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We have benchmarked long range behavior of seven different van der Waals functionals comparing them with
our ACF-RPA correlation calculations for graphene on a Ag(111) system. Correlation given by the second version
of van der Waals density functional vdW-DF2 agrees remarkably well with our random phase approximation
(RPA) calculation in the long range region. In the intermediate and shorter range regions combining vdW-DF2
correlation with proper exchange functional becomes important. We compared the results of the van der Waals
functionals in this region to the previous RPA calculations and to some extent to experimental observations, and
calculated that the combined vdW-DF2(C09x) or rev-vdW-DF2 functionals show satisfactory behavior.
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The isolation of graphene in 2004 by Novoselov et al. [1,2]
initiated widespread research of this unique material. Although
graphene appeared in laboratories decades earlier, these
experiments revealed graphene’s most prominent feature, its
electronic structure. It is so special and has so many possible
applications because of π and π∗ bands that touch in the
so-called Dirac point exactly at the Fermi level where in ad-
dition, those bands show linear dispersion. After Novoselov’s
ground-breaking experiments graphene has been grown on
different substrates, metallic and insulating, employing dif-
ferent techniques. Graphene grown on metallic substrates
is interesting from several points of view. Graphene-metal
contact is essential for future graphene nanoelectronic devices;
for example, for measuring graphene transport properties. Also
from the practical point of view it is relatively easy to grow
good quality graphene on some metallic substrates such as
copper, and then transfer it to the insulating or polymer support,
leading to interesting applications [3]. Characterization of
graphene adsorbed on metallic surfaces showed that some
surfaces such as Pd(111), Co(0001), and Ni(111) significantly
influence the electronic structure of graphene. On the other
hand, adsorption of graphene on (111) surfaces of Cu, Au,
Pt, Ir, and Ag has almost no effect on its band structure [4,5].
Understanding these phenomena in terms of density functional
theory (DFT), the standard tool in theoretical solid state
physics, is not easy. Although the simplest local density
approximation (LDA) correctly predicted strong interaction of
Pd(111), Co(0001), and Ni(111) surfaces with graphene and
weak binding of graphene to (111) surfaces of Cu, Au, Pt, and
Ag [6,7], more accurate generalized gradient approximation
(GGA) leads to no binding at all [8]. However, there is no
apparent reason why LDA would give more accurate results
than GGA, especially in inhomogeneous systems like this one.
The reason for the failure of local LDA and semilocal GGA
approximations in describing graphene-metal systems is their
inability to describe nonlocal dispersive forces (particularly
van der Waals force) which are important in weakly bonded
systems.

*ivor.loncaric@gmail.com
†vito@phy.hr

To overcome these limitations of LDA and GGA ap-
proaches, the van der Waals density functional (vdW-DF) has
been developed [9,10]. Applying vdW-DF to a graphene-metal
system turned out to be partially successful [11,12]. Although
interaction at larger distances is improved significantly, the
main problems were the inability of vdW-DF to reproduce
strong binding of graphene on (111) Ni and Pd surfaces and
overestimation of equilibrium distances of weakly adsorbed
graphene. Overestimation of the equilibrium distances, and
overbinding in the intermediate separations also occurred in
other weakly bounded systems. A possible solution to the first
problem is to use less repulsive exchange functional than orig-
inally proposed revPBE [13]. There are several propositions
in this direction. First Klimeš et al. [14] introduced a slightly
modified PBE [15] and B88 [16] exchange functionals in 2010
(abbr. optPBE and optB88) and optB86b [17] in 2011. Sec-
ondly Cooper [18] introduced a new exchange functional (abbr.
C09x) constructed by matching to different s = |∇n|/2kF n

limits (n is charge density). In the limit of small s (slow
variation/high density) the C09x functional is matched to
gradient expansion approximation, and in the limit of high
s it is matched to the revPBE functional. Both propositions
improve equilibrium distances. The same group that developed
vdW-DF tried to resolve both problems by introducing a
second version of van der Waals functional, vdW-DF2 [19].
They changed originally used revPBE exchange with slightly
modified PW86 [20,21] exchange and used large-N asymptote
gradient correction to construct the vdW kernel. Most recently
Hamada [22] developed another exchange functional to be
used with the vdW-DF2 functional. There are also other vdW
functionals inspired by the vdW-DF idea, e.g., by Vydrov and
Van Voorhis [23–25]. Physical correctness of these functionals
was subject to debate [26,27]. Faster implementation of the
Vydrov and Van Voorhis VV10 functional is due to Sabatini
et al. [28] (abbr. rVV10).

