η between the directions of two par-
ticles.

In minimum-bias proton–proton (pp) collisions, the correlation
at (�ϕ ≈ 0, �η ≈ 0) is dominated by the “near-side” jet peak, and
at �ϕ ≈ π by the recoil or “away-side” structure due to particles
originating from jet fragmentation [1]. In nucleus–nucleus (A–A)
collisions additional structures along the �η axis emerge on the
near and away side in addition to the jet-related correlations
[2–14]. These ridge-like structures persist over a long range in �η.
The shape of these �ϕ correlations can be studied via a Fourier
decomposition [15]. The second- and third-order terms are the
dominant harmonic coefficients vn [6,7,9–14]. The vn coefficients
can be related to the collision geometry and density fluctuations of
the colliding nuclei [16,17] and to the transport properties of the
created matter in hydrodynamic models [18–20].

✩ © CERN for the benefit of the ALICE Collaboration.
� E-mail address: alice-publications@cern.ch.

In pp collisions at a centre-of-mass energy
√

s = 7 TeV the
emergence of similar long-range (2 < |�η| < 4) near-side (�ϕ ≈ 0)
correlations was reported in events with significantly higher-
than-average particle multiplicity [21]. This was followed by the
observation of the same structure in high-multiplicity proton–
lead (p–Pb) collisions at a nucleon–nucleon centre-of-mass energy√

sNN = 5.02 TeV [22]. Subsequent measurements in p–Pb colli-
sions employed a procedure for removing the jet contribution by
subtracting the correlations extracted from low-multiplicity events,
revealing essentially the same long-range structures on the away
side in high-multiplicity events [23,24]. Evidence of similar long-
range structures in high-multiplicity deuteron–gold collisions at√

sNN = 0.2 TeV has also been reported [25]. In all cases [23–25],
the transverse-momentum (pT) dependence of the extracted v2
and v3 coefficients is found to be similar to that measured in A–A
collisions. Recent measurements involving two- and four-particle
correlations [26,27] revealed that the pT-integrated v3 in p–Pb
collisions is the same as in Pb–Pb collisions at the same midrapid-
ity multiplicity. Further, genuine four-particle correlations utilizing
cumulants [28] lead to non-zero v2 coefficients that are some-
what smaller than those extracted from two-particle correlations,
and smaller than those in Pb–Pb collisions at the same midrapidity
multiplicity.

The ridge structures in high-multiplicity pp and p–Pb events
have been attributed to mechanisms that involve initial-state ef-
fects, such as gluon saturation and colour connections forming
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along the longitudinal direction [29–34] and final-state effects,
such as parton-induced interactions [35–37], and collective effects
arising in a high-density system possibly formed in these collisions
[38–45].

A dense, highly interacting system exhibiting radial collective
(hydrodynamic) flow, as the one formed in central A–A collisions,
leads to a characteristic particle-species dependent modification
of the pT spectra of identified particles as observed in [46–48].
Furthermore, the correlations of identified particles can be used
to investigate the presence of a collective expansion since the v2
of lighter identified particles should be larger than that of heav-
ier particles at the same pT [49]. Indeed, in A–A collisions, for
pT < 2 GeV/c, v2 exhibits a particle-mass dependence [50–52] as
predicted by hydrodynamic model calculations [49,53]. At interme-
diate pT (2 < pT < 8 GeV/c) the v2 of mesons is smaller than that
of baryons even at similar particle mass [13,54,55], which may be
attributed to quark coalescence [56–58].

In this Letter, measurements of the v2 of pions, kaons and pro-
tons1 in p–Pb collisions at

√
sNN = 5.02 TeV are presented. These

results are obtained from two-particle correlations and extend the
characterization of the double ridge observed in p–Pb collisions.

2. Experimental setup

Data from the 2013 p–Pb run of the LHC for collisions of 4 TeV
protons and 1.58 TeV per nucleon lead ions, resulting in a centre-
of-mass energy of

√
sNN = 5.02 TeV, are used in the presented

analysis. The nucleon–nucleon centre-of-mass system is offset with
respect to the ALICE laboratory system by −0.465 in rapidity, i.e.
in the direction of the proton beam. In the following, η denotes
the pseudorapidity in the laboratory system.

A detailed description of the ALICE detector can be found in
Ref. [59]. The main subsystems used in the present analysis are the
Inner Tracking System (ITS), the Time Projection Chamber (TPC)
and the Time Of Flight detector (TOF). These have a common ac-
ceptance of |η| < 0.9 and are operated inside a solenoidal magnetic
field of 0.5 T. The ITS consists of six layers of silicon detectors for
vertex finding and tracking. The TPC is the main tracking detec-
tor and provides particle identification by measuring the specific
energy loss dE/dx. The TOF and T0 detectors are used to iden-
tify particles by measuring their flight time. The T0 detectors have
a pseudorapidity coverage of −3.3 < η < −3.0 and 4.6 < η < 4.9.
The VZERO detector, two arrays of 32 scintillator tiles each, cover-
ing 2.8 < η < 5.1 (VZERO-A) and −3.7 < η < −1.7 (VZERO-C), was
used for triggering and event selection. The trigger required a coin-
cidence of signals in both VZERO-A and VZERO-C. In addition, two
neutron Zero Degree Calorimeters (ZDCs) located at 112.5 m (ZNA)
and −112.5 m (ZNC) from the interaction point are used in the
event selection. The VZERO-A, which is located in the flight direc-
tion of the Pb ions, is used to define event classes corresponding
to different particle-multiplicity ranges. Alternatively, the energy
deposited in the ZNA (originating from neutrons from the Pb nu-
cleus) is used in defining the event-multiplicity classes. All these
detector systems have full azimuthal coverage.

3. Event, track selection and particle identification

The event selection for this analysis is based on signal ampli-
tudes and their arrival times measured with the VZERO and ZDC
detectors. It is identical to the selection described in Ref. [60]
which accepts 99.2% of all non-single-diffractive collisions. The

1 Pions, kaons and protons, as well as the symbols π , K and p, refer to the sum
of particles and antiparticles.

collision-vertex position is determined with tracks reconstructed
in the ITS and TPC as described in Ref. [61]. The vertex recon-
struction algorithm is fully efficient for events with at least one
reconstructed primary track within |η| < 1.4 [62]. The position of
the reconstructed vertex along the beam direction (zvtx) is required
to be within 10 cm of the detector centre. About 108 events, corre-
sponding to an integrated luminosity of about 50 μb−1, pass these
event selection criteria and are used for the analysis.

