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1. Introduction

1.1. Heterogeneity of breast cancer

Breast cancer is the most frequently diagnosed malignancy and the leading cause of
carcinoma deaths in women (Siegel et al., 2016). It is not a single disease but rat-
her a diverse group of heterogeneous lesions characterized by distinct pathological
types with different clinical outcomes. One of the initial molecular profiling studies of
primary tumors conducted by Perou et al. (2000) showed that breast cancer could be
segregated into several biologically distinct subtypes. Later, a study of gene expression
patterns of breast cancers derived from cDNA microarrays conducted by Sgrlie et al.
(2001) reported their distinctive molecular portraits according to which tumors were
classified into five intrinsic subtypes with distinct clinical outcomes: luminal A, lumi-
nal B, HER2-enriched, basal-like, and normal-like. Gene expression profiling studies
have given us insight into the heterogeneity of breast tumors and can be used to provide
prognostic information beyond standard clinical assessment. A great portion of breast
tumors is diagnosed at an early stage and treated with aim to eliminate all tumor cells,
but in approximately 30% of women (Colleoni et al., 2016) cancer recurs after initial
treatment. To reduce the rate of relapse, adjuvant treatment guided by single biomar-
kers such as estrogen and progesterone receptors and HER2 was introduced (Harris
et al., 2016). Nonetheless, a large fraction of women who would not have relapsed
were unnecessarily treated with consequent morbidities and increased cost for the he-
alth system (Cardoso et al., 2016). To avoid unnecessary or ineffective treatment and

improve patient outcome, guided clinical decisions that take into account the tumor



genomic profile are introduced (Schmidt, 2016).

1.2. Measuring gene expression

Differences underlying the gene expression patterns among breast cancer subtypes re-
flect the fundamental differences of the tumors at the molecular level (Sgrlie et al.,
2003). Therefore, multiple expression-based classifiers have been developed and are
clinically used to stratify patients with breast cancer, and add significant prognostic
and predictive information to standard parameters. One of them is a 50-gene subtype
predictor (Parker et al., 2009) that incorporates the gene expression-based intrinsic
subtypes luminal A, luminal B, HER2-enriched, basal-like, and normal-like. It was
developed by minimizing the intrinsic gene set defined in previous microarray studies
to the top 50 genes, PAMS50 gene expression signature, that contribute to distinguishing
intrinsic subtypes. In addition to mouse models (Park et al., 2018) and microarrays,
development of high throughput sequencing contributed to our understanding of breast
cancer and RNA sequencing became a widely used method to study gene expression

patterns.

1.2.1. Microarrays

Microarrays have revolutionized breast cancer research by enabling studies of gene
expression on a transcriptome-wide scale (Fumagalli et al., 2014). With this method
thousands of transcripts can be quantified simultaneously which is useful for determi-
ning differences in transcript levels under different experimental conditions or disease
states. Microarrays consist of thousands of DNA oligonucleotides with known sequ-
ence, called probes, printed in a high density array on a glass slide. The core prin-
ciple behind microarrays is hybridization between two complementary DNA strands.
Two RNA samples of interest are reversely transcribed into cDNA and labelled using
red and green fluorescent dyes, and then hybridized with the arrayed probes if they

contain complementary sequence. After hybridization under specific conditions, non-



complementary cDNA is washed off and the chip is scanned to measure the relative
abundance of spotted DNA sequences. Data for each gene consists of two fluorescence
intensity measurements (R, G) showing the expression level of the gene in the red and
green labelled mRNA samples. The ratio of the fluorescence intensity for each spot
represents the relative abundance of the corresponding transcript. In the microarray
experiment, however, many undesirable systematic variations that affect the measured
gene expression levels are observed. To remove those sources of variation, normali-
zation methods are applied. The main idea of normalization is to adjust for artifactual
differences in intensity of the two labels such as: affinity of the two labels for DNA,
amounts of sample and label used, differences in photomultiplier tube and laser vol-
tage settings, differences in photon emission response to laser excitation (Park et al.,

2003).

1.2.2. RNA Sequencing

High-throughput next-generation sequencing (NGS) enabled RNA analysis which pro-
vides, in contrary to low-throughput methods such as Northern blots and quantitative
polymerase chain reaction, a more detailed and quantitative view of gene expression.
In addition, this method emerges as a superior alternative to microarrays to define gene
expression levels (Wang et al., 2009). High levels of background noise arising from
non-specific hybridization and probe saturation affect the quantification of transcripts
expressed at low and high levels, limit the dynamic range of the microarray techno-
logy (Fumagalli et al., 2014) whereas RNA-Seq technology efficiently addresses this
issue. In addition, novel RNA transcripts can be detected because, unlike microarrays,
RNA-Seq technology does not require transcript-specific probes.

A typical RNA-Seq experiment consists of isolating RNA, preparing the sequen-
cing library, and sequencing it on an NGS platform. After the extraction of RNA from a
biological sample, RNA-Seq library is created by isolating the desired RNA molecules,
reverse-transcribing the RNA to complementary DNA (cDNA), fragmenting or am-

plifying randomly primed cDNA molecules, and ligating sequencing adaptors. There



are several different library designs in RNA-Seq library protocols. Desired RNAs, in
this case mRNA, can be isolated from the mixture of all extracted RNAs from the cell
using various methods, including poly-A selection which selects for RNA species with
poly-A tail and enriches for mRNA, and ribo-depletion which enriches for mRNA, pre-
mRNA and ncRNA by depleting ribosomal RNA. Desired single-stranded RNAs are
then converted to double-stranded cDNA using strand-specific or non-strand-specific
protocol. Strand-specific protocols allow an assignment of the reads to their original
strand by attaching distinct adapters in a known orientation relative to the 5’ and 3’
ends of the original mRNA. Non-strand-specific protocols are cheaper and less time
consuming, but they do not provide an information if a read originated from the sense
or antisense strand of the reverse transcribed mRNA. After converting selected RNAs
to cDNA, adaptors are ligated to the ends of cDNA fragments, given fragments are
then amplified by polymerase chain reaction (PCR), and produced RNA-Seq library is
sequenced. Following typical RNA-Seq experiment, reads are aligned to a reference
genome and the expression level of each gene is estimated by counting the number of
reads that align to each transcript or exon (Kukurba and Montgomery, 2015). To ac-
curately estimate gene expression and detect differential expression, read counts must
be normalized to correct for systematic variability such as read depth, library fragment
size, and sequence composition bias (Oshlack and Wakefield, 2009). To analyse diffe-
rential expression, a variety of statistical methods to account for the specifics of count
data, such as non-normality and a dependence of the variance on the mean, have been
designed and implemented in R packages. DESeq2 package for differential analysis
of count data uses shrinkage estimators for variances (or, equivalently, dispersions)
and fold change to improve stability and interpretability of estimates which results
with a more quantitative analysis focused on the strength rather than the mere pre-
sence of differential expression (Love et al., 2014). For RNA-Seq data, the problem
of heteroskedasticity arises: on the original count scale variances are strongly depen-
dent on the mean counts, and the result is dominated by highly expressed and highly

variable genes. Therefore, it is useful to transform count data before the analysis. Va-



riance stabilizing transformation (VST) implemented in DESeq?2 package is effective
at stabilizing variance. It yields a matrix of homoskedastic values, whose variances
are approximately the same throughout the dynamic range, that are normalized with

respect to library size.

1.3. R packages

Packages used and in this research are genefu (Gendoo et al., 2015) and Seurat (Butler
et al., 2018). genefu is used for microarray gene expression data analysis in breast
cancer studies such as gene mapping between different microarray platforms, iden-
tification of molecular subtypes, implementation of published gene signatures, gene
selection, and survival analysis. It implements bioinformatics algorithms and gene
signatures for molecular subtyping of breast cancer, including single sample predictor
(SSP) molecular subtype classification algorithm and PAMS0 gene expression signa-
ture. SSP is a nearest centroid classifier where the centroids representing the intrinsic
subtypes were originally identified through hierarchical clustering using a specific gene
list, in this case PAMS0 (Sgrlie et al., 2003). In subtyping using nearest centroid met-
hod each centroid represents one of the five intrinsic subtypes. This method works by
measuring the distance of each mouse sample to all centroids and assigning the sample
to the closest one.

Seurat is a novel package designed for quality check, and the analysis of single-cell
RNA-Seq data. In this package analytical strategy for integrating scRNA-seq data sets
based on common sources of variation is introduced, enabling the identification of sha-
red populations across data sets and downstream comparative analysis. Additionally,
a computational strategy to integrate diverse datasets together, called Canonical Cor-
relation Analysis, is implemented enabling integration and comparison of single cell
measurements not only across scRNA-seq technologies, but different modalities as

well (Stuart et al., 2019).



2. Aims and Objectives

Essential approach to examine underlying mechanisms and genetic pathways in breast
cancer, as well as create approaches for modeling clinical tumor subtypes, is the use of
mouse models. In addition to mouse models, development of high throughput sequen-
cing contributed to understand the breast cancer and RNA sequencing became widely
used method to study gene expression patterns.

The aim of this research is to modify PAMS50 molecular subtype classification algo-
rithm from package genefu and apply Canonical Correlation Analysis implemented in
package Seurat to subtype RNA sequenced mouse breast tumors in relation to human
tumors, to compare the results of subtyping mouse breast tumors, and to assess the
performance of the two independent approaches for subtyping breast tumors. To mo-
dify PAMS50 molecular subtype classification algorithm from genefu package, PAMS50
gene expression signature will be adapted by calculating new PAMSO0 centroids. Furt-
hermore, a recent study showed that human and mouse single-cell sequenced data can
be integrated using Canonical Correlation Analysis implemented in R package Seurat.
The motivation for integrating diverse datasets lies in the potential to use information
from one dataset for the interpretation of another. Therefore, CCA from Seurat pac-
kage will be used to integrate human and mouse bulk RNA sequenced data based on

the set of PAMS50 genes and to determine intrinsic breast tumor subtypes.



