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Abstract Invariant yields of neutral pions at midrapidity in
the transverse momentum range 0.6 < pT < 12 GeV/c mea-
sured in Pb–Pb collisions at

√
sNN = 2.76 TeV are presented

for six centrality classes. The pp reference spectrum was mea-
sured in the range 0.4 < pT < 10 GeV/c at the same center-
of-mass energy. The nuclear modification factor, RAA, shows
a suppression of neutral pions in central Pb–Pb collisions by
a factor of up to about 8−10 for 5 � pT � 7 GeV/c. The
presented measurements are compared with results at lower
center-of-mass energies and with theoretical calculations.

1 Introduction

Quantum chromodynamics (QCD) predicts a transition from
hadronic matter to a state of deconfined quarks and gluons,
i.e., to the quark-gluon plasma (QGP), at a temperature of
Tc ≈ 150−160 MeV at vanishing net baryon number [1,2].
Energy densities created in Pb–Pb collisions at the LHC are
estimated to be sufficiently large to reach this state [3,4].
At low transverse momenta (roughly pT � 3 GeV/c) it is
expected that pressure gradients in the QGP produced in an
ultrarelativistic collision of two nuclei give rise to a collec-
tive, outward-directed velocity profile, resulting in a char-
acteristic modification of hadron spectra [5]. At sufficiently
large pT (� 3−8 GeV/c), hadrons in pp and Pb–Pb colli-
sions originate from hard scattering as products of jet frag-
mentation. Hard-scattered quarks and gluons, produced in
the initial stage of the heavy-ion collision, must traverse the
QGP that is produced around them and lose energy in the
process through interactions with that medium. This phe-
nomenon (“jet quenching”) leads to a modification of hadron
yields at high pT [6,7]. By studying observables related to
jet quenching one would like to better understand the mech-
anism of parton energy loss and to use hard probes as a tool
to characterize the QGP.

� e-mail: alice-publications@cern.ch

The modification of the hadron yields for different pT

intervals in heavy-ion (A–A) collisions with respect to pp
collisions can be quantified with the nuclear modification
factor

RAA(pT) = d2 N/d pTdy|AA

〈TAA〉 × d2σ/d pTdy|pp
(1)

where the nuclear overlap function 〈TAA〉 is related to the
average number of inelastic nucleon-nucleon collisions as
〈TAA〉 = 〈Ncoll〉/σ pp

inel. In the factorization approach of a per-
turbative QCD calculation of particle production from hard
scattering, the overlap function TAA can be interpreted as the
increase of the parton flux in going from pp to A–A colli-
sions. Without nuclear effects, RAA will be unity in the hard
scattering regime.

Parton energy loss depends on a number of factors includ-
ing the transport properties of the medium and its space-time
evolution, the initial parton energy, and the parton type [8–
12]. The nuclear modification factor, RAA, is also affected by
the slope of the initial parton transverse momentum spectrum
prior to any interaction with the medium and by initial-state
effects like the modifications of the parton distributions in
nuclei. An important constraint for modeling these effects
comes from the study of p–A collisions [13], but also from the
study of A–A collisions at different center-of-mass energies
(
√

sNN) and different centralities. For instance, the increase
in

√
sNN from RHIC to LHC energies by about a factor 14

results in larger initial energy densities and less steeply falling
initial parton spectra [14]. Moreover, at the LHC, pions with
pT � 50 GeV/c are dominantly produced in the fragmen-
tation of gluons [15], whereas the contribution from quark
fragmentation in the same pT region is much larger and more
strongly varying with pT at RHIC [16]. Therefore, the pion
suppression results at the LHC will be dominated by gluon
energy loss, and simpler to interpret than the results from
RHIC. Compared to measurements of the RAA for inclusive
charged hadrons, differences between the baryon and meson
RAA provide additional information on the parton energy
loss mechanism and/or on hadronization in A–A collisions
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[17,18]. Experimentally, neutral pions are ideally suited for
this as they can be cleanly identified (on a statistical basis)
via the decay π0 → γ γ .

The suppression of neutral pions and charged hadrons at
large transverse momentum [19–23] and the disappearance
of azimuthal back-to-back correlations of charged hadrons
in central Au–Au collision at RHIC [24,25] (see also [26–
29]) were interpreted in terms of parton energy loss in hot
QCD matter. Neutral pions in central Au–Au collisions at√

sNN = 200 GeV were found to be suppressed by a factor
of 4−5 for pT � 4 GeV/c [30,31]. The rather weak depen-
dence of RAA on pT was described by a large number of jet
quenching models [32]. The

√
sNN and system size depen-

dence was studied in Cu-Cu collisions at
√

sNN = 19.4, 62.4,
and 200 GeV [33] and in Au–Au collisions at

√
sNN = 39,

62.4, and 200 GeV [22,34]. In central Cu-Cu collisions the
onset of RAA < 1 was found to occur between

√
sNN = 19.4

and 62.4 GeV. For unidentified charged hadrons in central
Pb–Pb collisions at the LHC, RAA was found to increase
from RAA < 0.2 at pT ≈ 7 GeV/c to RAA ≈ 0.5 for
pT � 50 GeV/c, in line with a decrease of the relative energy
loss with increasing parton pT [35–37].

The dependence of the neutral pion RAA on
√

sNN and
pT in Au–Au collisions at RHIC energies for 2 � pT �
7 GeV/c is not fully reproduced by jet quenching calcula-
tions in the GLV framework which is based on perturbative
QCD [34,38,39]. This may indicate that, especially for this
intermediate pT range, jet quenching calculations do not yet
fully capture the relevant physics processes. With the large
increase in

√
sNN the measurement of RAA at the LHC pro-

vides a large lever arm to further constrain parton energy
loss models. Phenomena affecting pion production in the pT

range 0.6 < pT < 12 GeV/c of this measurement include
collective radial flow at low pT and parton energy loss at
high pT. The data are therefore well suited to test models
aiming at a description of particle production over the full
transverse momentum range, including the potentially com-
plicated interplay between jets and the evolving medium.

2 Detector description

Neutral pions were reconstructed via the two-photon decay
channel π0 → γ γ which has a branching ratio of 98.8 %
[40]. Two independent methods of photon detection were
employed: with the photon spectrometer (PHOS) which is
an electromagnetic calorimeter [41], and with photon conver-
sions measured in the central tracking system using the inner
tracking system (ITS) [42] and the time projection chamber
(TPC) [43]. In the latter method, referred to as photon con-
version method (PCM), conversions out to the middle of the
TPC were reconstructed (radial distance R ≈ 180 cm). The
material in this range amounts to (11.4 ± 0.5)% of a radia-

tion length X0 for |η| < 0.9 corresponding to a plateau value
of the photon conversion probability of (8.6 ± 0.4)%. The
measurement of neutral pions with two independent methods
with different systematics and with momentum resolutions
having opposite dependence on momentum provides a valu-
able check of the systematic uncertainties and facilitates the
measurements of neutral pions in a wide momentum range
with small systematic uncertainty.

PHOS consists of three modules installed at a distance
of 4.6 m from the interaction point. PHOS subtends 260◦ <
ϕ < 320◦ in azimuth and |η| < 0.13 in pseudorapidity. Each
module has 3584 detection channels in a matrix of 64 × 56
cells made of lead tungstate (PbWO4) crystals each of size
2.2×2.2×18 cm3. The transverse dimensions of the cells are
slightly larger than the PbWO4 Molière radius of 2 cm. The
signals from the cells are measured by avalanche photodiodes
with a low-noise charge-sensitive preamplifier. In order to
increase the light yield and thus to improve energy resolution,
PHOS crystals are cooled down to a temperature of −25 ◦C.
The PHOS cells were calibrated in pp collisions by equalizing
the π0 peak position for all cell combinations registering a
hit by a decay photon.