With so many options there is still a need for benchmarking
these functionals. Here we will benchmark their long range
behavior comparing them to our noncontact random phase
approximation (RPA) calculations on the example of graphene
on Ag(111). Graphene on Ag(111) was grown very recently
and shown to be the weakest bounded so far [29] making it a
good candidate for our purpose. To show that our conclusions
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are not a coincidence, that only applies to the Ag(111), we
also performed the calculations with some of the functionals
for Cu(111) and Al(111) surfaces.

Neutral objects such as atoms, molecules, or metallic
surfaces in their LDA ground state produce the short range
electrical field whose range, if they are not polar in their
ground state, corresponds to the range of its ground state
electronic density. Consequently, those objects separated such
that their ground state electronic densities do not overlap will
not interact. However, because of spontaneous long range
fluctuations in the considered bodies, they get polarized and
produce an electrical field with a range much longer than the
range of its ground state electronic densities. This causes them
to start to interact, i.e., to attract each other by van der Waals
force. Specifically, this is the systematic failure of local and
semilocal DFT-based methods in the effort to describe sparse
matter’s ground state electronic structure. For large separations
the long range fluctuations give the dominant contribution to
vdW interaction and the local dielectric response is valid
approximation. Then vdW interaction can be obtained by
using the Lifshitz formula which is based on the subtraction
of zero point fluctuation energies of the collective modes
in the coupled and decoupled objects [30]. However, at
smaller separations the microscopic structure becomes visible
and dispersive (nonlocal) quantum mechanical effects start
influencing local theory results. In this case a common starting
point is the expression for the exact exchange-correlation
energy, the so-called adiabatic connection formula (ACF) [31],
that uses nonlocal response function of the interacting systems.
This causes direct use of the ACF to become computationally
time consuming and various approximations have to be done.
The DFT approximations are based on forcing the nonlocal
into local response in order to construct computationally more
efficient density functionals. However, most problems arise
in constructing the DFT functionals that properly connect
nondispersive (long range) and dispersive (short range) cor-
relations and the intersystem exchange. The accuracy of such
connection is of crucial importance for the determination
of intersystem binding energy and equilibrium separation.
For noncontact separations direct use of ACF becomes
computationally less demanding. Namely, ACF then can be
constructed from the response functions of the separated
systems which can substantially reduce the size of the
supercells used in calculation. In order to check the accuracy
of the above-mentioned vdW functionals in the noncontact
region we provide a calculation of correlation energy by
using ACF adapted to the noncontact systems, developed in
Ref. [30].

We shall use these results to benchmark the long range
behavior of seven different van der Waals density functional
options: vdW-DF [9], vdW-DF2 [19], C09x+vdW-DF(vdW-
DF2) [18], optB86b+vdW-DF [17], rev-vdW-DF2 [22], and
rVV10 [28]. Hamada and Otani [32] already used both
vdW-DF and vdW-DF2 with and without employing C09x
(in the non-self-consistent manner) to simulate graphene
interaction with metal surfaces whose properties we will
reproduce here by self-consistent calculation. Even though we
are benchmarking long range behavior of vdW functionals
we will also make some comparisons with the previous
RPA calculations [33] and to some extent with experimental

FIG. 1. (Color online) Geometry of the supercell used for our
vdW DFT calculations. Upper part: 2 × 2 graphene lattice matched
to

√
3 × √

3 Ag(111) lattice. Lower part: Geometry of the supercell
in perpendicular direction.

measurements of Kiraly et al. [29] in the range of adsorption
distances.

For our DFT van der Waals calculations we used plane
wave basis set with ultrasoft pseudopotentials as implemented
in QUANTUM ESPRESSO [34]. Calculations involving van der
Waals functionals were done self-consistently [35]. Due to
factorization of the vdW integration kernel by Román-Pérez
and Soler [36] time overhead in comparison with standard DFT
calculation was negligible. We used the most stable graphene-
surface geometries as given in Refs. [6,7]. Silver surface
was modeled by a six-layer slab. Graphene lattice (2 × 2)
was matched to

√
3 × √

3 Ag(111) lattice to avoid a large
mismatch between graphene and substrate, as shown in the
upper part of Fig. 1. We used the value of nominal bulk silver
lattice constant aAg = 4.09 Å and defined