The analysis uses charged-particle tracks reconstructed in the
ITS and TPC with 0.3 < pT < 4 GeV/c and in a fiducial region of
|η| < 0.8 to exclude non-uniformities at the detector edges. As a
first step, track selection criteria on the number of space points
and on the quality of the track fit in the TPC are applied [63].
Tracks are additionally required to have at least one hit in the
two innermost layers of the ITS and to have a Distance of Clos-
est Approach (DCA) to the reconstructed collision vertex smaller
than 2 cm in the longitudinal direction. In the transverse direction,
a cut at 7σdca is applied, where σdca is the pT-dependent trans-
verse impact-parameter resolution (30–200 μm from highest to
lowest pT in the considered range) [63]. To study the effect of con-
tamination by secondary particles, the transverse DCA cut is varied
between 3 and 21σdca. For the scalar-product method analysis, dis-
cussed below, tracks without a hit in the two innermost layers of
the ITS, but having a hit in the third layer, are retained, to achieve
a more uniform ϕ acceptance. For tracks with pT > 0.5 GeV/c a
signal in the TOF is required for particle identification. The track
selection is varied in the analysis as a consistency check.

Particle identification is performed using the specific energy
loss dE/dx in the TPC and the time of flight measured with the
TOF (for pT > 0.5 GeV/c). A truncated mean procedure is used
in order to reduce the Landau tail of the energy loss distribu-
tion in the TPC (60% of the measured clusters are kept) [64]. The
dE/dx resolution is 5–6%, depending upon the number of associ-
ated space points in the TPC. The resolution of the time of flight is
given by the detector resolution and the resolution of the collision
time measurement. The collision time can be computed utilizing
three different methods: (a) from the T0 detectors, (b) from a com-
binatorial algorithm which uses the TOF measurement itself, or
(c) from the average collision time [65] (only used in few low-
multiplicity events where the first two measurements are miss-
ing). The corresponding time of flight resolution is about 85 ps
for high-multiplicity events and about 120 ps for low-multiplicity
events.

Based on the difference (expressed in units of the resolution σ )
between the measured signal and the expected signal for π , K,
or p in the TPC and TOF, a combined N2

σ ,PID = N2
σ ,TPC + N2

σ ,TOF is
computed. For a given species, particles are selected with a cir-
cular cut in the Nσ ,TPC and Nσ ,TOF space by Nσ ,PID < 3. In the
region where the areas of two species overlap, the identity cor-
responding to the smaller Nσ ,PID is assigned. For pT less than
0.5 GeV/c only a few tracks have an associated signal in the TOF
and Nσ ,PID = Nσ ,TPC is used. This strategy provides track-by-track
identification with high purity over the momentum region con-
sidered in this Letter: 0.3 < pT < 4 GeV/c for pions, 0.3 < pT <

3 GeV/c for kaons and 0.5 < pT < 4 GeV/c for protons. To assess
the systematic uncertainty related to the particle identification, the
selection is changed to Nσ ,PID < 2. Furthermore, an exclusive iden-
tification is used, in which the tracks that are within the Nσ ,PID
overlap area are rejected. Both selections reduce the misidentifica-
tion rate.

The efficiency and purity of the primary charged-particle selec-
tion are estimated from a Monte Carlo (MC) simulation using the
DPMJET version 3.05 event generator [66] with particle transport
through the detector using GEANT3 [67] version 3.21 which con-
tains an improved description of the p̄ inelastic cross section [48].
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Table 1
Event classes defined as fractions of the analyzed event sample and their corre-
sponding 〈dNch/dη〉 within |η| < 0.5 and the mean numbers of charged particles
within |η| < 0.8 and pT > 0.5 GeV/c. The uncertainties are only systematic as the
statistical uncertainties are negligible.

Event class VZERO-A
range (a.u.)

〈dNch/dη〉||η|<0.5

pT > 0 GeV/c
〈Ntrk〉||η|<0.8

pT > 0.5 GeV/c

60–100% < 52 7.1 ± 0.2 4.6 ± 0.2
40–60% 52–89 16.1 ± 0.4 11.5 ± 0.4
20–40% 89–142 23.2 ± 0.5 17.3 ± 0.6
0–20% > 142 35.6 ± 0.8 27.5 ± 1.0

The cross sections for the interactions of negative kaons at low
pT with the detector material are known to not be correctly re-
produced in GEANT3 [64]. Therefore, the efficiency extracted from
GEANT3 was scaled with a factor computed with a dedicated
FLUKA [68] simulation as discussed in [64]. This correction ranges
from about 10% to about 1% from the lowest to the highest pT
interval considered. The efficiency and acceptance for track recon-
struction depends on particle species and is 61–87% for the pT
range 0.5–1 GeV/c, and 79–86% at pT = 4 GeV/c. The additional
efficiency factor for a track having an associated signal in the TOF
and being correctly identified is about 59%, 43% and 48% for the
pT range 0.5–1 GeV/c for π , K and p, respectively, and saturates at
about 63% at pT = 2 GeV/c for all the species. These numbers are
independent of the event multiplicity.

The remaining contamination from secondary particles due to
interactions in the detector material and due to weak decays de-
creases from about 20% to 1% for protons in the pT range from
0.5 to 4 GeV/c and from about 4% to 0.5% for pions in the pT
range from 0.3 to 4 GeV/c while it is negligible for kaons. The con-
tribution from fake tracks from random associations of detector
signals is negligible. The contamination from misidentified parti-
cles is significant only for kaons above 1.5 GeV/c and is less than
15%. Corrections for these effects are discussed in Section 4.

The two-particle correlations are studied by dividing the se-
lected events into four classes defined as fractions of the ana-
lyzed event sample, based on the charge deposition in the VZERO-
A detector, and denoted “0–20%”, “20–40%”, “40–60%”, “60–100%”
from the highest to the lowest multiplicity. The event-class def-
initions are shown in Table 1 together with the correspond-
ing mean charged-particle multiplicity densities within |η| < 0.5
(〈dNch/dη〉). The multiplicity estimate is corrected for detector ac-
ceptance, track-reconstruction efficiency and contamination. Con-
trary to our earlier measurement of 〈dNch/dη〉 [60], the value here
is not corrected for trigger and vertex-reconstruction efficiency.
Also shown is the mean number of primary charged particles with
pT > 0.5 GeV/c within the pseudorapidity range |η| < 0.8 (〈Ntrk〉).
This is measured by applying the track selection described above
and is corrected for the detector acceptance, track reconstruction
efficiency and contamination.

