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The Witten–Veneziano relation, or, alternatively, its generalization proposed by Shore, facilitates 
understanding and describing the complex of η and η′ mesons. We present an analytic, closed-
form solution to Shore’s equations which gives results on the η–η′ complex in full agreement with 
results previously obtained numerically. Although the Witten–Veneziano relation and Shore’s equations 
are related, the ways they were previously used in the context of dynamical models to calculate η
and η′ properties, were rather different. However, with the analytic solution, the calculation can be 
formulated similarly to the approach through the Witten–Veneziano relation, and with some conceptual 
improvements. In the process, one strengthens the arguments in favor of a possible relation between the 
U A(1) and SU A(3) chiral symmetry breaking and restoration. To test this scenario, the experiments such 
as those at RHIC, NICA and FAIR, which extend the RHIC (and LHC) high-temperature scans also to the 
finite-density parts of the QCD phase diagram, should pay particular attention to the signatures from the 
η′–η complex indicating the symmetry restoration.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Among the most intriguing results from RHIC are those on 
the increased η′ multiplicities found in the 

√
sNN = 200 GeV cen-

tral Au + Au reactions [1,2], since Csörgő et al. [3–5] established 
that this implied that the vacuum value of the η′ meson mass, 
Mη′ = 957.8 MeV, was reduced by at least 200 MeV inside the fire-
ball. This was interpreted as the “return of the prodigal Goldstone 
boson” predicted as a signal of the U A(1) symmetry restoration 
[6]. Namely, Mη′ is so very high due to the nonabelian, “gluon” 
axial anomaly breaking the U A(1) symmetry and so precluding η′
from being the 9th (almost-)Goldstone boson of QCD.

Nevertheless, it may seem somewhat surprising that the U A(1)

symmetry restoration is observed before deconfinement or the 
restoration of the [SU A(N f ) flavor] chiral symmetry of QCD 
(whose dynamical breaking results in light, (almost-)Goldstone 
pseudoscalar meson octet P = π0, π±, K 0, K̄ 0, K ±, η for N f = 3). 
Namely, the U A(1) symmetry restoration was expected to oc-
cur last, at the temperature (T ) scale characterizing the pure-
gauge, Yang–Mills (YM) theory, which is significantly higher (by 
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some 100 MeV) than the T scale characterizing the full QCD. 
For example, consider the Witten–Veneziano relation (WVR) [7,8], 
seemingly peculiarly relating the four quantities of the full QCD, 
namely the pion decay constant fπ and η′ , η and K -meson masses 
Mη′,η,K , to YM topological susceptibility χYM:

M2
η′ + M2

η − 2M2
K = 2N f

χYM

f 2
π

. (1)

It shows that the anomalously large mass of η′ , nonzero even in 
the chiral limit due to the breaking of the U A(1) symmetry, is de-
termined by the ratio of χYM and fπ .

WVR is well satisfied at T = 0 for χYM obtained by lattice cal-
culations (e.g., [9–12]). Nevertheless, the T -dependence of χYM
is such that the straightforward extension of Eq. (1) to T > 0
[13], i.e., replacement of all quantities1 therein by their respective 
T -dependent versions Mη′ (T ), Mη(T ), MK (T ), fπ (T ) and χYM(T ), 
then follows the (naive) expectation that chiral symmetry restora-
tion occurs significantly before the χYM(T ) “melting” and the par-
tial U A(1) symmetry restoration, which leads to a conflict with 
experiment [3,4].

1 Throughout this paper, all quantities are for definiteness assumed at T = 0 un-
less their T -dependence is specifically indicated in formulas or in the text.
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Such a conflict is expected at high T , since WVR relates the 
four full-QCD quantities (Mη′,η,K , fπ ) with χYM, a quantity from 
the pure-gauge, YM theory, where one finds a much larger re-
silience to increasing T than in QCD, which contains also quark 
degrees of freedom. We thus conjectured [14] that the experimen-
tally observed η′ multiplicities can be explained by invoking the 
Leutwyler–Smilga (LS) relation [15]. It expresses the full-QCD topo-
logical susceptibility χ through the YM topological susceptibility 
χYM (equal to χ in the limit of quenched QCD), the chiral-limit
quark condensate 〈q̄q〉0, and the current masses mq of the N f = 3
light quark flavors. Inverted, and in our notation, the LS relation is

χ

1 + χ
〈q̄q〉0

∑
q=u,d,s

1
mq

≡ χ̃ = χYM (at T = 0). (2)