3. Materials and Methods

All the analysis was performed using R version 3.4.4 in the integrated development
environment RStudio, code used to produce this research is available in Appendix A,

B and C.

3.1. Data retrieval

In this work, gene expression data obtained by RNA sequencing method were analysed.
The Cancer Genome Atlas (TCGA) database was used to retrieve RNA sequencing
data from human primary breast tumor samples and matched samples from healthy
breast tissue. This database contains over 20,000 molecularly characterized primary
cancers and matched normal samples spanning 33 cancer types. The human dataset
consisting of RNA sequenced primary breast tumors and healthy breast tissue was
prepared by downloading raw counts produced from TCGA database using TCGAbi-
olinks, an R/Bioconductor package for integrative analysis with GDC data (Colaprico
et al., 2015). Downloaded TCGA breast tumor samples also contain the clinically de-
termined PAMS0 subtype information from the original publication (Network et al.,
2012). The human dataset consisted of 16679 ortholog genes and 1186 samples; 1073
samples from primary breast tumor and 113 samples from healthy breast tissue. There
are 556 samples clinically subtyped as luminal A, 207 of them as luminal B, 82 HER2-
enriched, 188 basal-like, and 40 normal-like. For TCGA Breast Cancer (BRCA) pro-
ject, mRNAs were isolated using poly-A selection and RNA-Seq library protocol was

non-strand-specific.



The mouse dataset used in this work was created by combining mouse breast tumor
samples from three different sources: raw counts of RNA sequenced mouse tumors
available at Sequence Read Archive (SRA) with identifier SRP115453, RNA sequen-
ced healthy breast tissue from DKFZ, and mouse breast tumor samples from ARCHS4
(Lachmann et al., 2018) database (Table 4.3). Dataset contained the expression values
of 16679 ortholog genes for 82 mouse samples; 9 of them are control samples where
healthy breast tissue was sequenced, and 73 tumor samples. Samples downloaded from
ARCHS4 database initially contained 47 mouse RNA-Seq breast tissue samples from
8 different series. Series that consist of only one or two samples were removed, and
all samples from series GSE8138 were also removed because those were mouse xeno-
grafts. After removing 4 series, 25 samples from 4 series were appropriate for further
analysis. Samples from series GSE85810 are breast tumor organoids (Delaunay et al.,
2016), and others are breast tumors. Some of the samples downloaded from ARCHS4
were prepared using non-strand-specific protocol, and some using strand-specific, but
all used poly-A method for mRNA selection. Method for mRNA selection in all 9 con-
trol samples was ribo-depletion and non-strand-specific protocol was used. Samples
downloaded from SRA are non-strand-specific and poly-A method for mRNA selec-
tion was used.

Table 3.1: Information about different sources of mouse samples that were combined to pro-

duce a single mouse dataset for the analysis and subtyping. Number of samples, types of breast

tissue, and methods of library preparation are also provided.

Source Tissue type Samples Selection method Strand specificity
SRA Tumor 48 poly-A no
GSE85810  Tumor organoid 6 poly-A no
GSE77107 Tumor 6 poly-A yes
GSES81941 Tumor 4 poly-A yes
GSE112094 Tumor 9 poly-A no
DKFZ Healthy 9 ribo-depletion no




For further analysis, only mouse orthologs of human genes were selected. To ac-
hieve this, mouse gene symbols were converted to human gene symbols using gene
mappings that were downloaded from BioMart database using biomaRt package (Du-
rinck et al., 2005). Then, the list of human and mouse orthologs was download from

BioMart using the same package.

3.2. Genefu subtyping

In this work PAMS50 molecular subtype classification algorithms from genefu were
modified for use with RNA-Seq instead of microarray expression data, by calculating
new centroids specific to each of the intrinsic subtypes of human TCGA dataset. Then,
it was used to subtype mouse tumors into intrinsic subtypes based on newly calculated
centroids of PAMS50 gene expression signature. To do that, human and mouse datasets
were transformed separately, then combined and corrected for organism type. After
centroid calculation, cross validation technique was used to assess the performance of

the modified algorithm in subtyping of human breast tumor samples.

3.2.1. Transformation

To accurately estimate gene expression, raw counts have to be normalized in order
to correct for systematic variability such as library size and read depth. In this work
raw counts in human and mouse datasets were separately transformed using variance
stabilizing transformation (VST) implemented in R package DESeq2. VST yields a
matrix of homoskedastic values, that is values with constant variance along the range

of means that are normalized with respect to library size.

3.2.2. Batch effect correction

Prior to VST, checking for outliers in human and mouse datasets was performed by
calculating pairwise correlation of quantile normalized gene expression values. Quan-

tile normalization is a non-linear transformation that replaces each feature value with

9



the mean of the features across all the samples with the same quantile. That way
observed distributions of each sample are forced to be the same and the average dis-
tribution, obtained by taking the mean of each quantile across samples, is used as the
reference (Hicks and Irizarry, 2015). Possible sources of batch effects were identified
by researching their protocols for RNA-Seq experiments. After VST, mouse dataset
was corrected for library preparation type and strand specificity. Then, mouse and hu-
man datasets were merged according to matching ortholog genes, and corrected for

organism type to make them comparable.

3.2.3. Centroid Calculation

To calculate PAMSO0 centroids, human dataset was subsetted from combined and cor-
rected dataset and the information about subtype was added. Only 50 genes that belong
to PAMS50 gene expression signature were subsetted from the set of human and mouse
orthologs. Samples having the same subtype were grouped and new centroids for each

subtype were calculated by averaging the expression values for each out of 50 genes.

3.2.4. Subtyping

Newly calculated centroids based on human TCGA breast cancer RNA-Seq data were
incorporated into genefu and intrinsic.cluster.predict() function with modified centro-
ids was further used to subtype breast tumor samples. This function identifies the breast

cancer molecular subtypes using SSP molecular subtype classification algorithm.

3.2.5. Cross-validation

Cross-validation is a statistical method of evaluating and comparing learning algorit-
hms by dividing the data into two segments: one, train set, used to learn or train a
model and the other, test set, used to validate the model (Liu and Ozsu, 2009). Ove-
rall accuracy of subtyping model with newly calculated centroids was assessed using

10-fold cross-validation on human TCGA dataset. The dataset was randomly split into

10



10 groups, or folds, of approximately equal size. The first group was hold out pre-
senting the test data set. Centroids were calculated based on the remaining 9 groups,
or the train set. Then, subtyping of test dataset was performed using newly calculated
centroids from the train set. Model performance was evaluated by calculating the per-
centage of accurately subtyped samples from the test set considering the information

about clinically determined PAMS50 subtypes previously downloaded from TCGA.

3.3. Seurat subtyping

In this work, slight changes in parameters of functions CreateSeuratObject() and Sca-
leData() were made with the aim to use human and mouse bulk RNA-Seq data instead
of single cell RNA-Seq data. Then, the two datasets were integrated by Canonical Cor-
relation Analysis (CCA) transferring information from the human reference dataset to

subtype mouse tumors.

3.3.1. Integration of human and mouse dataset

Two diverse datasets, human reference dataset and mouse query dataset, were integra-
ted using runCCA() function implemented in Seurat. This function performs Canonical
Correlation Analysis (CCA), followed by L2-normalization of the canonical correla-
tion vectors, to project the datasets into a shared space defined by shared correlation
structure across datasets (Figure 3.1: A-B). Pairs of mutual nearest neighbours across
reference and query datasets are then identified (grey lines, Figure 3.1: C), represen-
ting samples in a shared biological state which serve as “anchors” to guide the inte-
gration. To solve for the problem of observing incorrect anchors (red lines, Figure 3.1:
C), a score is assigned based on the consistency of anchors across the neighborhood
structure of each dataset. Incorrect anchors have low scores and are downweighted in
further analyses (Figure 3.1: D). At the end, anchors and their scores are utilized to
compute “correction” vectors for each query sample, transforming its expression so it

can be analysed as part of the reference dataset (Figure 3.1: E).

11
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Figure 3.1: Schematic overview of reference “assembly” integration in Seurat (Stuart et al.,

2019)

With the calculation of correction vectors, this method does not require previous
batch correction as in case with using SSP molecular subtype classification algorithm
from genefu. Here, the difference in expression profiles between two samples repre-
sents a batch vector and for each cell in the query dataset, a transformation is applied
(correction vector) that represents a weighted average across multiple batch vectors
(Haghverdi et al., 2018). Weights are determined by a sample similarity score and
the anchor score. The sample similarity score is defined by the distance between each
query cell and its k nearest anchors in principal component space, prioritizing anchors

representing a similar biological state (Stuart et al., 2019).

3.3.2. Subtyping

Two diverse datasets were integrated applying CCA on PAMS50 genes of mouse and
human datasets consisting of expression values that were previously transformed using
VST. The results of integration were visualized using T-distributed Stochastic Neigh-

bor Embedding (t-SNE). This is a technique for embedding high-dimensional data for

12



visualization in a low-dimensional space; in this work, integration result was visuali-
zed in 2D space. The t-SNE algorithm uses local relationships between points to create
a low-dimensional mapping. It works by constructing a probability distribution using
the Gaussian distribution over pairs of high-dimensional objects with more similar pa-
irs having higher probability of being selected. This distribution defines the relation-
ships between the points in high-dimensional space. Then, the Student t-distribution is
used to recreate previously produced probability distribution in low-dimensional space
(Maaten and Hinton, 2008). Clusters representing subtypes were calculated using Fin-
dClusters() function which identifies clusters of samples by a shared nearest neighbor
(SNN) clustering algorithm (Waltman and Van Eck, 2013). In this algorithm, k-nearest
neighbors are calculated and the SNN graph is constructed. Then, the modularity fun-

ction is optimized to determine clusters.