4. Analysis

The vn coefficients are extracted using two methods, referred
to in the following as two-particle correlations and scalar product.
In two-particle correlations both particles are taken from the same
pT interval, while in the scalar-product method, particles from a
certain pT interval are correlated with particles from the full pT
range. Comparing the results of these two methods can address
to what extent the Fourier coefficients of two-particle correlations
factorize into the product of the coefficients of the correspond-
ing single-particle angular distributions. In particular, these results
should agree if the measurement is dominated by correlations of
each of the particles with a common plane.

4.1. Two-particle correlations

The correlation between two particles (denoted trigger and as-
sociated particle) is measured as a function of the azimuthal angle
difference �ϕ (defined within −π/2 and 3π/2) and pseudorapid-
ity difference �η [23]. While the trigger particles are in all cases
unidentified charged particles, the analysis is done separately for
unidentified charged associated particles (denoted h–h) and for as-
sociated charged pions, kaons and protons (denoted h–π , h–K and
h–p, respectively). The correlation is expressed in terms of the as-
sociated yield per trigger particle where both particles are from
the same pT interval in a fiducial region of |η| < 0.8:

1

Ntrig

d2Nassoc

d�η d�ϕ
= S(�η,�ϕ)

B(�η,�ϕ)
(1)

where Ntrig is the total number of trigger particles in the event
class and pT interval. The signal distribution S(�η,�ϕ) = 1/

Ntrig d2Nsame/d�η d�ϕ is the associated yield per trigger parti-
cle for particle pairs from the same event. The background dis-
tribution B(�η,�ϕ) = α d2Nmixed/d�η d�ϕ corrects for pair ac-
ceptance and pair efficiency. It is constructed by correlating the
trigger particles in one event with the associated particles from
other events in the same event class and within the same 2 cm-
wide zvtx interval (each event is mixed with about 5–20 events).
The background distribution is normalized with a factor α which is
chosen such that it is unity for pairs where both particles travel in
approximately the same direction (i.e. �ϕ ≈ 0, �η ≈ 0). The yield
defined by Eq. (1) is constructed for each zvtx interval to account
for differences in pair acceptance and in pair efficiency as a func-
tion of zvtx. After efficiency correction, described below, the final
per-trigger yield is obtained by calculating the average of the zvtx
intervals weighted by Ntrig.

A selection on the opening angle of the particle pairs is ap-
plied to avoid a bias due to the reduced efficiency for pairs with
small opening angles. Pairs are required to have a separation of
|�ϕ∗

min| > 0.02 rad or |�η| > 0.02, where �ϕ∗
min is the minimal

azimuthal distance at the same radius between the two tracks
within the active detector volume after accounting for the bend-
ing in the magnetic field. Furthermore, correlations induced by
secondary particles from neutral-particle decays are suppressed by
cutting on the invariant mass (minv) of the particle pair. Pairs are
removed which are likely to stem from a γ -conversion (minv <

0.04 GeV/c2), or a K0
s decay (|minv −m(K0)| < 0.02 GeV/c2) or a Λ

decay (|minv −m(Λ)| < 0.02 GeV/c2). The contribution from decays
where only one of the decay products has been reconstructed is
estimated by varying the DCA cut as discussed above and found to
be only relevant for protons (due to Λ feed-down) below 2 GeV/c.
Weak decays of heavier particles give a negligible contribution.

Each trigger and each associated particle is weighted with a
correction factor that accounts for detector acceptance, reconstruc-
tion efficiency and contamination by secondary particles. For the
identified associated particles this correction factor also includes
the particle-identification efficiency. These corrections are applied
as a function of η, pT and zvtx. The vn coefficients extracted below
are expected to be insensitive to single-particle weights as they are
relative quantities. Indeed, the coefficients with and without these
corrections are identical.

The effect of wrongly identified particles, particularly relevant
for pions misidentified as kaons, is corrected by subtracting the
measured h–π per-trigger yield from the measured h–K per-trigger
yield scaled with the misidentification fraction (percentage of pi-
ons identified as kaons) extracted from MC. Similarly, this is done
for the contamination of the h–p per-trigger yield. The correction
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procedure is validated by applying it on simulated events and com-
paring the vn coefficients with the input MC.

Compared to our previous publication [23], the following analy-
sis details have changed: (a) event-multiplicity classes are defined
with the VZERO-A instead of the combination of both VZERO de-
tectors because the VZERO-A is in the direction of the Pb beam
and is thus more sensitive to the fragmentation of the Pb nucleus;
(b) the fiducial volume is reduced to |η| < 0.8 due to the use of
particle identification; and (c) the condition that the associated
transverse momentum has to be smaller than the trigger trans-
verse momentum is not applied.

Fourier coefficients can be extracted from the �ϕ projection of
the per-trigger yield by a fit with:

1

Ntrig

dNassoc

d�ϕ
= a0 + 2 a1 cos�ϕ + 2 a2 cos 2�ϕ

+ 2 a3 cos 3�ϕ. (2)

From the relative modulations V h−i
n� {2PC} = ah−i

n /ah−i
0 , where ah−i

n

is the an extracted from h–i correlations, the vi
n{2PC} coefficient of

order n for a particle species i (out of h, π , K, p) are then defined
as:

vh
n{2PC} =

√
V h−h

n� , vi
n{2PC} = V h−i

n� /

√
V h−h

n� . (3)

In the case that each of the particles is correlated with a common
plane, the vi

n{2PC} are the Fourier coefficients of the corresponding
single-particle angular distributions.

4.2. Scalar-product method

Alternatively, the scalar-product method [69] is used to extract
the vn coefficients:

vn{SP} = 〈�(un,kQ∗
n)/M〉√

〈�(Qa
nQb

n
∗
)/(Ma Mb)〉

, (4)

where un,k = exp inϕk is the unit vector of the particle of interest k,
Qn = ∑

l exp inϕl is the event flow vector, M is the event multiplic-
ity, and n is the harmonic number. The full event is divided into
two independent sub-events a and b composed of tracks from dif-
ferent pseudorapidity intervals with flow vectors Qa

n and Qb
n and

Table 2
Summary of main systematic uncertainties. The uncertainties depend on pT and
multiplicity class and vary within the given ranges. v2{2PC, sub} is introduced in
Section 5.

Source v2{2PC} v2{SP} v2{2PC, sub}
Track selection and efficiencies 2–20% 2–20% 0–3%
Particle identification 2–6% 2–3% 2–7%
Contamination by weak decays (only p) 0–10% 0–10% 0–4%
Residual jet contribution – – 3–10%

Sum 2–20% 2–20% 3–14%

multiplicities Ma and Mb . The angle brackets denote an average
over all particles in all events, � the real part of the scalar product
and ∗ the complex conjugate.