Ref. [14] proposed that the presence of χYM in WVR should be 
understood in the light of the LS relation (2); i.e., the successful 
zero-temperature WVR is retained, since χYM = χ̃ at T = 0, but 
at T > 0, χ̃ (T ) should be used instead of χYM(T ), avoiding the 
mismatch of the T -dependences of QCD and YM theory. Since χ̃ is 
a combination of the quantities of the full QCD, it should be much 
less T -resistant than χYM. Indeed, employing the light-quark-sector 
result [15,16] appropriate for the topological susceptibility2 of the 
full QCD,

χ = − 〈q̄q〉0∑
q=u,d,s

1
mq

+ Cm (3)

(where Cm denotes corrections of higher orders3 in small mq), 
yields χ̃ (T ) which falls with T proportionally to the chiral quark 
condensate 〈q̄q〉0 [14]. This way, the (partial) restoration of U A(1)

symmetry is naturally tied to the restoration of the SU A(3) flavor 
chiral symmetry and to its characteristic temperature TCh. This sce-
nario enabled Ref. [14] to provide the first explanation of the find-
ings of Csörgő et al. [3,4], since the anomalous part of the η′ mass 
falls together with 〈q̄q〉0(T ) as T → TCh. Some other approaches 
[18–20] have also provided indirect support to this scenario, but it 
remained just a conjecture on the T -dependence of WVR, until the 
present paper. The paper is organized as follows. Section 2 recalls 
Shore’s [21,22] generalization of WVR, and how it was adapted to 
qq̄ bound-state calculations [23]. This entails replacing χYM by a 
quantity to which the LS relation (2), i.e., χ̃ , is just a large-Nc ap-
proximation. This confirms the conjecture of Ref. [14], especially 
after we present an analytic solution of Shore’s equations, and dis-
cuss its implications in Section 3. We summarize in Section 4.

2. Analytic solution to generalized Witten–Veneziano relations

Like the LS relation (2), WVR (1) was derived in the lowest-
order approximation in the large Nc expansion. Its generalization 
by Shore is however valid to all orders in 1/Nc [21,22]. It consists 
of several relations, and the ones pertinent for the present paper 
are those containing the masses of the pseudoscalar nonet mesons:(

f 0
η′

)2
M2

η′ + (
f 0
η

)2
M2

η = 1

3

(
f 2
π M2

π + 2 f 2
K M2

K

) + 6A, (4)

f 0
η′ f 8

η′ M2
η′ + f 0

η f 8
η M2

η = 2
√

2

3

(
f 2
π M2

π − f 2
K M2

K

)
, (5)

(
f 8
η′

)2
M2

η′ + (
f 8
η

)2
M2

η = −1

3

(
f 2
π M2

π − 4 f 2
K M2

K

)
. (6)

2 Although lattice calculations of the topological susceptibility with light quarks 
are much harder than those of χYM = χquenched, note that recent lattice calculations 
also yield the full QCD topological susceptibility which vanishes in the limit of a 
vanishing quark mass – for example, see [17].

3 Nevertheless, having Cm 	= 0 is essential so that the LS relation (2) with Eq. (3)
can yield relatively large but finite χ .
YM
Here, A is the full QCD topological charge parameter, namely the 
quantity which takes the role of χYM in WVR,

A = χ

1 + χ( 1
〈ūu〉mu

+ 1
〈d̄d〉md

+ 1
〈s̄s〉ms

)
, (7)

given by the full QCD topological susceptibility χ , the current 
quark masses mq , and the three condensates 〈qq̄〉 which differ 
from each other for different flavors q = u, d, s. Since they are not 
known well enough, Shore himself [21,22], as well as Ref. [23]
which adapted his generalization of WVR to the Dyson–Schwinger 
(DS) bound-state approach, had to approximate A by values of 
χYM [21–23] found on lattice. This is a good approximation at 
least in the large Nc limit, as A = χYM + O(1/Nc) [consistent 
with, e.g., the large-Nc relation (2)]. On the other hand, in the 
chiral limit (mq → 0, ∀q), all 〈qq̄〉 condensates tend to the chiral 
one, 〈qq̄〉0. Since this limit is not far from the real world even 
when the strange flavor is included, the possibility of confirming 
the conjecture of Ref. [14], and thus of better understanding the 
experimental results [3,4] signaling the restoration of U A(1) sym-
metry, becomes apparent. Namely, when 〈ūu〉, 〈d̄d〉, 〈s̄s〉 → 〈qq̄〉0, 
the topological charge parameter A (7) reduces to the quantity χ̃
defined by Eq. (2). This obviously supports our conjecture [14] that 
χ̃ (T ) determines the T -dependence for the anomalous mass.