3.4. Assessment and comparison

Before performing assessment of genefu and Seurat based subtyping, TCGA dataset
was analysed by applying hierarchical clustering and Principal Component Analysis
(PCA) to examine how intrinsic subtypes group. Then, the accuracy of subtyping with
genefu was assessed with 10-fold cross-validation. The accuracy of clustering with

Seurat was assessed with calculating clusters and visualizing results using t-SNE.

3.4.1. Hierarchical clustering

Clustering is a form of unsupervised learning used to draw inferences from unlabeled
data. To cluster TCGA data based on PAMS50 genes, agglomerative hierarchical cluste-
ring using Pearson’s distance measure and average cluster linkage was performed using
R function hclust(). Agglomerative hierarchical clustering begins with each point in
a distinct cluster, and then combines clusters based on the chosen similarity measure.
In average linkage hierarchical clustering, the distance between two clusters is defined

as the average distance between each point in one cluster to every point in the other
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cluster. The similarity between clusters is usually calculated from the dissimilarity me-
asures. Here Pearson’s distance was used, also referred to as the Pearson correlation
coefficient (PCC), which is a measure of the linear correlation between two variables.
Then, a heatmap with added color label for each intrinsic subtype was drawn to visu-
alize clustering. Heatmap is a color coded table where rows and/or columns are sorted
by hierarchical clustering to visually identify patterns. Gene expression data are often
visualized that way, where rows represent genes and columns of a heatmap represent

samples, and colors represent the intensities of the underlying gene expression.

3.4.2. Principal component analysis

Principal Component Analysis is a dimensionality-reduction method that transforms a
large set of correlated variables into a smaller set of uncorrelated variables called prin-
cipal components. It can be considered as a rotation of the axes of the original variable
coordinate system to new orthogonal axes such that the new axes correspond with di-
rections of maximum variation of the original observations (Campbell and Atchley,
1981). Here, PCA was performed on TCGA data choosing PAMS50 genes for the cal-
culation, and the data described by the first two principal components were visualized.
The first principal component is the direction in space along which projections have the
largest variance, and the second is the direction which maximizes variance among all
directions orthogonal to the first. That way, dataset is presented in lower-dimensional

dorm without losing too much information.

3.4.3. Comparison of genefu and Seurat based subtyping

To assess the accuracy genefu subtyping, 10-fold cross validation was performed as
described in section 2.5.5. The accuracy of Seurat subtyping was assessed by sub-
typing human samples with mouse samples excluded from the analysis. FindClusters()
function was used and calculated clusters were compared with clinically determined

PAMS0 subtypes downloaded from TCGA, and the results were visualized using t-
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SNE. Mouse breast tumors were subtyped with genefu and Seurat, and the results

were compared.
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4. Results

4.1. Genefu subtyping

In this project, PAMS50 molecular subtype classification algorithm from genefu pac-
kage was modified to subtype RNA-Seq data instead of microarray data as an input by
manually calculating PAMS50 centroids specific to the set of downloaded human breast
cancer samples from the TCGA. These centroids were used to subtype RNA sequenced

mouse breast tumors in relation to intrinsic subtypes of human breast tumors.

4.1.1. Batch correction

Batch effect in mouse data due to technical differences among samples was detected
after calculating pairwise correlation of quantile normalized gene expression values
(Figure 4.1, left). Regressing out variables that contain the information about library
type and strand specificity, reduced the batch effect between mouse samples from dif-
ferent laboratories (Figure 4.1, right).

The batch effect before correction was greatly present between mouse and human
datasets (Figure 4.2, left) with mouse samples showing much lower gene expression in
comparison to human samples. After merging human and mouse datasets, and correc-
ting it for organism type, the batch effect was successfully removed (Figure 4.2, right)

making the two datasets comparable for biological differences.

16



Blcontrols  [esesss1o [ GSE77107 cses1941 [l GseE112004 [ Tumor

Figure 4.1: Uncorrected (left) and corrected (right) expression values of PAMSO0 signature in
rows for mouse dataset consisting of 82 samples from 6 different series. Mouse dataset was
corrected for two variables: library type and strand specificity. Hierarchical clustering was
performed using average linkage and Pearson’s distance. High levels of expression are in red,

low levels of expression are in blue.

4.2. Seurat subtyping

Novel package for the analysis of single-cell RNA-Seq data was applied to analyse
bulk RNA-Seq data. CCA was performed to integrate two diverse datasets and mouse
samples were integrated across all human samples (Figure 4.3). Information about
intrinsic subtypes from human TCGA dataset was used to subtype mouse breast tumor
samples (Figure 4.4). Mouse samples are generally not evenly distributed across the
human subtypes, but rather group near the edges of each intrinsic subtype indicating
successful integration of two datasets with removed technical but preserved biological

differences among breast tumors from distinct species.
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Figure 4.2: Uncorrected (left) and corrected (right) expression values of PAMSO0 signature in
rows for merged dataset consisting of 1186 human TCGA samples and 82 mouse samples.
Merged dataset was corrected for organism type. Hierarchical clustering was performed using

average linkage and Pearson’s distance. High levels of expression are in red, low levels of

expression are in blue.
4.3. Assessment and comparison

4.3.1. TCGA data

Prior to adding mouse dataset to human, clustering of TCGA human dataset based on
PAMS50 genes was performed using hierarchical clustering (Figure 4.5). Hierarchi-
cal clustering grouped a great portion of healthy breast tissue samples, basal-like and
HER2-enriched breast tumors in separate clusters. Normal-like tumors are clustered
mostly among healthy samples, but some are grouped with HER2-enriched and basal-
like subtypes. A part of luminal A overlaps with luminal B subtypes (Figure 4.5).
Breast cancer samples from TCGA human dataset were also visualized using PCA and

colored according to their intrinsic subtype. In PCA plot it can be seen how portion

18



&
~e® .'..’~ o™ ‘.
.‘- °po . L] =.¢:.
20f ‘\.:‘?ﬁ.‘ :..:?;..‘.'t".ag
. 1..' ’.- | - ¢ ° Py '.
[] .'.'o :; .‘ ..}
:“ %-.' .? ..‘ﬁ...,zs ook * 8
. o Loy Lr9d " oo st. a
... (X 1) .a....’o. Qo.. .Human
PR ?°'.0 .. y.... b/ ...ﬁ‘ .Mouse
.nw-.'&. e’ s . :..;’, *° o
EIO— ......:...'r ;.J..& ";:: . ™ ‘..; )
“)Z_‘j ..z.:.::‘.’. -a#..ol... Q.‘f...:. ...::-. '.’
o A I
o ¢ 8P &° : o :
- .o' ° : *~* ‘.-a{’ ."~ ¢
s, 70 %o - S0’ * &
o0 ‘. .:.. ?1. ‘..l .
XX JPILI 37
w2l 1
‘~o !.:201\. { ‘
Xl A
-20 -fo OtSNE ] 10 2

Figure 4.3: Human and mouse dataset integrated using Canonical Correlation Analysis visu-

alized with dimensionality reduction method t-SNE.

of luminal A and luminal B subtypes overlap. Here, normal-like samples are grouped
together, and basal-like samples as in hierarchical clustering are clearly grouped. It
can be noticed that a portion of healthy samples is similar to normal-like and luminal
A tumors, and a portion of HER2-enriched tumors groups with luminal A subtypes

(Figure 4.6).

4.3.2. Genefu and Seurat subtyping of human tumors

To assess the accuracy of subgrouping human TCGA breast tumors using modified
PAMS0 subtyping algorithm from genefu, 10-fold cross-validation was performed and
the accuracy of 82.41% was obtained (Table 4.1) by calculating the percentage of cor-
rectly classified intrinsic subtypes. The accuracy of subtyping with Seurat showed to

be lower, 67.62% (Table 4.2) because a great portion of luminal A subtypes is spread
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Figure 4.4: Human and mouse dataset integrated using Canonical Correlation Analysis visu-
alized with dimensionality reduction method t-SNE. Human breast tumors are colored by the
intrinsic subtype and mouse tumors are subtyped in relation to human tumors by assigning

them to the nearest cluster.

among 3 different clusters, one of them being cluster that represents luminal B sub-
type. Basal-like, HER2-enriched subtypes, and healthy samples are clustered very

accurately, but part of luminal A subtypes here is also grouped as luminal B.

4.3.3. Genefu and Seurat subtyping of mouse tumors

Results of subtyping using two different approaches are presented in Table ??. Sub-
typing with Seurat resulted with each mouse tumor sample subtyping as one of the five
intrinsic subtypes or as a healthy breast tissue. Genefu assigned one of the five intrinsic
subtypes to each mouse sample and additionally calculated the probability to belong to
each subtype. Mouse control samples, which are samples of the healthy breast tissue,

are mostly subtyped as luminal A using both packages. It can be noticed that almost all
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Table 4.1: The accuracy of genefu subtyping assessed using 10-fold cross-validation is
82.41%. TCGA breast tumors were subtyped using modified PAMS50 subtyping algorithm from
genefu package and the results were compared to clinically subtyped samples. True subtypes

are column-wise, calculated subtypes are row-wise.