To determine Qn , either h, π , K or p are taken as particles
of interest from a pT interval and correlated with all unidenti-
fied particles from the full pT range (reference particles). The two
sub-events a and b are defined within the pseudorapidity range
−0.8 < η < −0.4 and 0.4 < η < 0.8, respectively. The particle of
interest is taken from a and the reference particles from b and
vice versa. This results in a pseudorapidity gap of |�η| > 0.8 which
reduces correlations from jets and resonance decays.

Non-uniformities in the acceptance are corrected using the pre-
scription in [28]. This correction is less than 5%. As above, the
coefficients can be shown to be insensitive to single-particle ef-
fects. The contamination by secondary particles from weak decays
is estimated varying the DCA cut, as detailed above. The influence
of misidentified particles is corrected for, e.g., in the case of kaons
by subtracting the vπ

n from vK
n taking the particle ratios from the

data and the misidentification fraction extracted from MC into ac-
count. The correction method is validated on simulated events.

Table 2 summarizes the uncertainties related to the v2 mea-
surements. Details of the separate contributions are given in the
text where they are introduced.

5. Results

The left panel of Fig. 1 shows the associated yield per trig-
ger particle for h–π correlations with 1.5 < pT < 2 GeV/c in the
0–20% event class. On the near side (|�ϕ| < π/2) a peak orig-
inating mostly from jet fragmentation is visible around �η ≈ 0.
In addition, at large |�η|, the near-side ridge contribution can
Fig. 1. Left panel: associated yield per trigger particle as a function of �ϕ and �η for h–π correlations with 1.5 < pT < 2 GeV/c in the 0–20% event class. Right panel:
projection of the left panel correlation onto �ϕ averaged over 0.8 < |�η| < 1.6 on the near side and |�η| < 1.6 on the away side. The fit using Eq. (2) and its individual
components are superimposed. The figure contains only statistical uncertainty. Systematic uncertainties are mostly correlated and are less than 5%.
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Fig. 2. The Fourier coefficient v2 for all charged particles, pions, kaons and protons as a function of pT is shown for the different multiplicity classes extracted for v2{2PC}
(symbols) and v2{SP} (shaded bands, with a line connecting the central values). The data is plotted at the average-pT for each considered pT interval and particle species
under study. Error bars and widths of the bands show statistical uncertainties and systematic uncertainties, essentially uncorrelated in pT, added in quadrature.
be observed. A similar ridge is also present on the away side
(π/2 < �ϕ < 3π/2), but it cannot be distinguished from the re-
coil jet contribution as shown in [23], since both are elongated
in �η. A similar picture holds for h–h, h–K and h–p correlations.
The per-trigger yield is projected onto �ϕ (right panel of Fig. 1)
excluding the near-side peak by averaging over 0.8 < |�η| < 1.6
on the near side, while on the away side the average over the full
range is used. This η-gap reduces the jet contribution on the near
side, while the away-side jet contribution is still present.

Before further reducing the jet contribution as in Ref. [23], it
is interesting to study the Fourier coefficients extracted from the
�ϕ projections. For their determination, these projections are fit
with Eq. (2). This fit describes the data well and is shown in the
right panel of Fig. 1. The χ2/ndf is about 0.5–1.5 for all the par-
ticle species and pT intervals. The first harmonic is found to be
negative and contains a contribution from the away-side jet. The
second harmonic has a similar magnitude as the first while the
third is much smaller. Including harmonics higher than the third
does not change the fit results or the χ2 significantly. In the fol-
lowing, the third harmonic is not discussed because the extracted
v3 for kaons and protons have large uncertainties such that firm
conclusions cannot be drawn.

Fig. 2 shows the v2 coefficients for h, π , K and p as a func-
tion of pT for the different multiplicity classes extracted using
two-particle correlations (v2{2PC}) and the scalar-product method
(v2{SP}). Both methods are generally in good agreement indepen-
dent of the multiplicity class and the particle species. Large devi-
ations (up to about 30%) are only observed below 0.5 GeV/c and
for the two lowest-multiplicity classes. At higher pT and in the
higher-multiplicity classes, the agreement between the two meth-
ods is better than 10%.

In the 60–100% multiplicity class, the v2 coefficients of all
the studied particle species are similar and increase as a function
of pT. There is a trend of vp

2{SP} being slightly lower than vπ
2 {SP}

below 2.5 GeV/c albeit within the uncertainties. This behaviour in
low-multiplicity p–Pb collisions is qualitatively similar to that in
minimum-bias pp collisions at

√
s = 7 TeV (not shown) where the

jet contribution dominates. Towards higher multiplicities, a differ-
ent picture emerges. In particular, in the 0–20% and the 20–40%
multiplicity classes, the particle species are better separated, with
vp

2 < vπ
2 up to about 2 GeV/c. There is a hint of vK

2 < vπ
2 below

1 GeV/c. At higher pT, vp
2{SP} is slightly larger (about 1σ in the

0–20% event class) than that of pions, while in the case of vp
2{2PC}

the uncertainties are too large for a conclusion.
To further investigate this interesting evolution with multiplic-

ity, the subtraction method introduced in Ref. [23], which removes
a significant fraction of the correlation due to jets, is applied. The
per-trigger yield of the 60–100% event class is subtracted from
that in the 0–20% event class. In the upper panels of Fig. 3 the
resulting h–π and h–p correlation for 1.5 < pT < 2 GeV/c are
shown. In all considered pT-intervals and for all associated par-
ticles (h, π , K and p) a double-ridge structure is observed with
a near-side ridge centred at �ϕ = 0 and an away-side ridge cen-
tred at �ϕ = π . Both are independent of �η within the studied
range of |�η| < 1.6, apart from an additional excess which is vis-
ible around �ϕ = �η = 0. This excess is more pronounced for
pions than for kaons (not shown) and protons. This effect is a
residue of the jet peak originating in an incomplete subtraction,
possibly due to a bias of the event selection on the jet fragmen-
tation. Pions, which are most abundant, are most sensitive to this
effect. This residual peak on the near side is excluded by the se-
lection |�η| > 0.8 when the subtracted correlation is projected



ALICE Collaboration / Physics Letters B 726 (2013) 164–177 169
Fig. 3. Top panels: associated yield per trigger particle as a function of �ϕ and �η for h–π correlations (left) and h–p correlations (right) for 1.5 < pT < 2 GeV/c for
the 0–20% event class where the corresponding correlation from the 60–100% event class has been subtracted. Bottom panels: projection of the top panel correlations to
�ϕ averaged over 0.8 < |�η| < 1.6 on the near side and |�η| < 1.6 on the away side. The figure contains only statistical uncertainty. Systematic uncertainties are mostly
correlated and are less than 5%.
onto �ϕ . On the away side the full �η-range is projected and
a residual jet contribution cannot be excluded. The effect of this
residual jet contribution on the measurement is assessed as in [23]
by: (a) changing the range for the near-side exclusion region from
|�η| > 0.8 to 0.5 and 1.2; (b) subtracting the near-side excess dis-
tribution above the ridge also from the away side by reflecting it
at �ϕ = π/2 and scaling it according to the pT-dependent differ-
ence of near-side and away-side jet yields (this difference arises
due to the kinematic constraints and the detector acceptance and
is evaluated using the lowest-multiplicity class); and (c) scaling the
per-trigger yield in the 60–100% event class such that no near-
side peak remains. The differences in the extracted quantities are
included in the systematic uncertainties (3–10% depending on pT
and particle species).