The inner tracking system (ITS) [44] consists of two lay-
ers of silicon pixel detectors (SPD) positioned at a radial
distance of 3.9 and 7.6 cm, two layers of silicon drift detec-
tors (SDD) at 15.0 and 23.9 cm, and two layers of silicon
strip detectors (SSD) at 38.0 and 43.0 cm. The two SPD lay-
ers cover a pseudorapidity range of |η| < 2 and |η| < 1.4,
respectively. The SDD and the SSD subtend |η| < 0.9 and
|η| < 1.0, respectively.

The time projection chamber (TPC) [43] is a large
(85 m3) cylindrical drift detector filled with a Ne/CO2/N2

(85.7/9.5/4.8 %) gas mixture. It covers a pseudorapidity
range of |η| < 0.9 over the full azimuthal angle for the max-
imum track length of 159 reconstructed space points. With
the magnetic field of B = 0.5 T, electron and positron tracks
were reconstructed down to transverse momenta of about
50 MeV/c. In addition, the TPC provides particle identifica-
tion via the measurement of the specific energy loss (dE /dx)
with a resolution of 5.5 % [43]. The ITS and the TPC were
aligned with respect to each other to a precision better than
100µm using tracks from cosmic rays and proton–proton
collisions [42].

Two forward scintillator hodoscopes (VZERO-A and
VZERO-C) [45] subtending 2.8 < η < 5.1 and −3.7 < η <

−1.7, respectively, were used in the minimum bias trigger in
the pp and in the Pb–Pb run. The sum of the amplitudes of
VZERO-A and VZERO-C served as a measure of centrality
in Pb–Pb collisions [46]. Spectator (non-interacting) protons
and neutrons were measured with zero degree calorimeters
(ZDCs), located close to the beam pipe, 114 m away from
the interaction point on either side of the ALICE detector
[44].
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3 Data processing

3.1 Event selection

The pp sample at
√

s = 2.76 TeV was collected in the 2011
LHC run. The minimum bias trigger (MBOR) in the pp run
required a hit in either VZERO hodoscope or a hit in the SPD.
Based on a van der Meer scan the cross section for inelastic pp
collisions was determined to be σinel = (62.8+2.4

−4.0 ± 1.2)mb
and the MBOR trigger had an efficiency of σMBOR/σinel =
0.881+0.059

−0.035 [47]. The results were obtained from samples of
34.7 × 106 (PHOS) and 58 × 106 (PCM) minimum bias pp
collisions corresponding to an integrated luminosity Lint =
0.63 nb−1 and Lint = 1.05 nb−1, respectively. PHOS and the
central tracking detectors used in the PCM were in different
readout partitions of the ALICE experiment which resulted
in the different integrated luminosities.

The Pb–Pb data at
√

sNN = 2.76 TeV were recorded in
the 2010 LHC run. At the ALICE interaction region up to
114 bunches, each containing about 7×107 208Pb ions, were
collided. The rate of hadronic interactions was about 100 Hz,
corresponding to a luminosity of about 1.3 × 1025 cm−2s−1.
The detector readout was triggered by the LHC bunch-
crossing signal and a minimum bias interaction trigger based
on trigger signals from VZERO-A, VZERO-C, and SPD [46].
The efficiency for triggering on a hadronic Pb–Pb collision
ranged between 98.4 and 99.7 %, depending on the mini-
mum bias trigger configuration. For the centrality range 0-
80 % studied in the Pb–Pb analyses 16.1 × 106 events in the
PHOS analysis and 13.2 × 106 events in the PCM analysis
passed the offline event selection.

In both pp and Pb–Pb analyses, the event selection was
based on VZERO timing information and on the correlation
between TPC tracks and hits in the SPD to reject background
events coming from parasitic beam interactions. In addition,
an energy deposit in the ZDCs of at least three standard
deviations above the single-neutron peak was required for
Pb–Pb collisions to further suppress electromagnetic inter-
actions [46]. Only events with a reconstructed vertex in
|zvtx| < 10 cm with respect to the nominal interaction vertex
position along the beam direction were used.

3.2 Neutral pion reconstruction

The PHOS and PCM analyses presented here are based
on methods previously used in pp collisions at

√
s = 0.9

and 7 TeV [48]. Neutral pions were reconstructed using the
π0 → γ γ decay channel either with both photon can-
didates detected in PHOS or both photons converted into
e+e− pairs and reconstructed in the central tracking sys-
tem. For the photon measurement with PHOS adjacent
lead tungstate cells with energy signals above a threshold

(12 MeV) were grouped into clusters [49]. The energies of
the cells in a cluster were summed up to determine the pho-
ton energy. The selection of the photon candidates in PHOS
was different for pp and Pb–Pb collisions due to the large
difference in detector occupancy. For pp collisions cluster
overlap is negligible and combinatorial background small.
Therefore, only relatively loose photon identification cuts on
the cluster parameters were used in order to maximize the
π0 reconstruction efficiency: the cluster energy for pp colli-
sions was required to be above the minimum ionizing energy
Ecluster > 0.3 GeV and the number of cells in a cluster was
required to be greater than two to reduce the contribution
of hadronic clusters. In the case of the most central Pb–
Pb collisions about 80 clusters are reconstructed in PHOS,
resulting in an occupancy of up to 1/5 of the 10,752 PHOS
cells. This leads to a sizable probability of cluster overlap
and to a high combinatorial background in the two-cluster
invariant mass spectra. A local cluster maximum was defined
as a cell with a signal at least 30 MeV higher than the sig-
nal in each surrounding cell. A cluster with more than one
local maximum was unfolded to several contributing clusters
[49]. As the lateral width of showers resulting from hadrons
is typically larger than the one of photon showers, non-
photonic background was reduced by a pT dependent shower
shape cut. This cut is based on the eigenvalues λ0, λ1 of the
covariance matrix built from the cell coordinates and weights
wi = max[0, w0 + log(Ei/Ecluster)], w0 = 4.5 where Ei is
the energy measured in cell i . In the Pb–Pb case only cells
with a distance to the cluster center of Rdisp = 4.5 cm were
used in the dispersion calculation. A 2D pT-dependent cut
in the λ0-λ1 plane was tuned to have an efficiency of ∼0.95
using pp data. In addition, clusters associated with a charged
particle were rejected by application of a cut on the minimum
distance from a PHOS cluster to the extrapolation of recon-
structed tracks to the PHOS surface [49]. This distance cut
depended on track momentum and was tuned by using real
data to minimize false rejection of photon clusters. The cor-
responding loss of theπ0 yield was about 1 % in pp collisions
(independent of pT). In Pb–Pb collisions the π0 inefficiency
due to the charged particle rejection is about 1 % in periph-
eral and increases to about 7 % in central Pb–Pb collisions.
In addition, to reduce the effect of cluster overlap, the cluster
energy was taken as the core energy of the cluster, summing
over cells with centers within a radius Rcore = 3.5 cm of
the cluster center of gravity, rather than summing over all
cells of the cluster. By using the core energy, the central-
ity dependence of the width and position of the π0 peak is
reduced, due to a reduction of overlap effects. The use of the
core energy leads to an additional non-linearity due to energy
leakage outside Rcore: the difference between full and core
energy is negligible at Ecluster � 1 GeV and reaches ∼4 %
at Ecluster ∼ 10 GeV. This non-linearity, however, is well
reproduced in the GEANT3 Monte Carlo simulations [50]

123



3108 Page 4 of 20 Eur. Phys. J. C (2014) 74:3108

of the PHOS detector response (compare pT dependences
of peak positions in data and Monte Carlo in Fig. 2) and is
corrected for in the final spectra.