Basal HER2 LumA LumB Normal

Basal 1

HER2 6
LumA 6 6 7
LumB 3
Normal 2 4

Table 4.2: Seurat classification of human RNA sequenced TCGA breast tumor samples and
healthy breast tissue. Obtained accuracy is 67.62%. True subtypes are column-wise, calculated

clusters representing each subtype are row-wise.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Basal
Healthy
HER2
LumA
LumB

Normal
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samples subtyped as luminal A have more than 30% chance to belong to normal-like
subtype. A portion of samples that are tumor organoids (GSM2284739, GSM2284743,
GSM2284741, GSM2284738, GSM2284742, GSM2284740) were subtyped as heal-
thy breast tissue with Seurat, and those samples genefu subtyped the same as control
samples. There are 39 samples that were subtyped the same with both packages, which
1s 52% when excluding samples subtyped as healthy using Seurat to make the two ap-
proaches comparable. Many tumor samples showed the same pattern in values of pro-
babilities to belong to each subtype: they all have probabilities to belong to basal-like,
HER2-enriched, and luminal B subtype, but no probability to belong to luminal A or

normal-like subtype.

Table 4.3: Results of subtyping RNA sequenced mouse breast tumors in relation to human
tumors by adapting PAMS50 gene expression signature in R packages genefu and Seurat are
presented in Seurat and genefu columns. Rows colored red are representing samples with
disagreements between two subtyping approaches where one approach subtypes sample as eit-
her luminal A, healthy normal-like, and other approach subtypes sample as basal-like, HER2-
enriched, or luminal B. Probabilities of mouse breast tumor samples to belong to each subtype
calculated with PAMS50 molecular subtyping algorithm from genefu are colored green with
higher probabilities having higher color intensity. True subtypes are column-vise, calculated

subtypes are row-vise.

Sample Seurat genefu Basal HER2 LumA LumB Normal
Control_1 LumA  Normal 0.00 0.00 0.47 0.00 0.53
Control_2 LumA  LumA 0.00 0.00 0.53 0.00 0.47
Control_3 LumA  Normal 0.00  0.00 0.50 0.00 0.50
Control_4 LumA  LumA 0.00 0.00 0.56 0.00 0.44
Control_5 LumA  LumA 0.00 0.00 0.54 0.00 0.46
Control_6 LumA LumA  0.00 0.00 0.50 0.00 0.50
Control_7 LumA LumA  0.00 0.00 0.57 0.00 0.43
Control_8 LumA  LumA 0.00 0.00 0.53 0.00 0.47
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Table 4.3 continued from previous page

Control_9 LumA LumA  0.00 0.00 0.00
GSM2284739 Healthy Normal 0.00  0.00 0.00
GSM2284743 Healthy Normal 0.00  0.00 0.00
GSM2284741 Healthy Normal 0.00  0.00 0.00
GSM2284738 Healthy Normal 0.00  0.00 0.00
GSM2284742 Healthy Normal 0.00  0.00 0.00
GSM2284740 Healthy Normal 0.00  0.00 0.00

GSM2098346 Basal Normal 0.00 0.11 0.35 0.00
GSM2098345 Basal Normal 0.00
0.15

0.00
GSM2098347 Basal Her2

GSM2098348 Basal Her2

GSM2178239 Basal LumB
GSM2178240 Basal LumB
GSM2178241 Basal LumB
GSM2370617 LumB  LumB
GSM2044416 LumA  LumA
GSM2044417 LumA  LumA
GSM3057406 Her2 LumB
GSM3057407 Her2 Her2

GSM3057408 Her2 LumB
GSM3057409 Her2 LumB
GSM3057410 Her2 LumA
GSM3057411 Her2 Her2

GSM3057412 Basal LumB
GSM3057413 Basal LumB
GSM3057414 Basal LumB
tumor_HIO1 LumB LumB
tumor_HLO8 LumB LumB
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tumor_HL100
tumor_HL107
tumor_HL109
tumor_HL116
tumor_HL117
tumor_HIL.119
tumor_HL120
tumor_ HL121
tumor_HI.123
tumor_HL 124
tumor_HL125
tumor_HIL.126
tumor_HL127
tumor_HL 128
tumor_HL130
tumor_HIL.132
tumor_HL 133
tumor_HL.134
tumor_HL135
tumor_HL136
tumor_HIL.137
tumor_HIL.145
tumor_HL 147
tumor_HL149
tumor_HL151
tumor_HL152
tumor_HIL.156
tumor_HL157

Table 4.3 continued from previous page

LumB
LumA
Basal
LumA
LumA
Basal
Healthy
LumB
LumB
LumB
LumA
LumA
LumB
Basal
Basal
LumB
Basal
Basal
Basal
Basal
LumB
LumB
LumB
Basal
Her2
LumA
Basal

LumB

o o

0.00  0.00

LumB 0.00

LumA

LumB
LumA
LumA
Basal
LumA
LumB
Basal
LumB
Basal
Normal
Basal
Basal
Basal
LumB
Normal
Basal
Basal
Basal
LumB
Her2
Her2
Basal
LumA
Her2
Normal

LumA
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Table 4.3 continued from previous page
tumor_HI.158 LumB LumA
tumor_HL160 LumB LumB
tumor_HL161 Basal LumB
tumor_HIL.162 LumB LumA
tumor_HL163 Her2 Her2
tumor_HL166 LumB LumB
tumor_HL.167.2 LumB  LumB
tumor_HIL169 LumB Basal
tumor_HL170 Basal LumB
tumor_HL17 LumB  LumB
tumor_HI.23 LumB LumB
tumor_HI.40 Basal LumB
tumor_HIL47 LumB LumB
tumor_HL65 LumA LumB
tumor_HL70 Basal Basal
tumor_HL76 LumB LumB
tumor_HL77 Basal Basal
tumor_HL80 Basal Normal
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Figure 4.6: Principal Component Analysis of TCGA breast tumor samples calculated based
on PAMS50 genes. Points representing samples are colored according to clinically determined

intrinsic subtypes.
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5. Discussion

Heterogeneity of breast cancer that occurs at the morphological, genomic, transcrip-
tomic and proteomic levels, creates challenges in diagnostics and limits the efficacy
of breast cancer therapy (Turashvili and Brogi, 2017). To simplify the study of the
molecular complexity of breast cancer, mouse tumor models are used, but the extent to
which they model human breast cancer and are reflective of the human heterogeneity
has yet to be demonstrated with gene expression studies on a large scale (Hollern and
Andrechek, 2014). In this research, it was studied how mouse breast tumors reflect
human intrinsic subtypes.

The first challenge was building mouse dataset by combining samples from many
different sources and finding appropriate variables that would correct the batch effect
and preserve biological differences among samples (Goh et al., 2017). We ended up
with 82 samples from 6 different sources which was sufficient for the analysis. All
non-protein coding genes and non-orthologs were discarded from both datasets. It was
crucial to end up with the same number of ortholog genes in both species, where each
gene has its corresponding pair in other species so that human and mouse datasets can
be correctly merged. Although most orthologs were one-to-one, meaning the entry has
only one ortholog in the other species, there were also one-to-many, many-to-one, and
many-to-many orthologs which were selected according to the highest percentage of
homology. Important step prior calculating new PAMS50 centroids, from TCGA hu-
man breast cancer data, was to merge human and mouse datasets and correct them
for organism type. Doing that, we accounted for possible differences in gene expre-

ssion due to different physiology between species and make possible to subtype mouse
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breast tumors in relation to human tumors. In contrast to merging datasets and calcu-
lating PAMS50 centroids for modification of PAMS0 subtyping algorithm, integration
of two different datasets in Seurat did not require previous correction for batch effects
because CCA integration method takes technical differences into account and calcu-
lates correction vectors. In this research, VST method for transforming expression
data was applied. When using Seurat for RNA-Seq data analysis instead of single-cell
RNA-Seq data, it is important to make sure that “normalization.method” parameter in
CreateSeuratObject() function is set to NULL.

It was noticed that some subtypes show more similarity to the others. In 10-fold
cross-validation, although it showed 82.41% accuracy, genefu subtyped few samples
as normal-like, while they were actually luminal A subtype. Luminal A and normal-
like subtypes have the most favorable prognosis among all intrinsic subtypes (Toft
and Cryns, 2010). Additionally, normal-like has gene expression pattern similar to
the ones found in normal breast tissue samples. Hierarchical clustering and principal
component analysis of TCGA breast cancer dataset, showed that portion of luminal
A groups with luminal B subtypes, while basal tumors were clearly separated. The
similarity between a portion of luminal A and luminal B tumors can be explained by
their gene expression pattern similar to the luminal epithelium of the mammary gland
which includes genes such as the estrogen receptor (ER) and progesterone receptor
(PR). They show differences in the expression of HER2 gene, where luminal A subtype
is HER2 negative, and luminal B subtype is HER2 positive (Vallejos et al., 2010). This
HER?2 positive characteristic of luminal B subtype can also be noticed while looking at
the results of subtyping (Table ??) where tumors subtyped as luminal B always show
some probability to belong to HER2-enriched subtype.

Seurat based subtyping identified all 9 control samples as luminal A, while genefu
subtyped 2 of them as normal-like and the rest as luminal A subtype. There were 6 sam-
ples downloaded from ARCHS4 that were organoids of breast tumor which subtyped
as healthy breast samples according to Seurat, and as normal-like tumors according to

Seurat. Almost all mouse breast tumors subtype as either luminal B, HER2-enriched or
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basal-like tumors, and have some probability to belong to all three mentioned subtypes.
These are intrinsic subtypes that have worse prognosis than luminal A or normal-like
subtypes (Fan et al., 2006).