The lower panels of Fig. 3 show the �ϕ-projections averaged in
the same �η regions as used for Fig. 1. As before, the Fourier co-
efficients are extracted from these projections by a fit with Eq. (2).
These fits are also shown in the lower panels of Fig. 3. Their
χ2/ndf is about 0.6–1.3 for all particle species in the pT range
considered, showing that the data is well described by these three
Fourier coefficients. Compared to the case without subtraction, the
first Fourier coefficient is up to 10 times smaller, as expected
as a consequence of the significant reduction of the jet compo-
nent, achieved with the subtraction procedure. The v2 coefficients

reduce as well, but only by about 20–40%. A larger change is seen
for protons at low pT.

As already noted in Ref. [23] for unidentified particles, no sig-
nificant near-side ridge is observed in the 60–100% multiplicity
class and it is assumed that the double-ridge structure is not
present in this event class. In the subtraction, along with the
jet component, a part of the combinatorial baseline is removed.
This has to be taken into account when the coefficients Vn� ,
which are relative quantities, are extracted. The Vn� coefficients
can be extracted from the fit parameters an with Vn�{2PC, sub} =
an/(a0 + b) where the baseline b is the combinatorial baseline of
the lower-multiplicity class which has been subtracted (b is deter-
mined on the near side within 1.2 < |�η| < 1.6). From the V h−i

n�

extracted for the different particle-species combinations, vi
n is ob-

tained with Eq. (3).
Fig. 4 shows the extracted v2{2PC, sub} coefficients for h, π ,

K and p as a function of pT. The coefficient vp
2 is significantly

lower than vπ
2 for 0.5 < pT < 1.5 GeV/c, and larger than vπ

2 for
pT > 2.5 GeV/c. The crossing occurs at pT ≈ 2 GeV/c. The coef-
ficient vK

2 is consistent with vπ
2 above 1 GeV/c; below 1 GeV/c

there is a hint that vK
2 is lower than vπ

2 . The observed behaviour
is rather different from that in the 60–100% multiplicity class (see
the top left panel of Fig. 2) or in pp collisions, which are as-
sumed to be mainly jet-dominated. The observation of a clear
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Fig. 4. The Fourier coefficient v2{2PC, sub} for hadrons (black squares), pions (red
triangles), kaons (green stars) and protons (blue circles) as a function of pT from
the correlation in the 0–20% multiplicity class after subtraction of the correlation
from the 60–100% multiplicity class. The data is plotted at the average-pT for each
considered pT interval and particle species under study. Error bars show statistical
uncertainties while shaded areas denote systematic uncertainties.

mass ordering between the v2 of pions and protons including their
crossing and the hint for a difference between the v2 of pions and
kaons is rather intriguing. The mass ordering and crossing is qual-
itatively similar to observations in nucleus–nucleus collisions [13,
50–52,54]. Furthermore, in A–A collisions a mass ordering at low
transverse momenta can be described by hydrodynamic model cal-
culations [49,53].

The reported results are consistent under a range of varia-
tions to the analysis procedure. Changing the multiplicity class
for the subtraction to 70–100% leads to large statistical fluctua-
tions, in particular for protons and kaons. For hadrons and pi-
ons the v2 coefficients change by about 8% below 0.5 GeV/c
and less than 4% for larger pT. Repeating the analysis using the
20–40% event class and subtracting the 60–100% event class, re-
sults in qualitatively similar observations. On average the v2 val-
ues are 15–25% lower and the statistical uncertainties are about
a factor 2 larger than in the 0–20% case. For the 40–60% event
class, the statistical uncertainties are too large to draw a conclu-
sion.

The analysis was repeated using the energy deposited in the
ZNA instead of the VZERO-A to define the event classes. The ex-
tracted v2 values are consistently lower by about 12% due to the
different event sample selected in this way. However, the pre-
sented conclusions, in particular the observed difference of vp

2 and
vπ

2 compared between jet-dominated correlations (60–100% event
class) and double-ridge dominated correlations (0–20% event class
after subtraction), are unchanged.

6. Summary

Two-particle angular correlations of charged particles with pi-
ons, kaons and protons have been measured in p–Pb collisions
at

√
sNN = 5.02 TeV and expressed as associated yields per trig-

ger particle. The Fourier coefficient v2 was extracted from these
correlations and studied as a function of pT and event mul-
tiplicity. In low-multiplicity collisions the pT and species de-
pendence of v2 resembles that observed in pp collisions at
similar energy where correlations from jets dominate the mea-
surement. In high-multiplicity p–Pb collisions a different pic-
ture emerges, where vp

2 < vπ
2 is found up to about 2 GeV/c. At

3–4 GeV/c, vp
2 is slightly larger than vπ

2 , albeit with low signifi-
cance.

The per-trigger yield measured in low-multiplicity collisions
is subtracted from that measured in high-multiplicity collisions,
revealing that the double-ridge structure previously observed in
correlations of unidentified particles, is present also in correla-
tions with π , K and p. The Fourier coefficient v2 of these double-
ridge structures exhibits a dependence on pT that is reminiscent of
the one observed in collectivity-dominated Pb–Pb collisions at the
LHC: vp

2 is significantly smaller than vπ
2 and vK

2 at low pT while
the opposite is observed at 2.5–4 GeV/c; the crossing takes place
at about 2 GeV/c.