PHOS is sensitive to pile-up from multiple events that
occur within the 6 µs readout interval of the PHOS front-end
electronics. The shortest time interval between two bunch
crossings in pp collisions was 525 ns. To suppress photons
produced in other bunch crossings, a cut on arrival time
|t | < 265 ns was applied to reconstructed clusters which
removed 16 % of the clusters. In the Pb–Pb collisions, the
shortest time interval between bunch crossing was 500 ns,
but the interaction probability per bunch crossing was much
smaller than in pp collisions. To check for a contribution
from other bunch crossings to the measured spectra, a timing
cut was applied, and the pile-up contribution was found to
be negligible in all centrality classes. Therefore, a timing cut
was not applied in the final PHOS Pb–Pb analysis.

The starting point of the conversion analysis is a sample of
photon candidates corresponding to track pairs reconstructed
by a secondary vertex (V0) finding algorithm [49,51]. In this
step, no constraints on the reconstructed invariant mass and
pointing of the momentum vector to the collision vertex were
applied. Both tracks of a V0 were required to contain recon-
structed clusters (i.e., space points) in the TPC. V0’s were
accepted as photon candidates if the ratio of the number of
reconstructed TPC clusters over the number of findable clus-
ters (taking into account track length, spatial location, and
momentum) was larger than 0.6 for both tracks. In order
to reject K 0

s , 	, and 	̄ decays, electron selection and pion
rejection cuts were applied. V0’s used as photon candidates
were required to have tracks with a specific energy loss in the
TPC within a band of [−3σ , 5σ ] around the average electron
dE /dx , and of more than 3σ above the average pion dE /dx
(where the second condition was only applied for tracks with
measured momenta p > 0.4 GeV/c). Moreover, tracks with
an associated signal in the TOF detector were only accepted
as photon candidates if they were consistent with the elec-
tron hypothesis within a ±5σ band. A generic particle decay
model based on the Kalman filter method [52] was fitted to a
reconstructed V0 assuming that the particle originated from
the primary vertex and had a mass MV 0 = 0. Remaining
contamination in the photon sample was reduced by cutting
on the χ2 of this fit. Furthermore, the transverse momentum
qT = pe sin θV 0,e [53] of the electron, pe, with respect to the
V0 momentum was restricted to qT < 0.05 GeV/c. As the
photon is massless, the difference �θ = |θe− − θe+| of the
polar angles of the electron and the positron from a photon
conversion is small and the bending of the tracks in the mag-
netic field only results in a difference �ϕ = |ϕe− − ϕe+| of
the azimuthal angles of the two momentum vectors. There-
fore, remaining random track combinations, reconstructed
as a V0, were suppressed further by a cut on the ratio of
�θ to the total opening angle of the e+e− pair calculated

after propagating both the electron and the positron 50 cm
from the conversion point in the radial direction. In order to
reject e+e− pairs from Dalitz decays the distance between
the nominal interaction point and the reconstructed conver-
sion point of a photon candidate had to be larger than 5 cm
in radial direction. The maximum allowed radial distance for
reconstructed V0’s was 180 cm.

Pile-up of neutral pions coming from bunch crossings
other than the triggered one also has an effect on the PCM
measurement. At the level of reconstructed photons, this
background is largest for photons for which both the elec-
tron and the positron were reconstructed with the TPC alone
without tracking information from the ITS. These photons,
which typically converted at large radii R, constitute a sig-
nificant fraction of the total PCM photon sample, which is
about 67 % in case of the pp analysis. This sample is affected
because the TPC drift velocity of 2.7 cm/µs corresponds to
a drift distance of 1.41 cm between two bunch crossings in
the pp run which is a relatively short distance compared to
the width of σz ≈ 5 cm of the distribution of the primary
vertex in the z direction. The distribution of the distance of
closest approach in the z direction (DCAz) of the straight
line defined by the reconstructed photon momentum is wider
for photons from bunch crossings other than the triggered
one. The DCAz distribution of photons which had an invari-
ant mass in the π0 mass range along with a second photon
was measured for each pT interval. Entries in the tails at
large DCAz were used to determine the background distri-
bution and to correct the neutral pion yields for inter bunch
pile-up. For the pp analysis, this was a 5−7 % correction for
pT � 2 GeV/c and a correction of up to 15 % at lower pT

(pT ≈ 1 GeV/c). In the Pb–Pb case the correction at low pT

was about 10 %, and became smaller for higher pT and for
more central collisions. For the 20−40 % centrality class and
more central classes the pile-up contribution was negligible
and no pile-up correction was applied. In the PCM as well
as in the PHOS analysis, events for which two or more pp
or Pb–Pb interactions occurred in the same bunch crossing
were rejected based on the number of primary vertices recon-
structed with the SPD [49] which has an integration time of
less than 200 ns.

In the PHOS as well as in the PCM analysis, the neutral
pion yield was extracted from a peak above a combinato-
rial background in the two-photon invariant mass spectrum.
Examples of invariant mass spectra, in the π0 mass region,
are shown in Fig. 1 for selected pT bins for pp collisions,
and peripheral and central Pb–Pb collisions. The combina-
torial background was determined by mixing photon candi-
dates from different events. In the PCM measurement the
combinatorial background was reduced by cutting on the
energy asymmetry α = |Eγ1 − Eγ2 |/(Eγ1 + Eγ2), where
α < 0.65 was required for the central classes (0−5, 5−10,
10−20, 20−40 %) andα < 0.8 for the two peripheral classes
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Fig. 1 (Color online) Invariant mass spectra in selected pT slices for
PCM (upper row) and PHOS (lower row) in the π0 mass region for pp
(left column), 60−80 % (middle column) and 0−10 % (right column)
Pb–Pb collisions. The histogram and the filled points show the data
before and after background subtraction, respectively. For the 0−10 %

class the invariant mass distributions after background subtraction were
scaled by a factor 15 and 5 for PCM and PHOS, respectively, for better
visibility of the peak. The positions and widths of the π0 peaks were
determined from the fits, shown as blue curves, to the invariant mass
spectra after background subtraction

(40−60, 60−80 %). In both analyses the mixed-event back-
ground distributions were normalized to the right and left
sides of the π0 peak. A residual correlated background was
taken into account using a linear or second order polynomial
fit. The π0 peak parameters were obtained by fitting a func-
tion, Gaussian or a Crystal Ball function [54] in the PHOS
case or a Gaussian combined with an exponential low mass
tail to account for bremsstrahlung [55] in the PCM case, to
the background-subtracted invariant mass distribution, see
Fig. 1. The Crystal Ball function was used in the PHOS
analysis of pp data. A Gaussian was used alternatively to
determine systematic uncertainties of the peak parameters.
In the Pb–Pb case with worse resolution and smaller sig-
nal/background ratios, the difference between Crystal Ball
and Gaussian fits disappeared and only the latter were used
in the PHOS analysis. In the case of PHOS the number of
reconstructed π0’s was obtained in each pT bin by integrat-
ing the background subtracted peak within 3 standard devi-
ations around the mean value of the π0 peak position. In
the PCM analysis, the integration window was chosen to be
asymmetric (mπ0 − 0.035 GeV/c2, mπ0 + 0.010 GeV/c2)
to take into account the left side tail of the π0 peak due to
bremsstrahlung energy loss of electrons and positrons from
photon conversions. In both analyses the normalization and
integration windows were varied to estimate the related sys-

tematic uncertainties. The peak positions and widths from the
two analyses are compared to GEANT3 Monte Carlo simula-
tions in Fig. 2 as a function of pT. The input for the GEANT3
simulation came from the event generators PYTHIA 8 [56]
and PHOJET [57] in the case of pp collisions (with roughly
equal number of events) and from HIJING [58] in the case of
Pb–Pb collisions. For the PCM analysis the full width at half
maximum (FWHM) divided by 2

√
2 ln 2 ≈ 2.35 is shown.