√
3 × √

3 Ag(111)
lattice constant as a = aAg

√
3
√

2/2 = 5.01 Å, thus expanding
nominal graphene lattice by 2%. Separation of silver layers
is then c = 2.36 Å with neglecting marginal relaxation of
Ag(111) surface. To avoid interaction between slabs we used
a supercell with the vacuum separation equivalent to 16 layers
of silver atoms, as shown in the lower part of Fig. 1 (supercell
parameter in the z direction is z0 = 50 Å). Calculations
involving Cu(111) and Al(111) surfaces are performed using
similar geometries [37]. Kinetic energy cutoff for plane waves
was 475 eV for wave functions, and 5700 eV for the density.
We applied a 12 × 12 × 1 k-point grid to sample the Brillouin
zone. Ultrasoft pseudopotentials were generated by atomic
code that is part of QUANTUM ESPRESSO [34] (from the library’s
suggested and tested inputs).

For the calculation of noncontact RPA correlation energies
we use the prescription from Ref. [30]:

Ec(d)

A
= Im

∫
dQ

(2π )2

∫ ∞

0

dω

2π
ln[1−e−2QdDm(Q,ω)Dg(Q,ω)].

(1)

Here d represents the separation between the topmost
metal layer and the graphene carbon layer, as shown in
Fig. 2 which represents the geometry of the interacting
systems.
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FIG. 2. (Color online) Geometry of the jellium (orange)-
graphene (blue) system. Jellium slab corresponds to metal surface
shown as gray atoms.

The metal surface is treated in the jellium model where we
used 50-Å-thick positive background whose edge exceeds the
topmost metal layer for c/2 as sketched by orange in Fig. 2 (c
is the distance between metal layers). We modeled the silver
metal surface using the electronic density parameter, i.e., the
Wigner-Seitz radius, of rs = 3.00 a.u. [38]. Similarly, we used
rs = 2.67 a.u. for the copper surface and rs = 2.99 a.u. for the
aluminum surface. The metal is translationally invariant (ho-
mogeneous) in the x-y direction; however, Kohn-Sham (KS)
orbitals in the z direction are obtained self-consistently [39] by
using the Wigner LDA exchange-correlation functional [40].
In (1) Dm(Q,ω) represents the metallic surface excitation
propagator whose detailed calculation within RPA is presented
in Ref. [41]. Moreover, Dg(Q,ω) represents a graphene
electronic excitation propagator whose detailed calculation
is presented in Refs. [42,43]. However, the calculation of
Dg(Q,ω) is quite delicate and has to be briefly discussed
here.

In the first stage of the calculation we determine the isolated
graphene KS orbitals. Electronic structure calculations for
graphene are performed using the plane-wave self-consistent
code QUANTUM ESPRESSO[34]. For the graphene unit cell
parameter we used a = 2.46 Å, which is the experimental
lattice constant. For the unit cell in the z direction (separation
between periodically repeated graphene layers) we take L =
5a = 12.3 Å. We employ the Perdew-Zunger LDA for the
exchange-correlation (xc) potential [44]. An electronic tem-
perature of kBT ≈ 0.1 eV is used to achieve convergence of
the Kohn-Sham wave functions, with all energies extrapolated
to 0 K. The electronic density is calculated using a 12 × 12 × 1
Monkhorst-Pack special k-point mesh, i.e., we use 19 special
points in the irreducible Brillouin zone (BZ). We use the norm-
conserving LDA-based pseudopotentials for carbon [45]. We
find the energy spectrum converges for a 680 eV plane-wave
cutoff.

Once the ground state Kohn-Sham wave functions have
been calculated, we may calculate the two-dimensional (2D)
density-density response function within RPA. The matrix of
the noninteracting density-density response function χ0 for a

quasi-2D system may be expressed as

χ0
G‖G′

‖
(Q,ω,z,z′)

= 2

S

∑
K

∑
n,m

fn(K) − fm(K + Q)

ω + iη + εn(K) − εm(K + Q)

×MnK,mK+Q(G‖,z) M∗
nK,mK+Q(G′‖,z′). (2)

Here S is the surface area of the unit cell, η is the
peak broadening, and fn(K) and εn(K) are the Fermi-Dirac
occupation and energy, respectively, of the nth band at K.
The summation over K runs through 40 603 points in the
BZ or 3468 in the irreducible BZ which corresponds to
201 × 201 × 1 Monkhorst-Pack special k-point mesh. The
n,m summation is performed over 50 bands, which is sufficient
for a proper description of the high energy σ + π plasmon in
graphene. The matrix elements M have the form