These observations and their qualitative similarity to measure-
ments in A–A collisions are rather intriguing. Their theoretical
interpretation is promising to give further insight into the unex-
pected phenomena observed in p–Pb collisions at the LHC.
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P. Cerello cz, B. Chang dj, S. Chapeland ag, J.L. Charvet m, S. Chattopadhyay dp,
S. Chattopadhyay cp, M. Cherney cb, C. Cheshkov dn, B. Cheynis dn, V. Chibante Barroso ag,
D.D. Chinellato di, P. Chochula ag, M. Chojnacki bv, S. Choudhury dp, P. Christakoglou bw,
C.H. Christensen bv, P. Christiansen ae, T. Chujo dm, S.U. Chung ck, C. Cicalo cu, L. Cifarelli k,y,
F. Cindolo ct, J. Cleymans ce, F. Colamaria ad, D. Colella ad, A. Collu u, M. Colocci y,
G. Conesa Balbastre bm, Z. Conesa del Valle ar,ag, M.E. Connors du, G. Contin v,
J.G. Contreras j, T.M. Cormier ds, Y. Corrales Morales w, P. Cortese ac, I. Cortés Maldonado b,
M.R. Cosentino bp, F. Costa ag, P. Crochet bl, R. Cruz Albino j, E. Cuautle bf, L. Cunqueiro bn,
A. Dainese cw, R. Dang f, A. Danu be, K. Das cp, D. Das cp, I. Das ar, A. Dash dh, S. Dash ap,
S. De dp, H. Delagrange da, A. Deloff bs, E. Dénes dt, A. Deppman dg, G.O.V. de Barros dg,
A. De Caro k,ab, G. de Cataldo cs, J. de Cuveland al, A. De Falco u, D. De Gruttola ab,k,
N. De Marco cz, S. De Pasquale ab, R. de Rooij az, M.A. Diaz Corchero i, T. Dietel av,
R. Divià ag, D. Di Bari ad, C. Di Giglio ad, S. Di Liberto cx, A. Di Mauro ag, P. Di Nezza bn,
Ø. Djuvsland q, A. Dobrin az,ds, T. Dobrowolski bs, B. Dönigus cl,at, O. Dordic t, A.K. Dubey dp,
A. Dubla az, L. Ducroux dn, P. Dupieux bl, A.K. Dutta Majumdar cp, G. D Erasmo ad, D. Elia cs,
D. Emschermann av, H. Engel as, B. Erazmus ag,da, H.A. Erdal ah, D. Eschweiler al,
B. Espagnon ar, M. Estienne da, S. Esumi dm, D. Evans cq, S. Evdokimov ax, G. Eyyubova t,
D. Fabris cw, J. Faivre bm, D. Falchieri y, A. Fantoni bn, M. Fasel ch, D. Fehlker q,
L. Feldkamp av, D. Felea be, A. Feliciello cz, G. Feofilov do, A. Fernández Téllez b,
E.G. Ferreiro o, A. Ferretti w, A. Festanti aa, J. Figiel dd, M.A.S. Figueredo dg, S. Filchagin cn,
D. Finogeev ay, F.M. Fionda ad, E.M. Fiore ad, E. Floratos cd, M. Floris ag, S. Foertsch bh,
P. Foka cl, S. Fokin co, E. Fragiacomo cy, A. Francescon ag,aa, U. Frankenfeld cl, U. Fuchs ag,
C. Furget bm, M. Fusco Girard ab, J.J. Gaardhøje bv, M. Gagliardi w, A. Gago cr, M. Gallio w,
D.R. Gangadharan r, P. Ganoti bz, C. Garabatos cl, E. Garcia-Solis l, C. Gargiulo ag,
I. Garishvili bq, J. Gerhard al, M. Germain da, A. Gheata ag, M. Gheata ag,be, B. Ghidini ad,
P. Ghosh dp, P. Gianotti bn, P. Giubellino ag, E. Gladysz-Dziadus dd, P. Glässel ch,
L. Goerlich dd, R. Gomez j,df, P. González-Zamora i, S. Gorbunov al, S. Gotovac dc,
L.K. Graczykowski dr, R. Grajcarek ch, A. Grelli az, C. Grigoras ag, A. Grigoras ag,
V. Grigoriev br, A. Grigoryan a, S. Grigoryan bi, B. Grinyov c, N. Grion cy,
J.F. Grosse-Oetringhaus ag, J.-Y. Grossiord dn, R. Grosso ag, F. Guber ay, R. Guernane bm,
B. Guerzoni y, M. Guilbaud dn, K. Gulbrandsen bv, H. Gulkanyan a, T. Gunji dl, A. Gupta cf,
R. Gupta cf, K.H. Khan n, R. Haake av, Ø. Haaland q, C. Hadjidakis ar, M. Haiduc be,
H. Hamagaki dl, G. Hamar dt, L.D. Hanratty cq, A. Hansen bv, J.W. Harris du, A. Harton l,
D. Hatzifotiadou ct, S. Hayashi dl, A. Hayrapetyan ag,a, S.T. Heckel at, M. Heide av,
H. Helstrup ah, A. Herghelegiu bt, G. Herrera Corral j, N. Herrmann ch, B.A. Hess af,
K.F. Hetland ah, B. Hicks du, B. Hippolyte aw, Y. Hori dl, P. Hristov ag, I. Hřivnáčová ar,
M. Huang q, T.J. Humanic r, D. Hutter al, D.S. Hwang s, R. Ichou bl, R. Ilkaev cn, I. Ilkiv bs,
M. Inaba dm, E. Incani u, G.M. Innocenti w, C. Ionita ag, M. Ippolitov co, M. Irfan p,
V. Ivanov ca, M. Ivanov cl, O. Ivanytskyi c, A. Jachołkowski z, C. Jahnke dg, H.J. Jang bj,
M.A. Janik dr, P.H.S.Y. Jayarathna di, S. Jena ap,di, R.T. Jimenez Bustamante bf, P.G. Jones cq,
H. Jung am, A. Jusko cq, S. Kalcher al, P. Kaliňák bb, T. Kalliokoski dj, A. Kalweit ag,
J.H. Kang dv, V. Kaplin br, S. Kar dp, A. Karasu Uysal bk, O. Karavichev ay, T. Karavicheva ay,
E. Karpechev ay, A. Kazantsev co, U. Kebschull as, R. Keidel dw, B. Ketzer at, S.A. Khan dp,
P. Khan cp, M.M. Khan p, A. Khanzadeev ca, Y. Kharlov ax, B. Kileng ah, J.S. Kim am,
D.W. Kim bj,am, D.J. Kim dj, S. Kim s, B. Kim dv, T. Kim dv, M. Kim dv, M. Kim am, S. Kirsch al,