Note the decrease of the measured peak position with pT in
Pb–Pb collisions for PHOS. This is due to the use of the core
energy instead of the full cluster energy. At low pT in central
Pb–Pb collisions, shower overlaps can increase the cluster
energy thereby resulting in peak positions above the nomi-
nal π0 mass. A good agreement in peak position and width
between data and simulation is observed in both analyses.
The remaining small deviations in the case of PHOS were
taken into account as a systematic uncertainty related to the
global energy scale.

The correction factor ε(pT) for the PHOS detector
response and the acceptance A(pT) were calculated with
GEANT3 Monte Carlo simulations tuned to reproduce the
detector response. The factor ε(pT) takes the loss of neutral
pions due to analysis cuts, effects of the finite energy resolu-
tion and, in case of Pb–Pb collisions, effects of shower over-
laps into account. The shape of theπ0 input spectrum needed
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Fig. 2 (Color online) Reconstructed π0 peak width (upper row) and
position (lower row) as a function of pT in pp collisions at

√
s =

2.76 TeV (a, d), peripheral (b, e) and central (c, f) Pb–Pb collisions

at
√

sNN = 2.76 TeV in PHOS and in the photon conversion method
(PCM) compared to Monte Carlo (MC) simulations. The horizontal line
in (d–f) indicates the nominal π0 mass

for the calculation of ε(pT) was determined iteratively by
using a fit of the corrected spectrum of a given pass as input to
the next. In the case of Pb–Pb collisions the embedding tech-
nique was used in the PHOS analysis: the PHOS response to
single π0’s was simulated, the simulated π0 event was added
to a real Pb–Pb event on the cell signal level, after which the
standard reconstruction procedure was performed. The cor-
rection factor ε(pT) = (N after

rec (pT)−N before
rec (pT))/Nsim(pT)

was defined as the ratio of the difference of the number of
reconstructed π0’s after and before the embedding to the
number of simulated π0’s. In the pp case, the PHOS occu-
pancy was so low that embedding was not needed and ε(pT)

was obtained from the π0 simulations alone. Both in the Pb–
Pb and the pp analysis, an additional 2 % channel-by-channel
decalibration was introduced to the Monte Carlo simulations,
as well as an energy non-linearity observed in real data at low
energies which is not reproduced by the GEANT simulations.
This non-linearity is equal to 2.2 % at pT = 1 GeV/c and
decreases rapidly with pT (less than 0.5 % at pT > 3 GeV/c).
For PHOS, the π0 acceptance A is zero for pT < 0.4 GeV/c.
The product ε · A increases with pT and saturates at about
1.4 × 10−2 for a neutral pion with pT > 15 GeV/c. At high
transverse momenta (pT > 25 GeV/c) ε decreases because of
merging of clusters ofπ0 decay photons due to the decreasing
average opening angle of the π0 decay photons. The correc-
tion factor ε does not show a centrality dependence for events
in the 20−80 % class, but in the most central bin it increases
by ∼ 10 % due to an increase in cluster energies caused by
cluster overlap.

In the PCM, the photon conversion probability of about
8.6 % is compensated by the large TPC acceptance. Neutral
pions were reconstructed in the rapidity interval |y| < 0.6
and the decay photons were required to satisfy |η| < 0.65.
The π0 efficiency increases with pT below pT ≈ 4 GeV/c
and remains approximately constant for higher pT at val-
ues between 1.0×10−3 in central collisions (0−5 %, energy
asymmetry cut α < 0.65) and 1.5 × 10−3 in peripheral col-
lisions (60−80 %, α < 0.8). For the centrality classes 0−5,
5−10, 10−20, 20−40 %, for which α < 0.65 was used, the
π0 efficiency varies between 1.0 × 10−3 and 1.2 × 10−3.
This small centrality dependence is dominated by the cen-
trality dependence of the V0 finding efficiency. Further infor-
mation on the PHOS and PCM efficiency corrections can be
found in [49].

The invariant differential neutral pion yield was calculated
as

E
d3 N

d3 p
= 1

2π

1

Nevents

1

pT

1

ε A

1

Br

Nπ0

�y�pT
, (2)

where Nevents is the number of events; pT is the transverse
momentum within the bin to which the cross section has been
assigned after the correction for the finite bin width�pT, Br
is the branching ratio of the decay π0 → γ γ , and Nπ0

is
the number of reconstructed π0’s in a given �y and �pT

bin. Finally, the invariant yields were corrected for the finite
pT bin width following the prescription in [59], i.e., by plot-
ting the measured average yield at a pT position for which
the differential invariant yield coincides with the bin average.
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Table 1 Summary of the relative systematic uncertainties in percent for selected pT bins for the PHOS and the PCM analyses

PHOS

pp Pb–Pb, 60−80 % Pb–Pb, 0−5 %

1.1 GeV/c 7.5 GeV/c 3 GeV/c 10 GeV/c 3 GeV/c 10 GeV/c

Yield extraction 8 2.3 0.8 6.8 3.7 5.7

Photon identification – – 1.7 1.7 4.4 4.4

Global E scale 4 6.2 4.1 5.3 6.1 7.8

Non-linearity 9 1.5 1.5 1.5 1.5 1.5

Conversion 3.5 3.5 3.5 3.5 3.5 3.5

Module alignment 4.1 4.1 4.1 4.1 4.1 4.1

Other 2 1.4 2.4 2.4 3.1 3.4

Total 13.9 8.8 7.6 10.7 10.7 12.7

PCM

pp Pb–Pb, 60−80 % Pb–Pb, 0−5 %

1.1 GeV/c 5.0 GeV/c 1.1 GeV/c 5.0 GeV/c 1.1 GeV/c 5.0 GeV/c

Material budget 9.0 9.0 9.0 9.0 9.0 9.0

Yield extraction 0.6 2.6 3.3 5.9 10.6 5.0

e+/e− identification 0.7 1.4 2.9 5.3 9.0 10.5

Photon identification (χ2(γ )) 2.4 0.9 3.7 4.6 4.0 6.7

π0 reconstruction efficiency 0.5 3.6 3.5 4.1 6.7 8.4

Pile-up correction 1.8 1.8 2.0 2.0 – –

Total 9.5 10.3 11.4 13.6 18.3 18.2

Secondaryπ0’s from weak decays or hadronic interactions in
the detector material were subtracted using Monte Carlo sim-
ulations. The contribution of π0’s from K0

s as obtained from
the used event generators was scaled in order to reproduce
the measured K0

s yields [60]. The correction for secondary
π0’s was smaller than 2 % (5 %) for pT � 2 GeV/c in the pp
as well as in the Pb–Pb analysis for PCM (PHOS).

A summary of the systematic uncertainties for two repre-
sentative pT values in pp, peripheral and central Pb–Pb colli-
sions is shown in Table 1. In PHOS, one of the largest sources
of the systematic uncertainty both at low and high pT is the
raw yield extraction. It was estimated by varying the fitting
range and the assumption about the shape of the background
under the peak. In central collisions, major contributions to
the systematic uncertainty are due to the efficiency of photon
identification and the global energy scale. The former was
evaluated by comparing efficiency-corrected π0 yields, cal-
culated with different identification criteria. The latter was
estimated by varying the global energy scale within the toler-
ance which would still allow to reproduce the peak position
in central and peripheral collisions. The uncertainty related
to the non-linearity of the PHOS energy response was esti-
mated by introducing different non-linearities into the Monte
Carlo simulations under the condition that the simulated pT

dependence of the π0 peak position and peak width was still

consistent with the data. The uncertainty of the PHOS mea-
surement coming from the uncertainty of the fraction of pho-
tons lost due to conversion was estimated by comparing mea-
surements without magnetic field to the measurements with
magnetic field.