Eqs. (4)–(6) take into account that η and η′ possess two decay 
constants each [24–26], i.e., f 0

η , f 8
η and f 0

η′ , f 8
η′ , since η and η′ are 

mixtures of the SU(3) singlet and octet basis states η0 and η8. 
These four decay constants can be parametrized in terms of two 
auxiliary decay constants and two angles; e.g., the purely octet and 
singlet decay constants f8 and f0, and the mixing angles θ8 and 
θ0:[

f 8
η f 0

η

f 8
η′ f 0

η′

]
=

[
cos θ8 − sin θ0
sin θ8 cos θ0

][
f8 0
0 f0

]
. (8)

For realistic quark masses, θ8 and θ0 are rather different both from 
each other and from θ , the mixing angle of the states η8 and η0
into η and η′ [24–30]. Only in the limit of the exact SU(3) flavor 
symmetry, θ8 = θ0 = θ = 0.

If, instead of the SU(3) basis states η0 and η8, one uses the 
nonstrange–strange (NS–S) basis, ηNS = (uū + dd̄)/

√
2 and ηS = ss̄, 

one obtains[
f NS
η f S

η

f NS
η′ f S

η′

]
=

[
cosφNS − sin φS
sinφNS cosφS

][
fNS 0
0 fS

]
. (9)

where fNS and fS are given by the matrix elements of ANS and AS, 
the NS and S axial currents of quarks:

〈0|Aμ
NS(S)(x)

∣∣ηNS(S)(p)
〉 = i fNS(S)pμe−ip·x, (10)

whereas 〈0|Aμ
NS(x)|ηS(p)〉 = 0, 〈0|Aμ

S (x)|ηNS(p)〉 = 0.
Differing just by the choices of bases, these two sets of decay 

constants are simply related (e.g., see [30,31]):

[
f NS
η f S

η

f NS
η′ f S

η′

]
=

[
f 8
η f 0

η

f 8
η′ f 0

η′

]⎡
⎣ 1√

3
−

√
2
3√

2
3

1√
3

⎤
⎦ , (11)

and completely equivalent in principle. Still, there is a big practical 
difference: in the NS–S basis, FKS [28–30] managed to recover a 
scheme with a single angle φ, which also plays the familiar role 
of the state mixing angle describing the rotation of the NS–S basis 
states into the mass (squared) eigenstates – the physical η and η′
mesons:

η = cosφηNS − sinφηS, η′ = sinφηNS + cosφηS. (12)
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Of course, this is done at the expense of the full generality, but 
also without losing essential physics, making reasonable approx-
imations by applying the Okubo–Zweig–Iizuka (OZI) rule [28–30]; 
e.g., fNS fS sin(φNS −φS) differs from zero just by an OZI-suppressed 
term [30]. Neglecting it therefore implies φNS = φS. That is, ap-
plications of the OZI rule lead to the FKS approximation scheme 
[28–30], which exploits the practical difference between the pa-
rameterizations (8) and (9): θ8 and θ0 much differ from each other 
and from the η8–η0 state mixing angle θ ≈ (θ8 +θ0)/2, but the NS–
S decay-constant mixing angles are very close to each other and 
both can be approximated by the state mixing angle: φNS ≈ φS ≈ φ. 
It is thus a reasonable approximation to use only this one angle, φ, 
and express (see, e.g., [23,30,31]) the physical η–η′ decay constants 
as[ f 8

η f 0
η

f 8
η′ f 0

η′

]
=

[
fNS cosφ − fS sinφ

fNS sinφ fS cosφ

]⎡
⎣ 1√

3

√
2
3

−
√

2
3

1√
3

⎤
⎦ . (13)

This result of the FKS scheme was inserted in Shore’s equations 
(4)–(6) already in Ref. [23], but only numerical solutions were 
found there (after some additional assumptions, see below). In 
contrast, now we have found analytic, closed-form solutions of 
combined Eqs. (4)–(6) and (13) for φ and the masses of η and η′ . 
The relevant set of solutions, where Mη′ > Mη , is:

tanφ = − f 2
NS + 2 f 2

S

2
√

2 fNS fS

− 2 f 2
NS f 2

K M2
K − f 2

NS f 2
π M2

π − f 2
S f 2

π M2
π − �

4
√

2A fNS fS
, (14)

M2
η′(η) = A

f 2
S

+ 2A

f 2
NS

+ 2 f 2
NS f 2

K M2
K − f 2

NS f 2
π M2

π + f 2
S f 2

π M2
π + (−)�

2 f 2
NS f 2

S

, (15)

�2 = 32A2 f 2
NS f 2

S

+ [
2A

(
f 2
NS − 2 f 2

S

) + 2 f 2
K f 2

NSM2
K − f 2

π

(
f 2
NS + f 2

S

)
M2

π

]2
.