MnK,mK+Q(G‖,z) = 〈�nK|e−i(Q+G‖)ρ |�nK+Q〉S, (3)

where Q and G‖ are the momentum transfer and reciprocal
lattice vectors, respectively, in the (x,y) plane of the graphene
surface. The integration is performed over the unit-cell surface
S, and the plane-wave expansion of the Kohn-Sham wave
functions is

�nK(ρ,z) = 1√
V

eiKρ
∑

G

CnK(G)eiGr, (4)

where V = S × L is the unit-cell volume, G = (G‖,Gz) is
a three-dimensional (3D) reciprocal lattice vector, r = (ρ,z)
is a 3D position vector with z normal to the surface, and
the coefficients CnK are obtained by solving the Kohn-Sham
equations. Integration over the perpendicular z coordinate in
expression (3) is not yet performed, so the matrix elements
remain z dependent. The screened response function may be
obtained from Eq. (2) by solving the combined integral-matrix
equation

χG‖G′
‖(z,z

′) = χ0
G‖G′

‖
(z,z′) +

∑
G‖1,G‖2

∫∫ L/2

−L/2
dz1dz2

×χ0
G‖G‖1

(z,z1)VG‖1G‖2 (z1,z2)χG‖2G′
‖(z2,z

′), (5)

where we have suppressed the Q and ω dependence to simplify
the expression. Note that the z1 and z2 integrations from −L

2
to L

2 ensure that interactions between repeated images are
removed. In this way we obtain a correct description for an
isolated graphene monolayer. Here

VG‖G′
‖(z,z

′) = δG‖G′
‖

2π

|Q + G‖|e
−|Q+G‖||z−z′| (6)

is the matrix of the bare Coulomb potential. Equation (5) can
be solved by applying a Fourier transform in the z direction
when it becomes a pure matrix equation [42]. A graphene
electronic excitation propagator can be obtained from the
screened response function (5) as

Dg(Q,ω) = 2π

Q

∫ L/2

−L/2
dz1

∫ L/2

−L/2
dz2 eQ(z1+z2)χG‖=0G′

‖=0(Q,ω,z1,z2). (7)
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For realistic crystal structures Dg(Q,ω) is an anisotropic
function of Q. This means that the intensity and frequency of
the electronic modes depend on the propagation direction. For
example, the π plasmon dispersion in graphene and carbon
nanotubes splits if Q is in the 
 → M direction but does
not split if it is in the 
 → K direction [43]. However, we
approximated Dg by an isotropic function by averaging over
the high symmetry 
 − M and 
 → K directions

Dg(Q,ω) = Dg(Q
K,ω) + Dg(Q
M,ω)

2
. (8)

Moreover, in (5) we put reciprocal lattice vectors G‖ = 0
which means that we excluded crystal local field effects
in the parallel direction. Factor e−2Qd in (1) defines the
cutoff wave vector QC in Q integration. Therefore, for the
noncontact separations d � 5 Å investigated here, the cutoff
wave vector can be estimated as QC � 1/d = 0.2 Å−1, so in
the calculation we have chosen QC = 0.3 Å−1. Because of
smooth Q-dependent functions, Q integration is performed
using the Simpson’s method over 51 points. The ω integration
is also performed using a Simpson’s method with 2001 points
up to 50 eV. In this way we ensure the inclusion of the entire
spectral weight of the high energy σ + π plasmon.

For the noncontact separation the main contribution to
van der Waals interaction comes from interaction between
collective excitations in the long wavelength limit, such as
the surface plasmon in silver and the π plasmon in graphene.

Moreover, because the silver surface plasmon ωS =
√

3
2r3

s
≈

6.4 eV is close to resonance with linearly dispersed graphene
π plasmon ωπ ≈ 4–7 eV [43], the vdW attraction possesses a
long range tail. Similar behavior also occurs for the Cu(111)
and Al(111) surfaces.

From the viewpoint of vdW functionals, the metallic long
range correlations (surface plasmon) can be simply imple-
mented in ACF. First metallic surface boundary (effective
image plane) should be carefully determined and then the local
Drude dielectric function ε(ω) can directly enter ACF. The
inclusion of graphene π plasmon is not so straightforward.
Namely, π plasmon is a Landau damped interband plasmon
and there is no simple Drude-like parametrization of ε(ω).
Therefore constructing the vdW functional with graphene as
one of the interacting components is not feasible and the direct
use of ACF is recommendable.