In the PCM measurement, the main sources of system-
atic uncertainties include the knowledge of the material bud-
get, raw yield extraction, electron identification (PID), the
additional photon identification cuts, and π0 reconstruction
efficiency. The uncertainty related to the pile-up correction
is only relevant in pp and peripheral Pb–Pb collisions. The
contribution from the raw π0 yield extraction was estimated
by changing the normalization range, the integration win-
dow, and the combinatorial background evaluation. Uncer-
tainties related to the electron and photon identification cuts,
and to the photon reconstruction efficiency were estimated
by evaluating the stability of the results for different cuts.
The total systematic uncertainties of the PCM and the PHOS
results were calculated by adding the individual contributions
in quadrature.

The comparisons of the fully corrected π0 spectra mea-
sured by PHOS and PCM in pp and Pb–Pb collisions are
presented in Figs. 3 and 4, respectively. For a better com-
parison the PCM and PHOS data points were divided by a
function which was fitted to the combined spectrum. In all
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Fig. 3 (Color online) Ratio of the fully corrected π0 spectra in pp
collisions at

√
s = 2.76 TeV measured with PHOS and PCM methods

to the fit of the combined spectrum. Vertical lines represent statistical
uncertainties, the boxes systematic uncertainties

cases, agreement between the two measurements is found.
The PHOS and PCM spectra were combined by calculating
the average yields together with their statistical and system-
atic uncertainties by using the inverse squares of the total
uncertainties of the PHOS and PCM measurements for a
given pT bin as respective weights [40].

4 Results

The invariant neutral pion spectra measured in pp and
Pb–Pb collisions are shown in Fig. 5. The pT range

0.6−12 GeV/c covered by the measurements includes the
region pT ≈ 7 GeV/c where the charged hadron RAA

exhibits the strongest suppression [35–37]. The invariant
neutral pion yield in inelastic pp collisions shown in Fig. 5
is related to the invariant cross section as E d3σ/d3 p =
E d3 N/d3 p × σinel. Above pT ≈ 3 GeV/c the pp spectrum
is well described by a power law E d3 N/d3 p ∝ 1/pn

T. A
fit to pT > 3 GeV/c yields an exponent n = 6.0 ± 0.1
with χ2/ndf = 3.8/4, which is significantly smaller than
the value n = 8.22 ± 0.09 observed in pp collisions at√

s = 200 GeV [31].
Neutral pion production from hard scattering is dominated

by the fragmentation of gluon jets in the pT range of the
measurement. The presented π0 spectrum in pp collisions
can therefore help constrain the gluon-to-pion fragmentation
function [61]. A next-to-leading-order (NLO) perturbative
QCD calculation employing the DSS fragmentation func-
tion [62] agrees reasonably well with the measured neutral
pion spectrum at

√
s = 0.9 TeV. At

√
s = 7 TeV, how-

ever, the predicted invariant cross sections are larger than
the measured ones [48]. The comparison to a NLO pertur-
bative QCD calculation using the CTEQ6M5 parton distri-
butions [63] and the DSS fragmentation functions in Fig. 6
shows that the calculation overpredicts the data already at√

s = 2.76 TeV by a similar factor as in pp collisions
at

√
s = 7 TeV. The data are furthermore compared to a

PYTHIA 8.176 (tune 4C) [56,64] calculation which repro-
duces the shape of the spectrum with an overall offset of
about 20 %. It will be interesting to see whether calculations
in the framework of the color glass condensate [65], which
describe the neutral pion spectrum in pp collisions at

√
s =

D
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Fig. 4 (Color online) Ratio of the fully corrected π0 spectra in Pb–Pb collisions at
√

sNN = 2.76 TeV in six centrality bins measured with PHOS
and PCM to the fits to the combined result in each bin. Vertical lines represent statistical uncertainties, the boxes the systematic uncertainties
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Fig. 5 (Color online) Invariant differential yields of neutral pions pro-
duced in Pb–Pb and inelastic pp collisions at

√
sNN = 2.76 TeV. The

spectra are the weighted average of the PHOS and the PCM results. The
vertical lines show the statistical uncertainties, systematic uncertainties
are shown as boxes. Horizontal lines indicate the bin width. The hor-
izontal position of the data points within a bin was determined by the
procedure described in [59]. For the pp spectrum a fit with a power law
function 1/pn

T for pT > 3 GeV/c and a Tsallis function (also used in
[48]) are shown. The extrapolation of the pp spectrum provided by the
Tsallis fit is used in the RAA calculation for pT � 8 GeV/c

7 TeV, will also provide a good description of the data at√
s = 2.76 TeV.
The nuclear modification factor, RAA, was calculated

according to Eq. 1. For pT > 8 GeV/c the extrapolation
of the pp spectrum provided by the power law fit shown in
Fig. 5 was used as a reference. The systematic uncertainty
of the extrapolation was estimated based on the variation of
the fit range (pT > 2, 3, 4 GeV/c) and the systematic uncer-
tainty in the bin from pT = 6−8 GeV/c. The average val-
ues of the nuclear overlap function TAA for each centrality
class were taken from [46] and are given in Table 2. They
were determined with a Glauber Monte Carlo calculation
[66,67] by defining percentiles with respect to the simulated
impact parameter b and therefore represent purely geometric
quantities.

The combined RAA was calculated as a weighted aver-
age of the individual RAA measured with PHOS and PCM.
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Fig. 6 (Color online) Ratio of data or theory calculations to a fit of
the neutral pion spectrum in pp collisions at

√
sNN = 2.76 TeV. The

renormalization, factorization, and fragmentation scale of the next-to-
leading order QCD calculation were varied simultaneously (μ = 0.5pT,
pT, 2pT). The calculation employed the CTEQ6M5 [63] parton distri-
bution functions and the DSS fragmentation function [62]. The solid red
line is a comparison to the PYTHIA 8.176 (tune 4C) event generator
[56,64]

Table 2 Values for the overlap function 〈TAA〉 for the centrality bins
used in this analysis

Centrality
class (%)

〈TAA〉 (1/mb) Rel. syst.
uncert. (%)

0−5 26.32 3.2

5−10 20.56 3.3

10−20 14.39 3.1

20−40 6.85 3.3

40−60 1.996 4.9

60−80 0.4174 6.2

This has the advantage of reduced systematic uncertainties
of the combined result. In particular, the dominant uncer-
tainty in the PCM, related to the material budget, cancels
this way. The results for the combined RAA are shown in
Fig. 7. In all centrality classes the measured RAA exhibits a
maximum around pT ≈ 1−2 GeV/c, a decrease in the range
2 � pT � 3−6 GeV/c, and an approximately constant value
in the measured pT range for higher pT. For pT � 6 GeV/c,
where particle production is expected to be dominated by
fragmentation of hard-scattered partons, RAA decreases with
centrality from about 0.5−0.7 in the 60−80 % class to about
0.1 in the 0-5 % class. The RAA measurements for neutral
pions and charged pions [68] agree with each other over the
entire pT range for all centrality classes. Agreement between
the neutral pion and charged particle RAA [37] is observed
for pT � 6 GeV/c.