Since congruence between intrinsic subtypes of mouse breast tumors determined
with genefu and Seurat is only 52%, we can not draw conclusions about specific sub-
type of particular mouse tumor, but we can confidently distinguish between tumor
and control samples. Both approaches showed the agreement between subtyping non-
tumors as either luminal A or normal-like subtype, and tumors as either luminal B,
HER2-enriched or basal-like. The advantage of PAMS0 molecular subtyping algo-
rithm from genefu is calculating the probability of each sample to belong to specific
subtype which can give us an additional information about the tumor heterogeneity.
Using CCA implemented in Seurat is easier and faster approach since it does not requ-
ire prior manipulation of the data such as batch correction. Additionally, it enables
healthy samples to be included in the analysis whereas genefu restricts only to five
intrinsic subtypes. The limitations of this approach include mouse samples being com-
bined from many different sources and the need for their batch correction. The process
of batch correction can unwantedly remove some of the important biological differen-
ces between the samples. This could be avoided if all mouse samples were sequenced
within the same RNA-Seq experiment. Another limitation is the low number of mouse
samples (82) in comparison to human samples (1186). By increasing the number of

mouse breast tumor samples, more confident results can be obtained.
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6. Conclusion

Based on this research, the following can be concluded:

PAMS50 molecular subtype classification algorithm implemented in R package

genefu can be used for the analysis of RNA-Seq data.

PAMS50 molecular subtype classification algorithm implemented in R package
genefu can be used to subtype mouse breast tumors in relation of human tumors

after performing transformation and batch correction for organism type.

Canonical correlation analysis implemented in R package Seurat can be used

to integrate human and mouse bulk RNA-Seq data.

Canonical correlation analysis implemented in R package Seurat can be used

to subtype mouse breast tumors in relation to human breast tumors.

Mouse control samples with both methods subtype as luminal A with probabi-

lity to belong to normal-like subtype.

Mouse breast tumor samples most often subtype as HER2-enriched, basal-like,

and luminal B subtype.

The use of more mouse breast tumor samples from the same batch would con-

tribute to better assessment of the two used approaches for breast tumor sub-

typing.
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Appendix A

Data preparation for mouse RNA-Seq data analysis

Ivna Ivankovié

Load required packages, set working directory.

suppressMessages( library(DESeq2) )
suppressMessages( library(Seurat) )
suppressMessages( library(genefu) )
suppressMessages( library(biomaRt) )
suppressMessages( library(ggplot2) )
suppressMessages( library(dplyr) )
suppressMessages( library(data.table) )
suppressMessages( library(preprocessCore) )
suppressMessages( library(dendextend) )
suppressMessages( library(sva) )

setwd("home/R/project")

1. Mouse Data

Mouse dataset is prepared by combining samples from three different sources: raw
counts of RNA sequenced mouse tumors available at Sequence Read Archive (SRA)
with identifier SRP115453, RNA sequenced healthy breast tissue from DKFZ, and
mouse breast tumor samples from ARCHS4 (Lachmann et al., 2018) database.

# raw counts available at Sequence Read Archive (SRA) with identifier
SRP115453
jonkers <- read.table("jonkers count.tsv", header = T)

# dkfz controls, healthy breast tissue
dkfz_controls <- read.table("dkfz_controls.tsv", header = T)

# merge mouse tumor samples and controls
mouse_raw_counts <- cbind(jonkers, dkfz_controls)

save(mouse_raw_counts, file = "mouse raw _counts.RData")



1.1. Download breast tumor samples from ARCHS4 database

The idea is to add more mouse samples for CCA Seurat analysis. | searched for
mouse RNA seq data, ideally for breast tissue. There is a paper about ARCHS4
database where | found 47 mouse RNA seq breast tissue samples.

ARCHS4 is a web resource that makes the majority of published RNA-seq data from human and mouse
available at the gene and transcript levels.

After the search is complete, the samples are highlighted and an auto-generated R script is provided for
downloading the set of highlighted samples. Executing the R script builds a local expression matrix in tab-
separated values format with the samples as columns and the genes as the rows.

Auto-generated R script
Retrieval date 13th February 2019.

[ will only use one batch of mouse data. Library type for GSE81380 batch is polyA
according to the information obtained from auto generated R script: library =
h5read(destination_file, “meta/Sample_extract_protocol_ch1”)

setwd("/icgc/dkfzlsdf/analysis/B060/Breast TCGA_ivna/data")

# R script to download selected samples
# Copy code and run on a local machine to initiate download

# Check for dependencies and install if missing

packages <- c("rhdf5")

if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
print("Install required packages")
source("https://bioconductor.org/biocLite.R")
biocLite("rhdf5")

}

library("rhdf5")

library("tools")

destination_file = "mouse_matrix_download.h5"
extracted _expression file = "Breast expression matrix.tsv"
url = "https://s3.amazonaws.com/mssm-seq-matrix/mouse_matrix.h5"

# Check if gene expression file was already downloaded and check
integrity, 1if not in current directory download file form repository
if(!file.exists(destination_file)){
print("Downloading compressed gene expression matrix.")
download.file(url, destination_file, quiet = FALSE)
} else{
print("Verifying file integrity...")
checksum = md5sum(destination_file)

if(destination file == "human_matrix_download.h5"){
# human checksum (checksum is for Latest version of ARCHS4


https://www.nature.com/articles/s41467-018-03751-6

data)
correct_checksum = "f78da4al855ff20da768eed1b73508be"
} else{
# mouse checksum (checksum is for Llatest version of ARCHS4

data)
correct_checksum = "065abb20d2b9d2661e74328de8d23eb3"
}
if(checksum != correct_checksum){

print("Existing file looks corrupted or is out of date.
Downloading compressed gene expression matrix again.")
download.file(url, destination_file, quiet = FALSE)
} else{
print("Latest ARCHS4 file already exists.")
}

}

checksum = md5sum(destination_file)

if(destination_file == "human_matrix_download.h5"){
# human checksum (checksum is for Latest version of ARCHS4 data)
correct_checksum = "f78da4al855ff20da768eed1b73508be"

} else{
# mouse checksum (checksum is for Latest version of ARCHS4 data)
correct_checksum = "065abb20d2b9d2661e74328de8d23eb3"

}

if(checksum != correct_checksum){

print("File download ran into problems. Please try to download
again. The files are also available for manual download at
http://amp.pharm.mssm.edu/archs4/download.html.")
} else{

# Selected samples to be extracted

samp =

c("GSM2284739", "GSM2284743" , "GSM2284741" , "GSM2284738" , "GSM1013599", "GSM
2284742" ,"GSM2284740" , "GSM2098346" , "GSM2098345" , "GSM2098347" , "GSM209834
8","GSM1973811", "GSM1973812", "GSM2151462" , "GSM2151459" , "GSM2151453" , "GS
M2151467","GSM2151465" , "GSM2151455" , "GSM2151452" , "GSM2151454" , "GSM21514
56", "GSM2151461" , "GSM2151460" , "GSM2151466" , "GSM2151464" , "GSM2151463" ,"G

SM2151458","GSM2151457" ,"GSM2178239" , "GSM2178240" ,

"GSM2178241", "GSM2370617", "GSM2044416" , "GSM2044417" , "GSM2044418" , "GSM30
16433", "GSM3016434" , "GSM3057406" , "GSM3057407" , "GSM3057408" , "GSM3057409"

, "GSM3057410", "GSM3057411" , "GSM3057412" , "GSM3057413" , "GSM3057414","")

# Retrieve information from compressed data

samples = h5read(destination_file, "meta/Sample geo accession")
tissue = h5read(destination_file, "meta/Sample_ source_name_chl")
genes = h5read(destination_file, "meta/genes")

series = h5read(destination_file, "meta/Sample series id")
library = h5read(destination_file,



"meta/Sample_extract protocol chil")
a <- h5read(destination_file, "meta/Sample extract protocol chl")

# Identify columns to be extracted
sample locations = which(samples %in% samp)

# extract gene expression from compressed data

expression = h5read(destination_file, "data/expression”,
index=1ist(1:1length(genes), sample_ locations))

H5close()

rownames (expression) = genes

colnames (expression) = samples[sample locations]

series <- series[sample_locations]

library <- library[sample_locations]

# this is the batch I decided to use

batch_samples <- samples[sample_locations][which(series ==
"GSE81380")]

batch <- expression[, batch_samples]

aa <- a[sample_locations][which(series == "GSE81380")]

# Print file

write.table(expression, file=extracted_expression_file, sep="\t",
quote=FALSE)

print(paste@("Expression file was created at ", getwd(), "/",
extracted_expression_file))

}

setwd("/icgc/dkfzlsdf/analysis/B@60/Breast_TCGA ivna/")

In the auto-generated R script | added few lines to gain the information

about library preparation and series.

series = h5read(destination_file, "meta/Sample_series_id")

library = h5read(destination_file, "meta/Sample_extract protocol ch1l")
series <- series[sample_locations]

library <- library[sample_locations]

1.2. Identify outliers

Apply quantile normalization

# plot sample similarity
boxplot(log2(1l+expression[,sample(1l:ncol(expression), 16)]), main="read
count distribution by sample")

# here we apply quantile normalization that will force the expression
distribution to be the same for all samples

exp <- normalize.quantiles(log2(l+expression))

dimnames(exp) <- dimnames(expression)



In this case outlier is sample GSM2044418 and it it removed from the dataset.

series <- c(rep("ctrl", 6), rep("archs4", 25), rep("tumors", 48))

# calculate pairwise correlation

cc <- cor(exp)

dend <- as.dendrogram(hclust(as.dist(1-cc)))
useries <- unique(series)

series_match <- useries[match(series, useries)]

# set colors to each series

colos <- colorspace::rainbow_hcl(length(useries), c = 160, 1 = 50)
names(colos) = useries

series _color <- colos[series_match]

clu = cutree(dend, h=0.15)
labels colors(dend) <- series_color[order.dendrogram(dend) ]
dend <- color_branches(dend, h = 0.15)

par(mar = c(4,1,1,12))

plot(dend, horiz = TRUE)

colored_bars(cbind(clu, series_color), dend, rowLabels = c("Cluster",
"Series"), horiz = TRUE)

legend("topleft", legend = useries, fill = colos, bg="white", cex=0.6)

# subset largest cluster / drop outliers
largest_cluster = names(rev(sort(table(clu))))[1]
ww = which(clu == largest_cluster)
reduced_expression = exp[,ww]

reduced_series = series[ww]

After removal of the outlier sample, [ will also remove series that consist of only one
or two samples. These are:

o GSE41286; 1 sample
e GSE76075; 2 samples
o GSE110770; 2 samples

From 47 initial samples in 8 series, now there are 41 of them in 5 series.