I. Kisel al, S. Kiselev ba, A. Kisiel dr, G. Kiss dt, J.L. Klay e, J. Klein ch, C. Klein-Bösing av,
A. Kluge ag, M.L. Knichel cl, A.G. Knospe de, C. Kobdaj db,ag, M.K. Köhler cl, T. Kollegger al,
A. Kolojvari do, V. Kondratiev do, N. Kondratyeva br, A. Konevskikh ay, V. Kovalenko do,
M. Kowalski dd, S. Kox bm, G. Koyithatta Meethaleveedu ap, J. Kral dj, I. Králik bb,
F. Kramer at, A. Kravčáková ak, M. Krelina aj, M. Kretz al, M. Krivda bb,cq, F. Krizek aj,by,an,
M. Krus aj, E. Kryshen ca, M. Krzewicki cl, V. Kucera by, Y. Kucheriaev co, T. Kugathasan ag,
C. Kuhn aw, P.G. Kuijer bw, I. Kulakov at, J. Kumar ap, P. Kurashvili bs, A.B. Kurepin ay,
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A. Kurepin ay, A. Kuryakin cn, S. Kushpil by, V. Kushpil by, M.J. Kweon ch, Y. Kwon dv,
P. Ladrón de Guevara bf, C. Lagana Fernandes dg, I. Lakomov ar, R. Langoy dq, C. Lara as,
A. Lardeux da, S.L. La Pointe az, P. La Rocca z, R. Lea v, M. Lechman ag, S.C. Lee am, G.R. Lee cq,
I. Legrand ag, J. Lehnert at, R.C. Lemmon bx, M. Lenhardt cl, V. Lenti cs, I. León Monzón df,
P. Lévai dt, S. Li bl,f, J. Lien q,dq, R. Lietava cq, S. Lindal t, V. Lindenstruth al, C. Lippmann cl,
M.A. Lisa r, H.M. Ljunggren ae, D.F. Lodato az, P.I. Loenne q, V.R. Loggins ds, V. Loginov br,
D. Lohner ch, C. Loizides bp, K.K. Loo dj, X. Lopez bl, E. López Torres h, G. Løvhøiden t,
X.-G. Lu ch, P. Luettig at, M. Lunardon aa, J. Luo f, G. Luparello az, C. Luzzi ag, P.M. Jacobs bp,
R. Ma du, A. Maevskaya ay, M. Mager ag, D.P. Mahapatra bd, A. Maire ch, M. Malaev ca,
I. Maldonado Cervantes bf, L. Malinina bi,1, D. Mal’Kevich ba, P. Malzacher cl, A. Mamonov cn,
L. Manceau cz, V. Manko co, F. Manso bl, V. Manzari cs, M. Marchisone w,bl, J. Mareš bc,
G.V. Margagliotti v, A. Margotti ct, A. Marín cl, C. Markert de,ag, M. Marquard at,
I. Martashvili dk, N.A. Martin cl, P. Martinengo ag, M.I. Martínez b, G. Martínez García da,
J. Martin Blanco da, Y. Martynov c, A. Mas da, S. Masciocchi cl, M. Masera w, A. Masoni cu,
L. Massacrier da, A. Mastroserio ad, A. Matyja dd, J. Mazer dk, R. Mazumder aq,
M.A. Mazzoni cx, F. Meddi x, A. Menchaca-Rocha bg, J. Mercado Pérez ch, M. Meres ai,
Y. Miake dm, K. Mikhaylov bi,ba, L. Milano ag,w, J. Milosevic t,2, A. Mischke az, A.N. Mishra aq,
D. Miśkowiec cl, C. Mitu be, J. Mlynarz ds, B. Mohanty dp,bu, L. Molnar aw,dt,
L. Montaño Zetina j, M. Monteno cz, E. Montes i, T. Moon dv, M. Morando aa,
D.A. Moreira De Godoy dg, S. Moretto aa, A. Morreale dj, A. Morsch ag, V. Muccifora bn,
E. Mudnic dc, S. Muhuri dp, M. Mukherjee dp, H. Müller ag, M.G. Munhoz dg, S. Murray bh,
L. Musa ag, B.K. Nandi ap, R. Nania ct, E. Nappi cs, C. Nattrass dk, T.K. Nayak dp,
S. Nazarenko cn, A. Nedosekin ba, M. Nicassio cl,ad, M. Niculescu ag,be, B.S. Nielsen bv,
S. Nikolaev co, S. Nikulin co, V. Nikulin ca, B.S. Nilsen cb, M.S. Nilsson t, F. Noferini k,ct,
P. Nomokonov bi, G. Nooren az, A. Nyanin co, A. Nyatha ap, J. Nystrand q, H. Oeschler ch,au,
S.K. Oh am,3, S. Oh du, L. Olah dt, J. Oleniacz dr, A.C. Oliveira Da Silva dg, J. Onderwaater cl,
C. Oppedisano cz, A. Ortiz Velasquez ae, A. Oskarsson ae, J. Otwinowski cl, K. Oyama ch,
Y. Pachmayer ch, M. Pachr aj, P. Pagano ab, G. Paić bf, F. Painke al, C. Pajares o, S.K. Pal dp,
A. Palaha cq, A. Palmeri cv, V. Papikyan a, G.S. Pappalardo cv, W.J. Park cl, A. Passfeld av,
D.I. Patalakha ax, V. Paticchio cs, B. Paul cp, T. Pawlak dr, T. Peitzmann az,
H. Pereira Da Costa m, E. Pereira De Oliveira Filho dg, D. Peresunko co, C.E. Pérez Lara bw,
D. Perrino ad, W. Peryt dr,4, A. Pesci ct, Y. Pestov d, V. Petráček aj, M. Petran aj, M. Petris bt,
P. Petrov cq, M. Petrovici bt, C. Petta z, S. Piano cy, M. Pikna ai, P. Pillot da, O. Pinazza ct,ag,
L. Pinsky di, N. Pitz at, D.B. Piyarathna di, M. Planinic cm, M. Płoskoń bp, J. Pluta dr,
S. Pochybova dt, P.L.M. Podesta-Lerma df, M.G. Poghosyan ag, B. Polichtchouk ax,
N. Poljak cm,az, A. Pop bt, S. Porteboeuf-Houssais bl, V. Pospíšil aj, B. Potukuchi cf,
S.K. Prasad ds, R. Preghenella ct,k, F. Prino cz, C.A. Pruneau ds, I. Pshenichnov ay, G. Puddu u,
V. Punin cn, J. Putschke ds, H. Qvigstad t, A. Rachevski cy, A. Rademakers ag, J. Rak dj,
A. Rakotozafindrabe m, L. Ramello ac, S. Raniwala cg, R. Raniwala cg, S.S. Räsänen an,