Binding curves for different vdW functionals are shown in
Fig. 3. Binding energies Eb are calculated as

Eb = 1
8 (EvdW − EAg(111) − Egraphene), (9)

where EvdW is the energy of the graphene-Ag(111) system,
EAg(111) is the energy of Ag(111) slab, and Egraphene is the
energy of a graphene layer. All the energies are per the same
unit cell from Fig. 1. To get binding energy per carbon atom
their difference is divided by 8, as there are eight carbon
atoms in the unit cell. The black line in Fig. 3 shows the
correlation interaction energy obtained by using ACF-RPA,
i.e., directly by using Eq. (1). In exploring Fig. 3 we will
discuss three different regions: long range d � 6 Å, inter-
mediate 4.5 � d � 6 Å, and adsorption region d � 4.5 Å. In
the long range region exchange energy is so small that only
the correlation part is important, which is apparent from the

E
b
(m

eV
)

d( )

LDA
vdW DF

vdW DF2
vdW DF(C09x)

vdW DF2(C09x)
rev vdW DF2

optB86b vdW DF
rVV10

noncontact RPA
Olsen et al. RPA

FIG. 3. (Color online) Binding energies per carbon atom of
graphene on Ag(111) for various vdW functionals and noncontact
RPA correlation energy. Black circles represent data taken from Fig. 2
of Ref. [33].

fact that curves with the same correlation part (vdW-DF or
vdW-DF2) join in the same curve. Our noncontact RPA curve
coincides with the supercell RPA result [33] at 6 Å showing
equivalence of the two approaches in the noncontact region.
The vdW-DF2 curves are almost on top of the model RPA
correlation curve, suggesting good long range behavior of
the vdW-DF2 functional. On the other hand, vdW-DF as it
is and combined with other exchange functionals (including
the rVV10 functional) overestimates the ACF-RPA result
for about 40% for almost all noncontact separations. In the
intermediate region we start to see the consequences of using
different exchange functionals. As our ACF-RPA result does
not include exchange we cannot compare it to the vdW-DF
results in the whole intermediate region where exchange
is contributing. However, in the higher intermediate region,
d � 5 Å, the exchange is already negligible and noncontact
RPA results obtained here agree remarkably well with the
RPA results from Ref. [33] that include exchange energy
by evaluating exact exchange (Hartree-Fock) energy on the
PBE orbitals. On this basis we can use any similarity with
the ACF-RPA result to estimate how does particular exchange
decay and which correlation functional is the most appropriate.
We can see that the combined vdW-DF2(C09x) agrees the best
with the ACF-RPA result in the higher intermediate region,
followed by rev-vdW-DF2 and then by vdW-DF2.

Even though presented noncontact RPA calculations for
Ag(111) agree well with the RPA calculations of Ref. [33],
we investigated what are the effects of replacing metal surface
with jellium slab and whether our analysis is valid for other
metal surfaces. As a test of the importance of the atomic
structure of metal versus the flat jellium model we calculated
the change in binding energy per carbon atom given by the
vdW functional when graphene is shifted to the right by 1/4
of the cell shown in Fig. 1. Differences are smaller than 10−3

meV for distances larger than d � 4.5 Å, and smaller than
0.1 meV for distances larger than d � 3.0 Å, showing that the
atomic structure of the silver surface is of little importance.
Binding energy calculations in the long range region for
Cu(111) and Al(111) are shown in Fig. 4. Calculations are
performed with two vdW functionals with C09x exchange and
noncontact RPA implementation. The RPA results of Olsen
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E
b
(m

eV
)

d( )

Cu(111)

d( )

Al(111)

vdW DF(C09x)
vdW DF2(C09x)

noncontact RPA
Olsen et al. RPA

FIG. 4. (Color online) Binding energies per carbon atom of
graphene on Cu(111) and Al(111) for two vdW functionals and
noncontact RPA correlation energy. Black circles represent data taken
from Fig. 2 of Ref. [33].

et al. [33] are shown for comparison. It can be noted that for
this metallic surface both RPA calculations agree in the region
where exchange is negligible (d � 5 Å). Again vdW-DF2
correlation closely follows the RPA results in the long range
region.