(16)

The major obstacle to evaluating these results may seem to be 
the lack of information4 on fNS and fS, the decay constants of 
the unphysical pseudoscalars ηNS and ηS. However, the guidance 
is provided by the nature of the FKS scheme, which neglects OZI-
violating contributions, i.e., possible gluonium admixtures in ηNS
and ηS. It is then reasonable to treat them as pure qq̄ states, 
whereby fNS = fuū = fdd̄ = fπ (in the isospin symmetry limit), 
and fS = f ss̄ , the decay constant of the fictitious ss̄ pseudoscalar 
meson. Then the analytic, closed-form solutions (14), (15) and (16)
become

tanφ = − f 2
π + 2 f 2

ss̄

2
√

2 fπ f ss̄
− 2 f 2

K f 2
π M2

K − f 4
π M2

π − f 2
π f 2

ss̄ M2
π − �

4
√

2A fπ f ss̄
,

(17)

M2
η′(η) = A

f 2
ss̄

+ 2A

f 2
π

+ 2 f 2
K f 2

π M2
K − f 4

π M2
π + f 2

π f 2
ss̄ M2

π + (−)�

2 f 2
π f 2

ss̄

, (18)

4 Recently, Ref. [32] presented a lattice analysis of fNS and fS (denoted by fl

and f s there), which is nevertheless still affected by residual lattice artefacts, quark 
mass dependence and chiral perturbation theory approximation used there.
Table 1
The values adopted for A are the two lattice values of χYM used in Ref. [23]. The 
other inputs (in the small table on the left, taken from Ref. [34]) are the exper-
imental values for Mπ0,K , fπ−,K . Everything else, starting with Mη and Mη′ , are 
the calculated quantities. All quantities are given in MeV, except the angles φ , θ , θ0

and θ8, which are in degrees.

Mπ0 134.977

MK 493.677

fπ− 92.2138

f K 110.379

A1/4 175.7 191

Mη 488.4 503.2

Mη′ 832.7 949.8

φ 45.07◦ 50.92◦

θ −9.664◦ −3.816◦

θ0 −0.341◦ 5.507◦

θ8 −18.03◦ −12.18◦

f0 105.7 105.7

f8 117.7 117.7

f 0
η 0.630 10.15

f 0
η′ 105.7 105.2

f 8
η 111.9 115.0

f 8
η′ −36.43 −24.84

�2 = 32A2 f 2
π f 2

ss̄

+ {−2A
(

f 2
π − 2 f 2

ss̄

) + f 2
π

[−2 f 2
K M2

K + (
f 2
π + f 2

ss̄

)
M2

π

]}2
.

(19)

The situation that ηNS and ηS are pure qq̄ states, so that fNS = fπ
and fS = f ss̄ , is realized, for example, in the DS approach in the 
rainbow-ladder approximation (RLA). There, mesons are pure qq̄
solutions (of Bethe–Salpeter equations), without any gluonium ad-
mixtures, which would be prominent possible sources of OZI vi-
olations. The FKS scheme is well-suited for the usage in such a 
context which is in agreement with the OZI rule. In a bound-
state approach, notably the DS approach used in Ref. [23], the 
decay constants are quantities calculated from the qq̄ substruc-
ture of mesons. Ref. [23] used three different dynamical models for 
the nonperturbative gluon interactions (in the DS gap and Bethe–
Salpeter equations) yielding qq̄ meson solutions reproducing well 
the empirical light meson masses and decay constants including 
the presently important Mπ , MK , fπ and f K . Along with the aux-
iliary but unphysical f ss̄ , these results enabled the numerical solu-
tions describing well the η–η′ complex in Ref. [23]. Now, the same 
model results used in the analytic solutions (17)–(18) reproduce 
accurately these numerical solutions of Ref. [23] for all DS mod-
els used, and for the same lattice values for χYM used in Ref. [23]
in the approximation A ≈ χYM. (For comparisons with Ref. [23], 
we use the same χYM to evaluate Table I, i.e., the weighted average
χYM = (0.1757 GeV)4 as in Refs. [13,33] and χYM = (0.191 GeV)4