It is also important to remove samples from batch GSE8138 because those are
actually human tumors transfered to mouse (mouse xenograft), so I might try
adding those samples to human data and see how those classify. Those are HER2+
human breast tumors, harvested from SCID mice 2-days post treatment initiation,
source I will remove those samples from the expression dataset.

# remove series that consist of only one or two samples

rser <- c("GSE41286", "GSE76075", "GSE110770")

series filtered <- reduced series[-c(which(reduced series %in% rser))]
save(series filtered, file = "series filtered.RData")


https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81380

# remove outlier

expression <- expression[, -which(colnames(expression) ==
"GSM2044418") ]

expression <- expression[, -c(which(reduced series %in% rser))]

# remove mouse xenografts

which(series filtered == "GSE81380")

xenografts <- colnames(mouse_counts)[29:69][which(series_filtered ==
"GSE81380")]

1.3. Mapping mouse to human genes

BiomaRt using R. Webpage did not work good. According to ARCHS4 article
supported genomes are Ensembl Homo sapiens GRCh38 with the GRCh38.87
annotation file and Mus Musculus GRCm38 with the GRCm38.88 annotation file.

ensembl <- useMart(biomart = "ENSEMBL MART ENSEMBL",
path = "/biomart/martservice”,
dataset = "mmusculus_gene_ensembl")

# creating query and downloading human and mouse gene names to do
mapping
output=getBM(attributes=c("ensembl gene_id", "external_gene name"),
filters = "external_gene name",
values = rownames(expression),
mart = ensembl)

expression <- data.frame(expression)
expressionf$external_gene name <- rownames(expression)

exp_mouse <- merge(expression, output, by = "external_gene_name")
colnames(exp_mouse)[43] <- "GeneID"

# merge mouse data from all sources (controls, ARCHS4 and Jonkers
dataset)

mouse_raw_counts$GeneID <- rownames(mouse_raw_counts)

a <- merge(mouse_raw_counts, exp_mouse[,-1], by = "GeneID")
mouse_counts <- a[,-1]

rownames (mouse_counts) <- a[,1]

# save merged mouse data
save(mouse_counts, file = "mouse_counts.RData")
load(file = "mouse_counts.RData")


https://www.nature.com/articles/s41467-018-03751-6

2. Human data

2.1. Download TCGA raw counts

Downloading raw RNAseq counts with TCGAbiolinks: An R/Bioconductor package
for integrative analysis with GDC data. I downloaded tumor and normal samples.
Read this paper.

if (!requireNamespace("BiocManager", quietly=TRUE))

install.packages("BiocManager")
BiocManager::install("TCGAbiolinks")
library("TCGAbiolinks")

# preparing query and downloading samples
query <- GDCquery(project = "TCGA-BRCA",
data.category = "Transcriptome Profiling",
experimental.strategy = "RNA-Seq",
workflow.type = "HTSeq - Counts",
sample.type = c("Primary solid Tumor", "Solid Tissue
Normal™))

GDCdownload(query)

expdata <- GDCprepare(query)

expdata <- expdata[!duplicated(expdata)]
save(expdata, file = "expdata.RData")
load(file = "expdata.RData")

# get the sample information, here is also the information about PAM50
subtypes that I am interested 1in
sample.info <- SummarizedExperiment::colData(expdata)

# identify healthy samples
which(sample.info$definition == "Solid Tissue Normal™)

# add information
sample.info$subtype BRCA_Subtype PAM50[which(sample.info$definition ==
"Solid Tissue Normal")] <- "Healthy"

# omit samples without information about PAM56 subtype
sample.info <- sample.info[-
c(which(is.na(sample.info$subtype BRCA_ Subtype PAM50))), ]

save(sample.info, file = "sample.info.RData")
load(file = "sample.info.RData")


https://www.nature.com/articles/srep20567

2.2. Identify outliers
# 1190 because it 1is the number of downloaded human samples
series <- rep("one", 1186)

# calculate pairwise correlation

cc <- cor(exp)

dend <- as.dendrogram(hclust(as.dist(1-cc)))
useries <- unique(series)

series_match <- useries[match(series, useries)]

# set colors to each series

colos <- colorspace::rainbow_hcl(length(useries), c = 160, 1 = 50)
names(colos) = useries

series color <- colos[series match]

clu = cutree(dend, h=0.25)
labels _colors(dend) <- series_color[order.dendrogram(dend)]
dend <- color_branches(dend, h = 0.25)

par(mar = c(4,1,1,12))

plot(dend, horiz = TRUE)

colored_bars(cbind(clu, series_color), dend, rowlLabels = c("Cluster",
"Series"), horiz = TRUE)

legend("topleft", legend = useries, fill = colos, bg="white", cex=0.6)

# subset Llargest cluster / drop outliers
largest_cluster = names(rev(sort(table(clu))))[1]
ww = which(clu == largest_cluster)
reduced_expression = exp[,ww]

reduced_series = series[ww]

# outlier detection

outlier_cluster = names(rev(sort(table(clu))))[2]
ww = which(clu == outlier_cluster)

outliers= colnames(exp[,ww])

There were no outliers in human TCGA dataset.

3. Human and mouse orthologs

ensembl <- useMart(biomart = "ENSEMBL_MART_ENSEMBL",
host = "grch37.ensembl.org",
path = "/biomart/martservice”,
dataset = "hsapiens_gene_ensembl")

filters <- listFilters(ensembl)
attributes <- listAttributes(ensembl)
attributes[grep("mmusculus”, attributes$name), ]



output <- c("ensembl gene id",

"mmusculus_homolog ensembl gene",

"mmusculus_homolog_orthology type",

"mmusculus_homolog perc_id", #%id. target Mouse gene
identical to query gene

"mmusculus_homolog perc_id ri1") #%id. query gene 1identical
to target Mouse gene

orthologs <- getBM(output,
filter = "with_mmusculus_homolog",
values = TRUE,
mart = ensembl)

save(orthologs, file = "./results/orthologs.RData")
load(file = "./results/orthologs.RData")

# choose orthologs which have highest % identity

orthologs <- as.data.table(orthologs)

a <- orthologs[orthologs[, .I[which.max(mmusculus_homolog perc_id)],
by=mmusculus_homolog_ensembl gene]$V1]

b <- a[a[, .I[which.max(mmusculus_homolog perc_id ri)],
by=ensembl gene id]$V1]

orthologs_unique <- data.frame(b[, c(1, 2)])

save(orthologs_unique, file = "./results/orthologs unique.RData")
load(file = "./results/orthologs_unique.RData")

human_orthologs <- expdata[which(rownames(reduced expdata) %in%
orthologs_unique$ensembl gene_id), ]

mouse_orthologs <- mouse_counts[which(rownames(mouse_counts) %in%
orthologs_unique$mmusculus_homolog_ensembl_gene), ]

mouse_orthologs$mmusculus_homolog_ensembl gene <-

rownames (mouse_orthologs)

mouse_orthologs <- merge(mouse_orthologs, orthologs unique)
rownames (mouse_orthologs) <- mouse_orthologs$ensembl gene_id
mouse_orthologs <- mouse_orthologs[, -71]

save (human_orthologs, file = "./results/human_orthologs.RData")
load(file = "./results/human_orthologs.RData")
save(mouse_orthologs, file = "./results/mouse_orthologs.RData")
load(file = "./results/mouse orthologs.RData")

intersect orthologs <- intersect(rownames(human_orthologs),
rownames (mouse_orthologs))

save(intersect_orthologs, file = "./results/intersect _orthologs.RData")

human_intersect orthologs <- human_orthologs[intersect orthologs, ]



mouse_intersect_orthologs <- mouse_orthologs[intersect_orthologs, ]

save (human_intersect_orthologs, file =
"./results/human_intersect_orthologs.RData")
save(mouse_intersect_orthologs, file =
"./results/mouse_intersect_orthologs.RData")

load(file
load(file

"./results/human_intersect orthologs.RData")
"./results/mouse_intersect_orthologs.RData")

4. Variance Stabilizing Transformation

mvst <-
varianceStabilizingTransformation(as.matrix(mouse_intersect_orthologs|,
-1]), blind = TRUE, fitType = "parametric")

save(mvst, file = "mvst.RData")

load(file = "mvst.RData")

hvst <-
varianceStabilizingTransformation(assay(human_intersect orthologs),
blind = TRUE, fitType = "parametric")

save(hvst, file = "hvst.RData")

load(file = "hvst.RData")

4. PAM50 genes

BiomaRt PAM50 annotation

According to supplementary information For each sample, filter-passed reads were
aligned to the NCBI build 37 (hg19) human reference sequence (GRCh37-lite) using
BWA.

To work with older reference assembly grch37 I am using code from [this website]
(https://davetang.org/muse/2012/04/27 /learning-to-use-biomart/).

In mart outputs above, I am getting not perfect number of genes. In the
mart_output_name file there are only 47 external_gene_name values. Therefore |
decided to use mart_output_id with 51 external_gene_name values and now I will
fix the annotation to have 50 unique values for ensembl_gene_id,
external_gene_name and mmusculus_homolog_ensembl_gene.