B.T. Rascanu at, D. Rathee cc, W. Rauch ag, A.W. Rauf n, V. Razazi u, K.F. Read dk, J.S. Real bm,
K. Redlich bs,5, R.J. Reed du, A. Rehman q, P. Reichelt at, M. Reicher az, F. Reidt ag,ch,
R. Renfordt at, A.R. Reolon bn, A. Reshetin ay, F. Rettig al, J.-P. Revol ag, K. Reygers ch,
L. Riccati cz, R.A. Ricci bo, T. Richert ae, M. Richter t, P. Riedler ag, W. Riegler ag, F. Riggi z,
A. Rivetti cz, M. Rodríguez Cahuantzi b, A. Rodriguez Manso bw, K. Røed q,t, E. Rogochaya bi,
S. Rohni cf, D. Rohr al, D. Röhrich q, R. Romita bx,cl, F. Ronchetti bn, P. Rosnet bl,
S. Rossegger ag, A. Rossi ag, P. Roy cp, C. Roy aw, A.J. Rubio Montero i, R. Rui v, R. Russo w,
E. Ryabinkin co, A. Rybicki dd, S. Sadovsky ax, K. Šafařík ag, R. Sahoo aq, P.K. Sahu bd,
J. Saini dp, H. Sakaguchi ao, S. Sakai bp,bn, D. Sakata dm, C.A. Salgado o, J. Salzwedel r,
S. Sambyal cf, V. Samsonov ca, X. Sanchez Castro bf,aw, L. Šándor bb, A. Sandoval bg,
M. Sano dm, G. Santagati z, R. Santoro k,ag, D. Sarkar dp, E. Scapparone ct, F. Scarlassara aa,
R.P. Scharenberg cj, C. Schiaua bt, R. Schicker ch, C. Schmidt cl, H.R. Schmidt af,
S. Schuchmann at, J. Schukraft ag, M. Schulc aj, T. Schuster du, Y. Schutz ag,da, K. Schwarz cl,
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K. Schweda cl, G. Scioli y, E. Scomparin cz, R. Scott dk, P.A. Scott cq, G. Segato aa,
I. Selyuzhenkov cl, J. Seo ck, S. Serci u, E. Serradilla i,bg, A. Sevcenco be, A. Shabetai da,
G. Shabratova bi, R. Shahoyan ag, S. Sharma cf, N. Sharma dk, K. Shigaki ao, K. Shtejer h,
Y. Sibiriak co, S. Siddhanta cu, T. Siemiarczuk bs, D. Silvermyr bz, C. Silvestre bm,
G. Simatovic cm, R. Singaraju dp, R. Singh cf, S. Singha dp, V. Singhal dp, B.C. Sinha dp,
T. Sinha cp, B. Sitar ai, M. Sitta ac, T.B. Skaali t, K. Skjerdal q, R. Smakal aj, N. Smirnov du,
R.J.M. Snellings az, C. Søgaard ae, R. Soltz bq, M. Song dv, J. Song ck, C. Soos ag, F. Soramel aa,
M. Spacek aj, I. Sputowska dd, M. Spyropoulou-Stassinaki cd, B.K. Srivastava cj, J. Stachel ch,
I. Stan be, G. Stefanek bs, M. Steinpreis r, E. Stenlund ae, G. Steyn bh, J.H. Stiller ch,
D. Stocco da, M. Stolpovskiy ax, P. Strmen ai, A.A.P. Suaide dg, M.A. Subieta Vásquez w,
T. Sugitate ao, C. Suire ar, M. Suleymanov n, R. Sultanov ba, M. Šumbera by, T. Susa cm,
T.J.M. Symons bp, A. Szanto de Toledo dg, I. Szarka ai, A. Szczepankiewicz ag,
M. Szymański dr, J. Takahashi dh, M.A. Tangaro ad, J.D. Tapia Takaki ar, A. Tarantola Peloni at,
A. Tarazona Martinez ag, A. Tauro ag, G. Tejeda Muñoz b, A. Telesca ag, C. Terrevoli ad,
A. Ter Minasyan co,br, J. Thäder cl, D. Thomas az, R. Tieulent dn, A.R. Timmins di, A. Toia cw,al,
H. Torii dl, V. Trubnikov c, W.H. Trzaska dj, T. Tsuji dl, A. Tumkin cn, R. Turrisi cw, T.S. Tveter t,
J. Ulery at, K. Ullaland q, J. Ulrich as, A. Uras dn, G.M. Urciuoli cx, G.L. Usai u, M. Vajzer by,
M. Vala bb,bi, L. Valencia Palomo ar, P. Vande Vyvre ag, L. Vannucci bo, J.W. Van Hoorne ag,
M. van Leeuwen az, A. Vargas b, R. Varma ap, M. Vasileiou cd, A. Vasiliev co, V. Vechernin do,
M. Veldhoen az, M. Venaruzzo v, E. Vercellin w, S. Vergara b, R. Vernet g, M. Verweij ds,az,
L. Vickovic dc, G. Viesti aa, J. Viinikainen dj, Z. Vilakazi bh, O. Villalobos Baillie cq,
A. Vinogradov co, L. Vinogradov do, Y. Vinogradov cn, T. Virgili ab, Y.P. Viyogi dp,
A. Vodopyanov bi, M.A. Völkl ch, S. Voloshin ds, K. Voloshin ba, G. Volpe ag, B. von Haller ag,
I. Vorobyev do, D. Vranic ag,cl, J. Vrláková ak, B. Vulpescu bl, A. Vyushin cn, B. Wagner q,
V. Wagner aj, J. Wagner cl, Y. Wang ch, Y. Wang f, M. Wang f, D. Watanabe dm,
K. Watanabe dm, M. Weber di, J.P. Wessels av, U. Westerhoff av, J. Wiechula af, J. Wikne t,
M. Wilde av, G. Wilk bs, J. Wilkinson ch, M.C.S. Williams ct, B. Windelband ch, M. Winn ch,
C. Xiang f, C.G. Yaldo ds, Y. Yamaguchi dl, H. Yang m,az, P. Yang f, S. Yang q, S. Yano ao,
S. Yasnopolskiy co, J. Yi ck, Z. Yin f, I.-K. Yoo ck, I. Yushmanov co, V. Zaccolo bv, C. Zach aj,
C. Zampolli ct, S. Zaporozhets bi, A. Zarochentsev do, P. Závada bc, N. Zaviyalov cn,
H. Zbroszczyk dr, P. Zelnicek as, I.S. Zgura be, M. Zhalov ca, F. Zhang f, Y. Zhang f, H. Zhang f,
X. Zhang bp,bl,f, D. Zhou f, Y. Zhou az, F. Zhou f, X. Zhu f, J. Zhu f, J. Zhu f, H. Zhu f,
A. Zichichi k,y, M.B. Zimmermann av,ag, A. Zimmermann ch, G. Zinovjev c, Y. Zoccarato dn,
M. Zynovyev c, M. Zyzak at
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