It is instructive to study the
√

sNN dependence of the neu-
tral pion RAA. Figure 8 shows that for central collisions the
RAA at the LHC for pT � 2 GeV/c lies below the data points
at lower

√
sNN. This indicates that the decrease of RAA result-

ing from the higher initial energy densities created at larger
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Fig. 7 (Color online) Neutral pion nuclear modification factor RAA for
three different centralities (0−5, 20−40, 60−80 %) in Pb–Pb collisions
at

√
sNN = 2.76 TeV. Vertical error bars reflect statistical uncertainties,

boxes systematic uncertainties. Horizontal bars reflect the bin width.
The boxes around unity reflect the uncertainty of the average nuclear
overlap function (TAA) and the normalization uncertainty of the pp
spectrum added in quadrature

√
sNN dominates over the increase of RAA expected from

the harder initial parton pT spectra. To illustrated this point,
one can consider a somewhat oversimplified model with a pT

independent fractional energy loss ε in conjunction with pT

spectra described by a power law [70]. In this model ε = 0.2
corresponds to RRHIC

AA ≈ 0.25 at
√

sNN = 0.2 TeV. The same
fractional energy loss in conjunction with the flatter spectra at√

sNN = 2.76 TeV, however, yield RLHC
AA ≈ 0.4. The shape

of RAA(pT) in central collisions at
√

sNN = 200 GeV and√
sNN = 2.76 TeV appears to be similar. Considering the

data for all shown energies one observes that the value of pT

with the maximum RAA value appears to shift towards lower
pT with increasing

√
sNN. The centrality dependence of RAA

at pT = 7 GeV/c is shown in Fig. 9 for nuclear collisions
at

√
sNN = 39, 62.4, 200 [22,34], and 2,760 GeV. At this

transverse momentum soft particle production from the bulk
should be negligible and parton energy loss is expected to
be the dominant effect. It can be seen that the suppression in
Pb–Pb collisions at the LHC is stronger than in Au–Au col-
lisions at

√
sNN = 200 GeV for all centralities. In particular,

the most peripheral class of the LHC data already shows a
sizable suppression whereas at the lower energies the sup-
pression appears to develop less abruptly as a function of the
number of participating nucleons (Npart).

In Fig. 10 the measured RAA is compared with a GLV
model calculation [38,39] and with theoretical predictions
from the WHDG model [71]. These models describe the
interaction of a hard-scattered parton with the medium of
high color charge density within perturbative QCD [11].
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Fig. 8 (Color online) Neutral pion nuclear modification factor, RAA,
in Pb–Pb collisions at

√
sNN = 2.76 TeV for the 0−10 % class in com-

parison to results at lower energies. The box around unity reflects the
uncertainty of the average nuclear overlap function (TAA) and the nor-
malization uncertainty of the pp spectrum added in quadrature. Hori-
zontal bars reflect the bin width. The center-of-mass energy dependence
of the neutral pion RAA is shown with results from Au–Au collisions
at

√
sNN = 39, 62.4 [34], and 200 GeV [31] as well as the result from

the CERN SPS [69] (using scaled p-C data as reference) along with the
results for Pb–Pb at

√
sNN = 2.76 TeV. The scale uncertainties of the

measurements at lower energies of the order of 10−15 % are not shown
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Fig. 9 (Color online) Centrality dependence of the π0 nuclear modi-
fication factor RAA at pT = 7 GeV/c in Au–Au and Pb–Pb collisions
at

√
sNN = 39, 62.4, 200 [22,34], and 2,760 GeV

Both calculations assume that the hadronization of the hard-
scattered parton occurs in the vacuum and is not affected by
the medium. They model the energy loss of the parton but
not the corresponding response of the medium. Their appli-
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Fig. 10 (Color online) Comparison of the measured nuclear modifi-
cation factor RAA with a GLV calculation [38,39] and with a WHDG
[71] parton energy loss calculations. Vertical lines show the statistical
uncertainties, systematic uncertainties are shown as boxes. Horizontal

lines indicate the bin width. The boxes around unity reflect the scale
uncertainties of data related to TAA and the normalization of the pp
spectrum

cability is limited to transverse momenta above 2−4 GeV/c
as soft particle production from the bulk is not taken into
account. The Pb–Pb π0 spectra are therefore also compared
to two models which aim at a description of the full pT range:
an EPOS calculation [72] and a calculation by Nemchik et
al. based on the combination of a hydrodynamic description
at low pT and the absorption of color dipoles at higher pT

[73,74]. These comparisons are presented in Fig. 11.
The GLV calculation takes final-state radiative energy loss

into account. It includes the broadening of the transverse
momenta of the incoming partons in cold nuclear matter
(“nuclear broadening” or “Cronin effect”). The main param-
eter of this model, the initial gluon density, was tuned to
describe the neutral pion suppression observed in Au–Au
collisions at RHIC. For the calculation of the parton energy
loss in Pb–Pb collisions at the LHC the initial gluon density
was constrained by the measured charged-particle multipli-
cities. The model can approximately reproduce the centrality
and pT dependence of the π0 RAA.

The WHDG model takes into account collisional and
radiative parton energy loss and geometrical path length fluc-
tuations. The color charge density of the medium is assumed
to be proportional to the number of participating nucleons
from a Glauber model, and hard parton-parton scatterings
are proportional to the number of binary nucleon-nucleon
collisions. Parameters of the model were constrained by the
neutral pion RAA measured at RHIC. Like in the case of the
GLV calculation, the neutral pion RAA at the LHC is then
predicted by translating the measured charged-particle mul-

tiplicity dNch/dη in Pb–Pb collisions into an initial gluon
density which is the free parameter of the model. For central
collisions this yielded an increase in the gluon density from
dNg/dy ≈ 1400 at RHIC to dNg/dy ≈ 3,000 at the LHC.
The WHDG model reproduces the π0 RAA in central col-
lisions reasonably well, but predicts too strong suppression
for more peripheral classes.

The two model predictions for the full pT range are com-
pared to the measured spectra in Fig. 11. EPOS is based on the
hadronization of flux tubes produced early in the collision.
Hard scattering in this model produces strings with trans-
versely moving parts. String segments with low energies are
assumed to be part of the bulk whose space-time evolution is
modeled within hydrodynamics. String segments with suffi-
ciently large energy fragment in the vacuum. A third class
of string segments with intermediate energies is considered
to have enough energy to leave the medium accompanied by
quark pick-up from the bulk during the fragmentation pro-
cess. In EPOS particle production is determined by hydrody-
namic flow at low pT (�4 GeV/c), followed at higher pT by
energy loss of high-pT string segments. In central collisions
the EPOS calculation describes the measured π0 spectrum
rather well. Towards more peripheral collisions a discrep-
ancy develops for 1 � pT � 5 GeV/c which may possibly
be attributed to underestimating the contribution of hydro-
dynamic flow in peripheral collisions.