At the end of the chunk below, I ordered mart_output_id according to
external_gene_name and dropped the first row where external_gene_name was
AC217779.2 because this is not in PAM50 gene list.

mart_output_id file contains annotation for PAM50 genes column with:

e ensembl_gene_id


https://davetang.org/muse/2012/04/27/learning-to-use-biomart/
https://media.nature.com/original/nature-assets/nature/journal/v490/n7418/extref/nature11412-s1.pdf

e external gene name (corresponds to name of PAM50 centroids)

o mmusculus_homolog _ensembl_gene

grch37 <- useMart(biomart="ENSEMBL_MART_ ENSEMBL",
host="grch37.ensembl.org",
path="/biomart/martservice")

mart <- useMart(biomart="ENSEMBL_ MART_ ENSEMBL",
host="grch37.ensembl.org",
path="/biomart/martservice",
dataset="hsapiens_gene_ensembl")

mart_output_id <- getBM(attributes=c("ensembl gene id",
"mmusculus_homolog ensembl gene", "external gene name"),
filters = "entrezgene",
values = pam50%centroids.map$EntrezGene.ID,
mart = mart)

mart_output_name <- getBM(attributes=c("ensembl gene id",
"mmusculus_homolog ensembl gene", "external_gene_name"),
filters = "external _gene name",
values = rownames(pam50%centroids.map),
mart = mart)

mart_output_id <-
mart_output_id[order(mart_output_id$external gene_ name), ]
mart_output_id <- mart_output_id[-1,]

I need to choose which mmusculus_homolog_ensembl_gene to drop. There are
duplicates of MIA and triplicates of NAT1. The dropping was done according to the
results of manual search of [MGI Mouse Vertebrate Homology database]
(http://www.informatics.jax.org/homology.shtml).

Firstly I dropped mouse ENSMUSG00000095538 gene, because MIA ortholog is
ENSMUSG00000089661.

In mouse there are 3 NAT1 homologs (Natl. Nat2, Nat3) and the one with the
highest variance (ENSMUSG00000051147, Nat2) is chosen for the further analysis.
Therefore, rows 30 and 31 were also removed. At the end, the information about
missing genes were manually added.

# drop mouse ENSMUSGOOOOOO95538 gene
rownames (mart_output_id) <- seq(1, 53)
mart_output_id <- mart_output_id[-32,]

# Remove version number in GeneID column
rownames (mouse_raw_counts) <- gsub("\\..*","", mouse_raw_counts$GeneID)

# remove control 1966 (alinment is not okay with this one)
mouse_raw_counts <- mouse_raw_counts[, -7]


http://www.informatics.jax.org/homology.shtml

# NAT1 duplicates, choosing one gene with highest variance

nat <-
mart_output_id[which(mart_output_id$external gene name=="NAT1"), "mmuscu
lus_homolog _ensembl gene"]

var <- matrixStats::rowVars(as.matrix(mouse_raw_counts[nat,-1]))

# drop mouse ENSMUSGOOO0O0O25588 and ENSMUSGOOOOOO56426 genes
rownames (mart_output_id) <- seq(1, 52)

mart_output_id <- mart_output_id[-c(37,38),]

rownames (mart_output_id) <- seq(1, 50)

Since gene synonyms exist, there is some inconsistency in naming. Therefore I
replaced NUF2, NDC80 and ORC6 with their synonyms CDCA1, KNTC2 and ORC6L
respectively and ordered mart_output_id file alphabetically according to
external_gene_name.

mart_output_id$external_gene_name[which(mart_output_id$external_gene_na
me == "NUF2")] <- "CDCA1"
mart_output_id%$external_gene name[which(mart_output_id$external gene na
me == "NDC8@")] <- "KNTC2"
mart_output_id%$external_gene_name[which(mart_output_id$external_gene_na
me == "ORC6")] <- "ORC6L"

mart_output_id <-
mart_output_id[order(mart_output_id$external gene name), ]
rownames (mart_output_id) <- seq(1:50)

identical(mart_output_id%$external_gene_name, rownames(pam50$centroids))

# there are two possible human orthologs to mouse gene
ENSMUSGO0o000051147, here manually put ENSGOOOOO156006 instead of
ENSGO0000171428

mart_output_id[39,1] <- "ENSGO0000156006"

save(mart_output id, file = "./results/mart output id.RData")
load(file = "./results/mart_output_id.RData")



Appendix B

Genefu modification

Ivna Ivankovi¢

Genefu package was modified to subtype RNA sequenced mouse breast tumors in
relation to human tumors by adapting PAM50 gene expression signature.

It was modified to subtype RNA-Seq data instead of microarray data as an input by
manually calculating PAM50 centroids specific to the set of downloaded human
breast cancer samples from the TCGA. These centroids were used to subtype RNA
sequenced mouse breast tumors in relation to intrinsic subtypes of human breast
tumors.

1. Batch correction

Information on series according to GEO (Gene Expression Omnibus)

Organism Batch Strand Specifity Library Type Source

mouse DKFZ yes ribo zero unknown

mouse GSE85810 no poly A GEO

mouse GSETT107 yes poly A GEO, ScienceDirect
human GSE81380 (HERZ2) no poly A GEO

mouse GSE&1941 no poly A Oncotarget

mouse GSE112094 no poly A GEO

human TCGA no poly A Suppl, Biostars

First, [ will correct for batch effect in mouse dataset. Then, I will combine human
and mouse datasets and correct them for organism type.

Mouse and human data is merged and corrected for organism type.
load(file = "hvst.RData")
load(file = "mvst.RData")

load(file = "mart_output_id.RData")

load(file = "series_filtered.RData")

series_filtered <- series_filtered[-c(which(series_filtered ==
"GSE81380"))]

load(file = "sample.info.RData")

mouse <- Seurat::CreateSeuratObject(raw.data = mvst, min.cells = 0,



min.genes = O,
project = "Mouse RNAseq",
normalization.method = NULL)

# add information about Library type preparation method into meta.data
slot

librarytype <- c(rep("ribozero", 9), rep("polya", 25), rep("polya",
48))

mouse@meta.data$librarytype <- librarytype

# add information about strand specificity into meta.data slot
strandspecificity <- c(rep("non", 9), rep("non", 6), rep("specific",
4),

rep("non", 4), rep("specific", 2), rep("non", 9),
rep("non", 48))
mouse@meta.data$strandspecificity <- strandspecificity

mouse <- Seurat::ScaleData(object = mouse,
check.for.norm = FALSE,
vars.to.regress = "librarytype",
"strandspecificity",
model.use = "linear")

# merge human and mouse data, and correct for organism type
vst <- cbind(mouse@scale.data, hvst)

both <- Seurat::CreateSeuratObject(raw.data = vst, min.cells = @,
min.genes = O,
project = "Both_RNAseq",
normalization.method = NULL)

# add information about organism into meta.data slot
organism <- c(rep("mouse", 82), rep("human", 1186))
both@meta.data$organism <- organism

both <- Seurat::ScaleData(object = both,
check.for.norm = FALSE,
vars.to.regress = "organism",
model.use = "linear")

2. Calculate centroids

[ am loading both.RData file which is Seurat object made in data.preparation.Rmd
script. Short description: I used variance stabilizing transformation to transform
mouse and human values separately. Then, transformed mouse values were
corrected for library type and strand specificity using Seurat ScaleData function.
Then, mouse and human data were merged and corrected for organism type again
using Seurat ScaleData function.



setwd("home/R/project")

# merged, VST, batch corrected human and mouse data

load(file = "both.RData")

# supplementary information for human data contain the information
about PAM56 subtypes

load(file = "sample.info.RData")

# PAM560 annotation obtained with biomaR

load(file = "mart_output_id.RData")

3. Cross-Validation

# subsetting only human data according to indices from merged dataset
human.data <- both@scale.data[, 83:1268]

sample.info <- sample.info[colnames(trainData), ]

# subset only pam50 genes from the whole dataset

pam50.genes <- human.data[which(rownames(human.data) %in%
mart_output_id%$ensembl _gene_id), ]

# choose only human tumor samples (remove healthy) that have
information about pam560 subtype in sample.info

pam50.val <- pam5@.genes]|, -

c(which(sample.info$subtype BRCA_Subtype PAM50 == "Healthy"))]

### 10-fold cross validation
yourdata <- pam50.val

#Randomly shuffle the data
yourdata <- yourdata[,sample(ncol(yourdata))]
#Create 10 equally size folds
folds <- cut(seq(1,ncol(yourdata)),breaks = 10,labels = FALSE)
#Perform 10 fold cross validation
for(i in 1:10){
#Segement your data by fold using the which() function
testIndexes <- which(folds == i,arr.ind=TRUE)
testData <- yourdata[, testIndexes]
trainData <- yourdata[, -testIndexes]

4. Manually calculate centroids based on TCGA data

For each subtype centroids are calculated by averaging the expression values for
PAMS50 genes. I do that by grouping by subtypes, filtering each subtype and
calculating means for each gene with colMeans function. Every subtype is stored in
one data.frame, at the end [ combine them and order genes according to alphabetical
order of gene names. I save the results as tcga.centroids.