[10] (used by Shore [21,22]).)
Moreover, the need for a specific dynamical model to evaluate 

the auxiliary, unphysical quantity f ss̄ can be circumvented, since 
the chiral expansion indicates that it is a good approximation to 
express f ss̄ = 2 f K − fπ . Then the analytic solutions (17)–(18) can 
be evaluated by inserting exclusively the empirical values of the 
masses Mπ , MK and decay constants fπ , f K , yielding a model-
independent description of the η–η′ complex and suffering the-
oretical uncertainties only due to choosing A ≈ χYM and the FKS 
scheme, including the OZI rule.

The results obtained in this way are summarized in Table 1, 
showing they are quite similar to those of Ref. [23] for all rather 
different bound-state models used there.
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3. Discussion of results

For the choice of larger χYM, the results in Table 1 are also 
reasonably close to the η–η′ studies, such as [31,33,35], using the 
same dynamical DS models as Ref. [23] to get the pion and kaon 
masses and decay constants, but the standard η–η′ mass matrix in 
conjunction with WVR to describe η–η′ complex.

Thanks to the existence of the analytic solutions (14)–(18), we 
can now understand both the similarities and differences between 
the two η–η′ descriptions: the one using (e.g., in [14,33]) the 
standard WVR, and the other, using Shore’s generalization [21,22]
thereof in conjunction with the FKS scheme, as in Ref. [23] and 
here.

In the latter approach, the η–η′ mass matrix was not needed 
[23], but it can readily be constructed; its matrix elements in the 
NS–S basis are:

M2
NS = M2

η cos2 φ + M2
η′ sin2 φ = M2

π + 4A

f 2
π

, (20)

M2
S = M2

η sin2 φ + M2
η′ cos2 φ

= 1

f 2
ss̄

[
2 f 2

K M2
K − f 2

π M2
π

] + 2A

f 2
ss̄

, (21)

M2
NSS = sinφ cosφ

(
M2

η − M2
η′

) = 2
√

2A

fπ f ss̄
, (22)

where the second equalities in the Eqs. (20), (21) and (22) are ob-
tained through inserting the analytic solutions (14), (15) and (16)
with fNS = fπ and fS = f ss̄ . Using the DGMOR relations like Shore 
for f 2

π M2
π and f 2

K M2
K , enables one to express the decay constant 

and mass of the unphysical ss̄ almost-Goldstone pseudoscalar as

2 f 2
K M2

K − f 2
π M2

π = f 2
ss̄ M2

ss̄, (23)

whereby Eq. (21) becomes M2
S = M2

ss̄ + 2A/ f 2
ss̄ .

The η–η′ mass matrix is [31,33]

M̂2 =
[

M2
NS M2

NSS
M2

NSS M2
S

]
=

[
M2

π + 2β
√

2β X√
2β X M2

ss̄ + β X2

]
, (24)

where X is the flavor SU(3)-breaking parameter, and β ≡ �Mη0/3
denotes 1

3 of the U A(1)-anomalous, chiral-limit-nonvanishing 
part of the mass of the flavor singlet pseudoscalar η0 in the 
SU(3)-symmetric limit (X = 1).

The matrix (24) implies the η and η′ masses

M2
η′(η) =

M2
NS + M2

S + (−)

√
(M2

NS − M2
S)2 + 8β2 X2

2
,

which can also be obtained from the closed-form solutions (14), 
(15) and (16) using Eqs. (20)–(23), providing a good consistency 
check.

One of the advantages of the present approach is that the com-
parison of the matrix elements (20), (21) [inserting (23)] and (22)
with the matrix (24) shows that

X = fπ
f ss̄

, β = 2A

f 2
π

≡ βS (25)

follows necessarily. In contrast, Eq. (25) for X is usually just an ed-
ucated estimate [36], see, e.g. Refs. [28,30,31,33]. Eq. (25) for β also 
explains why one needs higher values of χYM (if one approximates 
A ≈ χYM) than in the approach employing WVR [14,33]. Namely, 
there the mass matrix yields β which is larger for the same χYM. 
That is,
βWV = 6χYM

(2 + X2) f 2
π

>
2χYM

f 2
π

, (26)

since X < 1 for any realistic flavor symmetry breaking.