The calculation by Nemchik et al. also combines a model
for hadron suppression at high pT with a hydrodynamic
description of bulk particle production at low pT. Hadron
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Fig. 11 (Color online) Comparison of the measured π0 spectra for
three centrality classes (0−5, 20−40, 60−80 %) with two calculations
which make predictions for the full pT range of the measurement. The
calculated spectra and the data points were divided by a fit of the mea-
sured π0 spectra. For the data points the error bars represent the statis-
tical uncertainties and the boxes the systematic uncertainties. Calcula-
tions with the EPOS event generator [72] are shown by the solid line.
The fluctuations of the EPOS lines at high pT are due to limited statis-
tics in the number of generated events. The calculations by Nemchik
et al. [73,74] combine a hydrodynamical model at low pT with a color
dipole absorption model for pT � 3 GeV/c. The two components and
the sum (for pT � 3 GeV/c) are shown separately

suppression in this model results from the absorption of pre-
hadrons, i.e., of color dipoles which are already formed in
the medium by hard-scattered partons during the production
of hadrons with large z = phadron/pparton. As the model,
at high pT, predicts only RAA, the calculated RAA values
were scaled by 〈TAA〉 × E d3σπ

0

meas/d
3 p and then added to

the calculated π0 invariant yields from the hydrodynamic
model in order to compare to the measured π0 spectra. The
hydrodynamic calculation dominates the total π0 yield up
to pT = 2 GeV/c and remains a significant contribution up
to 5 GeV/c. From about 3 GeV/c the contribution from hard
scattering becomes larger than the one from the hydrody-
namic calculation. The spectrum in central Pb–Pb collisions
(0−5 %) is approximately described except for the transition
region between the hydrodynamic and the hard contribution.
In the 20−40 % class the hydrodynamic calculation overpre-
dicts the data up to pT = 2 GeV/c.

5 Conclusions

Measurements of neutral pion production at midrapidity in pp
and Pb–Pb collisions at

√
sNN = 2.76 TeV were presented.

The measurements were performed with two independent
techniques, by measuring the photons with the electromag-
netic calorimeter PHOS, and by measuring converted pho-
tons with the ALICE tracking system. The two independent
measurements were found to give consistent results, and were
combined for the final results.

The neutral pion spectrum in pp collisions was compared
to a NLO perturbative QCD calculation using the DSS frag-
mentation functions. This calculation, which describes the
pion spectrum in pp collisions at

√
s = 0.9 TeV rather

well, tends to overpredict the π0 cross section already at√
s = 2.76 TeV. Along with a similar observation in pp

collision at
√

s = 7 TeV this indicates the likely need for
improvements in the gluon-to-pion fragmentation function.
A similar observation was made for transverse momentum
spectra of charged particles in proton-proton and proton-
antiproton collisons at 1.96 � √

s � 7 TeV [61,75].
The neutral pion nuclear suppression factor RAA was cal-

culated from the measured neutral pion spectra, and was
compared to measurements at lower energies and to the-
oretical predictions. The π0 suppression in the most cen-
tral class (0−5 %) reaches values of up to 8−10 for 5 �
pT � 7 GeV/c. The suppression in Pb–Pb collisions at√

sNN = 2.76 TeV is stronger than in Au–Au collisions at√
sNN = 200 GeV (and lower energies) at RHIC for all cen-

tralities.
The general features of the centrality and pT dependence

of the RAA for pT � 2 GeV/c are approximately repro-
duced by GLV and WHDG parton energy loss calculations,
although the WHDG calculation performs less well in periph-
eral collisions. For both calculations the main free param-
eter, the initial gluon density, was chosen to describe the
neutral pion suppression at RHIC and then scaled to LHC
energies based on the measured charged-particle multiplic-
ities. The measured π0 spectra were also compared to cal-
culations with the EPOS event generator and a calculation
by Nemchik et al. By combining soft particle production
from a hydrodynamically evolving medium with a model
for hadron suppression these models are capable of making
predictions for the entire pT range. An important task on
the theoretical side will be to establish whether the observed
deviations from the data simply indicate a suboptimal adjust-
ment of parameters or hint at important physical phenomena
missing in the models. Future analyses based on runs with
higher integrated luminosities, e.g. the 2011 LHC Pb–Pb run,
will also include the ALICE lead-scintillator electromagnetic
calorimeter (EMCal) and will allow us to extend the neutral
pion measurement to higher transverse momenta. The role
of initial-state effects on the particle production in Pb–Pb
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collisions will be investigated by measurements of particle
production in p-Pb collisions.
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6 Appendix

For the calculation of the RAA above pT > 8 GeV/c an
extrapolation of the measured transverse momentum spec-
trum in pp collisions at

√
s = 2.76 TeV based on the Tsallis

functional form

1

2πpT

d2 N

d pTdy
= A

2π

(n − 1)(n − 2)

nC [nC + m(n − 2)]

1

c2

·
⎛
⎝1 +

√
p2

T + m2 − m

nC

⎞
⎠

−n

(3)

was used (where m is the mass of the neutral pion and c the
speed of light). The parameters are given in Table 3.

In order to compare the individual PCM and PHOS mea-
surements to the combined results in Pb–Pb collisions the
parameterization

1

2πpT

d2 N

d pTdy
= a · p

−(b+c/(pd
T+e))

T (4)

with pT in GeV/c was used to fit the combined spectrum for
each centrality class. The corresponding parameters are given

Table 3 Parameters of the fits of the Tsallis parameterization (Eq. 3)
to the combined invariant production yields for π0 mesons in inelastic
collisions at

√
s = 2.76 TeV

System A C (MeV/c2) n

pp 1.7 ± 0.7 135 ± 29 7.1 ± 0.7

60−80 % Pb–Pb 31.7 142 7.4

The uncertainties (statistical and systematic added in quadrature) were
used to evaluate the uncertainty of the extrapolation used in the calcula-
tion of RAA for pT > 8 GeV/c. The uncertainty on the parameter A due
to the spectra normalization of 3.9 % at

√
s = 2.76 TeV is not included.

For the measurment in 60−80 % Pb–Pb collisions the fit parameters
are given without uncertainties as the parameterization is only used to
facilitate the comparison with model calculations

Table 4 Parameters of the fits to the combined invariant yields of π0

mesons in Pb–Pb collisions in different centrality classes with the func-
tional form given in Eq. 4

Centrality (%) a (c2/GeV2) b c d e

0−5 28.96 5.85 −199.17 4.64 95.30

5−10 21.97 5.79 −33.54 2.96 10.84

0−10 25.53 5.84 −49.95 3.35 18.49

10−20 18.91 5.71 −44.76 3.37 19.66

20−40 11.54 5.74 −18.43 2.62 7.37

40−60 4.18 5.67 −9.43 2.00 3.39

The spectra were fitted taking into account the combined statistical and
systematic errors
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in Table 4. For the most peripheral centrality class the Tsallis
parameterization Eq. 3 was used for which the parameters
are given in Table 3. These parameterizations describe the
data well in the measured momentum range.

References

1. S. Borsanyi, G. Endrodi, Z. Fodor, A. Jakovac, S.D. Katz et al.,
JHEP 1011, 077 (2010). doi:10.1007/JHEP11(2010)077

2. A. Bazavov, T. Bhattacharya, M. Cheng, C. DeTar, H. Ding et
al., Phys. Rev. D 85, 054503 (2012). doi:10.1103/PhysRevD.85.
054503

3. S. Chatrchyan et al., Phys. Rev. Lett. 109, 152303 (2012). doi:10.
1103/PhysRevLett.109.152303

4. A. Toia for the ALICE collaboration, J. Phys. G 38, 124007 (2011).
doi:10.1088/0954-3899/38/12/124007

5. U. Heinz, R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013).
doi:10.1146/annurev-nucl-102212-170540

6. J. Bjorken, FERMILAB-PUB-82-059-THY (1982)
7. X.N. Wang, M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992). doi:10.