# subsetting only human data according to indices from merged dataset
human.data <- both@scale.data[, 83:1268]

human.data <- trainData
sample.info <- sample.info[colnames(trainData), ]

# subset only pam50 genes from the whole dataset
pam50.genes <- human.data[which(rownames(human.data) %in%
mart_output_id%$ensembl gene id), ]
# choose only human tumor samples (remove healthy) that have
information about pam560 subtype in sample.info
pam50.val <- pam5@.genes|, -
c(which(sample.info$subtype BRCA Subtype PAM50 == "Healthy"))]
# add column with subtype
pam50.sub <- cbind(t(pam50.val),

subtype = data.frame(subtype =
sample.info$subtype BRCA Subtype PAM5Q[ -
c(which(sample.info$subtype BRCA_ Subtype PAM50 == "Healthy"))]))

basals <- pam50.sub 7%>%
group_by(subtype) %>%
filter(subtype=="Basal")

basals <- colMeans(basals[,-51])

her2 <- pam50.sub %>%
group_by(subtype) %>%
filter(subtype=="Her2")

her2 <- colMeans(her2[,-51])

lumA <- pam50.sub %>%
group_by(subtype) %>%
filter(subtype=="LumA")

lumA <- colMeans(lumA[,-51])

lumB <- pam50.sub %>%
group_by(subtype) %>%
filter(subtype=="LumB")

lumB <- colMeans(lumB[,-51])

normal <- pam50.sub 7%>%
group_by(subtype) %>%
filter(subtype=="Normal")

normal <- colMeans(normal[,-51])

tcga.centroids <- t(rbind(Basal=basals,
Her2=her2,
LumA=1umA,



LumB=1umB,
Normal=normal))

# order calculated centroids according to order in mart output id

# this order 1is alphabetical regarding to gene names, the same as 1in
genefu pam50 dataset

tcga.centroids <- tcga.centroids[match(mart_output_id[,1],

rownames (tcga.centroids)), ]

# and assign gene names to calculated centroids
# now they lLook Like genefu pam50 centroids
rownames (tcga.centroids) <- mart_output id[,3]

# and save them
save(tcga.centroids, file = "tcga.centroids.RData")
load(file = "tcga.centroids.RData")

5. Prepare mouse data

To use manually calculated centroids [ am replacing default genefu centroids stored
in pam50.robust$centroids with my manually calculated centroids
tcga.centroids. That way I can normally use molecular.subtyping function.

# make variable with mouse data for subtyping
pam50.mouse <- both@scale.data[, 1:82][which(rownames(both@scale.data[,
1:82]) %in% mart_output_id$ensembl gene_id), ]

Ordering genes to match the order of PAM50 centroids. This step is not necessary if
[ provide gene IDs in annot argument inside molecular.subtyping function. But I
decided to go that way because I have all information in mart_output_id file.

pam50.mouse <- pam5@.mouse[match(mart_output_id[,1],
rownames (pam50.mouse)), ]
rownames (pam50.mouse) <- mart output_id[, 3]

annotation <- mart_output id[, c(1,3)]

6. Genefu molecular subtyping

Apply genefu intrinsic.cluster.predict function to classify the subtypes according
to manually calculated centroids from TCGA breast cancer RNAseq data. I
transformed my mouse data because the function requires samples to be in rows
and genes in columns.

# replace centroids from genefu with manually calculated centroids
based on TCGA RNA-Seq data

pam50.robust$centroids <- tcga.centroids

pam50%$centroids <- tcga.centroids



# and subtype mouse tumors

preds <- intrinsic.cluster.predict(sbt.model=pam50,data=t(pam50.mouse),
annot=annotation,do.mapping=FALSE, do.prediction.strength=TRUE,
verbose=TRUE)

table(preds$subtype)
data.frame(preds$subtype)

# probabilities to belong to each subtype
preds$subtype.proba



Appendix C

Seurat modification

Ivna Ivankovié¢

Seurat package was modified to integrate human and mouse bulk RNA sequenced
data based on the set of PAM50 genes and used to determine intrinsic breast tumor
subtypes.

1. Make Seurat object

Make separate human and mouse Seurat objects out of VST data with
CreateSeuratObject function.

# Load requierd packages
library(Seurat)
library(matrixStats)
library(dplyr)
library(DESeq2)
library(gplots)
library(tibble)

# set working directory
setwd("home/R/project")

# human samples, VST values for orthologs

load(file = "hvst.RData")

# information about PAM50 subtypes for human tumors
load(file = "sample.info.RData")

# mouse samples, VST values for orthologs

load(file = "mvst.RData")

# dataframe with PAM50 genes

load(file = "mart_output_id.RData")

# information about mouse samples downloaded from ARCHS4 database
load(file = "./results/series_filtered.RData")

# this series are mouse xenograft models, those are removed:

# since batch GSE81380 are HER2+ human breast tumors, harvested from
SCID mice 2-days post treatment initiation,
[source](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi’?acc=GSE81380) I
will remove those samples from mouse dataset

series filtered <- series filtered[-c(which(series filtered ==
"GSE81380"))]



# remove healthy samples from human dataset

hvst <- hvst[, -c(which(sample.info$subtype BRCA Subtype PAM50 ==
"Healthy"))]

sample.info <- sample.info[-

c(which(sample.info$subtype_ BRCA_Subtype PAM50 == "Healthy")), ]

### CREATE SEURAT OBJECT
mouse <- CreateSeuratObject(raw.data = mvst, min.cells = @, min.genes
9,

project = "Mouse_RNAseq",
normalization.method = NULL)

human <- CreateSeuratObject(raw.data = hvst, min.cells = @, min.genes
9,
project = "Human_RNAseq",
normalization.method = NULL)

### MOUSE
mouse <- FindVariableGenes(object = mouse)
length(x = mouse@var.genes)

mouse <- ScaleData(object = mouse,
check.for.norm = FALSE,
model.use = "linear")

### HUMAN
human <- FindVariableGenes(object = human)
length(x = human@var.genes)

human <- ScaleData(object = human,
check.for.norm = FALSE,
model.use = "linear")

2. Merge human and mouse datasets

Human and mouse Seurat objects are merged in one seurat object called merged
and Canonical Correlation Analysis is run with function RunCCA. Information about
PAM50 molecular subtype for human data and phenotype information for mouse
data are added to @meta.data slot of Seurat object.

# subset the List of PAM50 genes
pam50 <- mart_output_id[,1]

# gene selection

mouse_hvg <- rownames(x = head(x = mouse@hvg.info, n = 10))
human_hvg <- rownames(x = head(x = human@hvg.info, n = 10))
hvg.union <- union(x = mouse_hvg, y = human_hvg)



# adding organism information into meta.data slot
human@meta.data[, "organism"] <- "Human"
mouse@meta.data[, "organism"] <- "Mouse"

# integration of human and mouse dataset based on PAM50 genes
merged <- RunCCA(object = human,

object2 = mouse,

genes.use = pam50)

# just change name
sample.info$subtype BRCA_Subtype PAM50[sample.info$subtype_ BRCA_Subtype
_PAM5@ == "Normal"] <- "Normal-like"

# adding information about human subtypes and mouse samples into
meta.data slot

merged@meta.data$phenoinfo <- c(sample.info$subtype BRCA Subtype PAM5Q,
rep("Mouse control"”, 9), rep("Mouse tumor", 73))

3. Canonical Correlation Analysis

The good number of dimensions for my dataset is either 4 or 5. This is determined
based on DimHeatmap plot. [ was doing analysis with only PAM50 genes.

# visualize results of CCA plot CC1 versus CC2 and Llook at a violin
plot
pl <- DimPlot(object = merged, reduction.use
"organism", pt.size = 0.5,

do.return = TRUE)
p2 <- VlnPlot(object = merged, features.plot = "CC1", group.by
"organism",

"cca", group.by

do.return = TRUE)
plot_grid(pl, p2)

# determine the number of dimensions to use in further analysis
PrintDim(object = merged, reduction.type = "cca", dims.print = 1:2,
genes.print = 10)

DimHeatmap(object = merged, reduction.type = "cca", cells.use = 500,
dim.use = 1:9,
do.balanced = TRUE)

# now we align the CCA subspaces, which returns a new dimensional
reduction called cca.aligned
merged <- AlignSubspace(object = merged, reduction.type = "cca",
grouping.var = "organism",

dims.align = 1:6)

# visualize the aligned CCA and perform integrated analysis
pl <- VlnPlot(object = merged, features.plot = "ACC1", group.by =



"organism",
do.return = TRUE)
p2 <- VlnPlot(object = merged, features.plot = "ACC2", group.by =
"organism",
do.return = TRUE)
plot grid(pl, p2)

# now we can run a single integrated analysis on all cells
merged <- RunTSNE(object = merged, reduction.use = "cca.aligned",
dims.use = 1:6,

do.fast = TRUE)

# SNN clustering
merged <- FindClusters(object = merged, reduction.type = "cca.aligned",
dims.use = 1:6,

resolution = 0.6, force.recalc = TRUE,

save.SNN = TRUE, k.param = 25)

# t-SNE plot of calculated centroids, in second plot points are colored
according to subtype
pl <- TSNEPlot(object
TRUE, pt.size = 2)

p2 <- TSNEPlot(object
= "phenoinfo")
plot_grid(pl, p2)

merged, group.by = "organism", do.return =

merged, do.return = TRUE, pt.size = 2, group.by

TSNEPlot(object = merged)

# save plots as one pdf file
pdf(file = "yyyymmdd_cca_integration.pdf", onefile = TRUE, width=13,
height=10)

plot(pl)
plot(p2)
plot_grid(pl, p2)

dev.off()

4. Clusters

Fetching the information about calculated clusters and producing a cross-table.

clusters <- GetClusters(object = merged)
unique(clusters$cluster)

human.clusters <- data.frame(cbind(merged@meta.data$phenoinfo[1:1073],
merged@meta.data$res.0.6[1:1073]))
table(human.clusters)



# interactive plot

t <- TSNEPlot(merged, pt.size = 2, do.return = T, do.hover =T,
data.hover = "phenoinfo", group.by = "phenoinfo")

htmlwidgets: :saveWidget(t, "tsne.html")
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