Let us focus again on the Ag(111) surface and look
at the behavior of the vdW functionals in the adsorption
region where noncontact RPA is of little significance. To
understand the results in the adsorption region we listed
equilibrium distances and adsorption energies for all used vdW
functionals in Table I, together with the RPA result [33] and the
experimental equilibrium distance [29]. Experimental distance
is measured by STM topography and because of differences in
tunneling conductance between the two materials the authors
of Ref. [29] argue that it could be too low. In agreement
with expectations, vdW-DF and vdW-DF2 in their original
form give too large adsorption distances. Other combinations
of exchange functionals with the vdW-DF(2) correlation
functional give equilibrium distances that agree well with
the previous RPA result from Ref. [33]. Even though this
RPA calculation gives adsorption energy that agrees best
with the vdW-DF(C09x) result, those calculations are hard
to converge and there is the possibility that this energy is
slightly lower, in the range of energies obtained by using the
rev-vdW-DF2 functional. We base this on the fact that for
Ni(111) and Cu(111) surfaces binding energies given by the
rev-vdW-DF2 functional are in very good agreement (up to
5 meV) with the same RPA calculations from Ref. [33] as
shown in Ref. [22]. Another argument in this direction is that
the experiments of Kiraly et al. [29] suggest weaker binding of
graphene on Ag(111) than on Cu(111), while RPA results [33]
predict 10 meV per carbon atom higher binding energy for
Ag(111). Comparing our result with the non-self-consistent
results of some of these functionals for our system, as given

Γ Γ

E
k
−

E
F
(e

V
)

FIG. 5. (Color online) Band structure of graphene on Ag(111)
at the equilibrium position, calculated with the vdW-DF2(C09x)
functional. Red (value 1) corresponds to graphene bands and blue
(value 0) corresponds to silver bands.

by Hamada and Otani [32], we note that the results almost do
not differ (differences in adsorption energy are up to 4 meV),
confirming that self-consistency is of little importance. To
further investigate this system we used the vdW-DF2(C09x)
combination of functionals to calculate the band structure of
graphene on Ag(111) at the equilibrium distance d = 3.27 Å
as shown in Fig. 5. Color function Cnk for every band n and k
point in Fig. 5 was calculated as

Cnk =
∫∫

dx dy
∫ z0/2
zM

|ψn,k(r)|2∫∫
dx dy

∫ z0/2
−z0/2 |ψn,k(r)|2

, (10)

where zM is the plane in the middle between the graphene and
the topmost silver layer and z0 is supercell parameter in the
z direction. In other words it shows probability that the electron
with given energy and k belongs to the graphene layer. As
one can see from Fig. 5, graphene’s Dirac cone (in the K

point) is preserved, as expected because of weak interaction.
However, we can notice slight electronic doping of graphene,
i.e., the Dirac cone moves −0.46 eV below the Fermi level.
This result slightly overestimates previously reported values
of −0.32 eV by LDA [7] and −0.40 eV by vdW-DF [11].
Moreover, the experimentally observed slight blue-shifted
G band in the Raman spectrum [29] also indicates light
electronic doping.

The strength of the long range vdW tail is not of such
physical relevance as the vdW energy in the shorter range,
which defines the intersystem binding energy or equilibrium
distance. However, the behavior of particular functionals in
the noncontact region reflects in their behavior in the contact
region, i.e., in its competition with the repulsive exchange

TABLE I. Binding energies per carbon atom and equilibrium distances of graphene to the Ag(111) surface for different exchange-correlation
functionals.

vdW-DF vdW-DF2 rev- optB86b-
LDA vdW-DF vdW-DF2 (C09x) (C09x) vdW-DF2 vdW-DF rVV10 RPA [33] Expt. [29]

Eb (meV) 35 46 46 78 58 58 67 68 78 –
deq(Å) 3.18 3.79 3.74 3.18 3.27 3.37 3.34 3.48 3.31 ≈2.5
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energy. In this paper we showed that vdW-DF2(c09x) or rev-
vdW-DF2 functionals apart from giving a good binding energy
or equilibrium distance [18,22], also behave satisfactorily
well in the noncontact region. They agree within 5 meV
with the ACF-RPA result up to very close separations of
d = 4.5 Å (where the exchange turns on). Good agreement
between our model noncontact RPA calculations and previous
supercell RPA results [33] indicates that the details of the
surface structure might be irrelevant for proper description of
vdW force in the noncontact region. In conclusion, due to
its precision in both long and short range interactions and its

fast convergence the second van der Waals functional together
with the appropriate exchange functional [vdW-DF2(c09x)
or rev-vdW-DF2] looks like the most adequate functional in
describing the similar systems in which dispersive forces are
significant.
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J. Zegenhagen, and T. Michely, Phys. Rev. Lett. 107, 036101
(2011).

[13] Y. Zhang and W. Yang, Phys. Rev. Lett. 80, 890 (1998).
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