4. Summary and outlook

Shore’s generalization [21,22] of WVR provides a description of 
the η–η′ complex which, in its original form, is valid to all or-
ders in the large-Nc expansion. We have presented the analytic, 
closed-form solutions of Shore’s equations (4)–(6) combined with 
the FKS scheme. This was previously solved only numerically [23]
(for several qq̄ bound-state models), while now we have closed-
form, analytic expressions (14)–(20) for the masses and the mixing 
angle in the η–η′ complex, leading to the mass matrix elements 
(20)–(22). They show explicitly, e.g., why the flavor breaking is 
necessarily given by X = fπ/ f ss̄ and how the full QCD topolog-
ical charge parameter A (7) replaces the YM topological suscep-
tibility χYM appearing in the standard WVR. In general, both the 
present η–η′ description and the corresponding numerical ones in 
Ref. [23], are much better understood now, as the analytic solu-
tions have in the previous section exposed clearly both similarities 
and differences with respect to the descriptions of the η–η′ com-
plex through the mass matrix and standard WVR (in, e.g., [14,33]). 
Obviously, some of the generality of the original Shore’s approach 
has been reduced due to the approximations present in the FKS 
scheme. This scheme is however well founded and, through nu-
merous phenomenological applications, has also been proven to 
preserve the essential physics of the η–η′ complex, which in this 
context is also an argument for reliability of the η–η′ description 
exploiting WVR [14,33].

It is important to note that in the present paper, the YM topo-
logical susceptibility χYM is used (at T = 0 = μ) only as an ap-
proximation of the full QCD topological charge parameter A (7). 
The latter is, however, not a pure-gauge quantity, but a full QCD 
quantity, and the LS (2) quantity χ̃ is its approximation recovered 
from A (7) by replacing 〈uū〉, 〈dd̄〉, 〈ss̄〉 → 〈qq̄〉0.

This relationship between A, Eq. (7), appearing as the fun-
damental quantity of the WVR generalization [21,22], and χ̃ , 
Eq. (2), supports our explanation [14] of the data on the en-
hanced η′-multiplicity [3,4] in RHIC experiments at T > 0, where 
we replace the T -dependence of χYM by that of χ̃ (T ) (2), which 
is, in essence, the T -dependence of the chiral quark condensate 
〈qq̄〉0(T ). Such relationship of U A(1) symmetry breaking to the 
order parameter of dynamical chiral symmetry breaking indicates 
more strongly the possibility that similar experimental signals of 
U A(1) symmetry restoration be observed in experiments at fi-
nite matter density (μ > 0) [37]. Namely, the quark condensate 
〈qq̄(T , μ)〉 should drop significantly not only with T , but also after 
the chemical potential μ exceeds some critical value. This mo-
tivates the theoretical work [38] on extending the approach of 
Ref. [14] to μ > 0.

Previous experimental studies at RHIC have already been ex-
tended from the high-temperature regime also to the finite density 
(e.g., see [39]), and more studies, including detailed scans of the 
μ–T QCD phase diagram, are planned at RHIC, GSI/FAIR, and NICA 
[37]. The present paper stresses it is important that such experi-
ments look for signatures (primarily related to the η′–η complex) 
that would test the scenario of Ref. [14] (and related ideas [19,20,
40–42]) on the relationship between the U A(1) and SU A(3) chiral 
symmetry breaking and restoration.
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arXiv:1105.0356 [hep-ph].
[15] H. Leutwyler, A.V. Smilga, Phys. Rev. D 46 (1992) 5607.
[16] P. Di Vecchia, G. Veneziano, Nucl. Phys. B 171 (1980) 253.
[17] V. Bernard, S. Descotes-Genon, G. Toucas, J. High Energy Phys. 1206 (2012) 051, 

arXiv:1203.0508 [hep-ph].
[18] R. Alkofer, PoS FACESQCD (2010) 030, arXiv:1102.3166 [hep-th].
[19] Y. Kwon, S.H. Lee, K. Morita, G. Wolf, Phys. Rev. D 86 (2012) 034014, 
arXiv:1203.6740 [nucl-th].

[20] S.H. Lee, S. Cho, Int. J. Mod. Phys. E 22 (2013) 1330008, arXiv:1302.0642 [nucl-
th].

[21] G.M. Shore, Nucl. Phys. B 744 (2006) 34.
[22] G.M. Shore, Lect. Notes Phys. 737 (2008) 235.
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