1103/PhysRevLett.68.1480
8. U.A. Wiedemann, in SpringerMaterials—The Landolt–Börnstein

Database. ed. by R. Stock. Relativistic Heavy Ion Physics, vol. 23
(Springer, Berlin, 2009). doi:10.1007/978-3-642-01539-7_17

9. D. d’Enterria, in SpringerMaterials—The Landolt–Börnstein
Database, ed. by R. Stock Relativistic Heavy Ion Physics, vol.
23 (Springer, Berlin, 2009). doi:10.1007/978-3-642-01539-7_16

10. A. Majumder, M. Van Leeuwen, Prog. Part. Nucl. Phys. A 66, 41
(2011). doi:10.1016/j.ppnp.2010.09.001

11. N. Armesto, B. Cole, C. Gale, W.A. Horowitz, P. Jacobs et al., Phys.
Rev. C 86, 064904 (2012). doi:10.1103/PhysRevC.86.064904

12. K.M. Burke, A. Buzzatti, N. Chang, C. Gale, M. Gyulassy, et al.
Extracting jet transport coefficient from jet quenching at RHIC and
LHC. Preprint NT-LBNL-13-011, arXiv:1312.5003 (2013)

13. B. Abelev et al., Phys. Rev. Lett. 110, 082302 (2013). doi:10.1103/
PhysRevLett.110.082302

14. W. Horowitz, M. Gyulassy, Nucl. Phys. A 872, 265 (2011). doi:10.
1016/j.nuclphysa.2011.09.018

15. R. Sassot, P. Zurita, M. Stratmann, Phys. Rev. D 82, 074011 (2010).
doi:10.1103/PhysRevD.82.074011

16. R. Sassot, M. Stratmann, P. Zurita, Phys. Rev. D 81, 054001 (2010).
doi:10.1103/PhysRevD.81.054001

17. S. Sapeta, U.A. Wiedemann, Eur. Phys. J. C 55, 293 (2008). doi:10.
1140/epjc/s10052-008-0592-8

18. R. Bellwied, C. Markert, Phys. Lett. B 691, 208 (2010). doi:10.
1016/j.physletb.2010.06.028

19. K. Adcox et al., Phys. Rev. Lett. 88, 022301 (2002). doi:10.1103/
PhysRevLett.88.022301

20. C. Adler et al., Phys. Rev. Lett. 89, 202301 (2002). doi:10.1103/
PhysRevLett.89.202301

21. G. Agakishiev et al., Phys. Rev. Lett. 108, 072302 (2012). doi:10.
1103/PhysRevLett.108.072302

22. A. Adare et al., Phys. Rev. C 87, 034911 (2013). doi:10.1103/
PhysRevC.87.034911

23. A. Adare et al., Phys. Rev. C 88, 024906 (2013). doi:10.1103/
PhysRevC.88.024906

24. C. Adler et al., Phys. Rev. Lett. 90, 082302 (2003). doi:10.1103/
PhysRevLett.90.082302

25. J. Adams et al., Phys. Rev. Lett. 97, 162301 (2006). doi:10.1103/
PhysRevLett.97.162301

26. I. Arsene et al., Nucl. Phys. A 757, 1 (2005). doi:10.1016/j.
nuclphysa.2005.02.130

27. K. Adcox et al., Nucl. Phys. A 757, 184 (2005). doi:10.1016/j.
nuclphysa.2005.03.086

28. B. Back, M. Baker, M. Ballintijn, D. Barton, B. Becker et al., Nucl.
Phys. A 757, 28 (2005). doi:10.1016/j.nuclphysa.2005.03.084

29. J. Adams et al., Nucl. Phys. A 757, 102 (2005). doi:10.1016/j.
nuclphysa.2005.03.085

30. S.S. Adler et al., Phys. Rev. Lett. 91, 072301 (2003). doi:10.1103/
PhysRevLett.91.072301

31. A. Adare et al., Phys. Rev. Lett. 101, 232301 (2008). doi:10.1103/
PhysRevLett.101.232301

32. S.A. Bass, C. Gale, A. Majumder, C. Nonaka, G.Y. Qin et al., Phys.
Rev. C 79, 024901 (2009). doi:10.1103/PhysRevC.79.024901

33. A. Adare et al., Phys. Rev. Lett. 101, 162301 (2008). doi:10.1103/
PhysRevLett.101.162301

34. A. Adare et al., Phys. Rev. Lett. 109, 152301 (2012). doi:10.1103/
PhysRevLett.109.152301

35. K. Aamodt et al., Phys. Lett. B 696, 30 (2011). doi:10.1016/j.
physletb.2010.12.020

36. S. Chatrchyan et al., Eur. Phys. J. C 72, 1945 (2012). doi:10.1140/
epjc/s10052-012-1945-x

37. B. Abelev et al., Phys. Lett. B 720, 52 (2013). doi:10.1016/j.
physletb.2013.01.051

38. R. Sharma, I. Vitev, B.W. Zhang, Phys. Rev. C 80, 054902 (2009).
doi:10.1103/PhysRevC.80.054902

39. R. Neufeld, I. Vitev, B.W. Zhang, Phys. Lett. B 704, 590 (2011).
doi:10.1016/j.physletb.2011.09.045

40. J. Beringer et al., Phys. Rev. D 86, 010001 (2012). doi:10.1103/
PhysRevD.86.010001

41. G. Dellacasa, et al., CERN-LHCC-99-04 (1999)
42. K. Aamodt et al., JINST 5, P03003 (2010). doi:10.1088/

1748-0221/5/03/P03003
43. J. Alme, Y. Andres, H. Appelshauser, S. Bablok, N. Bialas et al.,

Nucl. Instrum. Meth. A 622, 316 (2010). doi:10.1016/j.nima.2010.
04.042

44. K. Aamodt et al., JINST 3, S08002 (2008). doi:10.1088/
1748-0221/3/08/S08002

45. P. Cortese, et al., CERN-LHCC-2004-025 (2004)
46. B. Abelev et al., Phys. Rev. C 88, 044909 (2013). doi:10.1103/

PhysRevC.88.044909
47. B. Abelev et al., Eur. Phys. J. C 73, 2456 (2013). doi:10.1140/epjc/

s10052-013-2456-0
48. B. Abelev et al., Phys. Lett. B 717, 162 (2012). doi:10.1016/j.

physletb.2012.09.015
49. B. Abelev, et al. Performance of the ALICE experiment at the

CERN LHC. Preprint CERN-PH-EP-2014-031. arXiv:1402.4476
(2014)

50. R. Brun, F. Bruyant, M. Maire, A. McPherson, P. Zanarini,
GEANT3. Tech. rep., CERN. CERN-DD-EE-84-1 (1987)

51. E. Alessandro, G, et al., J. Phys. G 32, 1295. doi:10.1088/
0954-3899/32/10/001

52. S. Gorbunov, I. Kisel, Reconstruction of decayed particles based
on the Kalman filter. Tech. rep., CBM experiment. CBM-SOFT-
note-2007-003 (2007)

53. J. Podolanski, R. Armenteros, Philos. Mag. 45(360), 13 (1954)
54. M.J. Oreglia, A study of the reactions ψ ′ → γ γψ . Ph.D. the-

sis, SLAC, Stanford University, Stanford, California 94305 (1980).
http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html

55. K. Koch, Nucl. Phys. A 855, 281 (2011). doi:10.1016/j.nuclphysa.
2011.02.059

56. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun.
178, 852 (2008). doi:10.1016/j.cpc.2008.01.036

57. R. Engel, J. Ranft, S. Roesler, Phys. Rev. D 52, 1459 (1995). doi:10.
1103/PhysRevD.52.1459

58. M. Gyulassy, X.N. Wang, Comput. Phys. Commun. 83, 307 (1994).
doi:10.1016/0010-4655(94)90057-4

123

http://dx.doi.org/10.1007/JHEP11(2010)077
http://dx.doi.org/10.1103/PhysRevD.85.054503
http://dx.doi.org/10.1103/PhysRevD.85.054503
http://dx.doi.org/10.1103/PhysRevLett.109.152303
http://dx.doi.org/10.1103/PhysRevLett.109.152303
http://dx.doi.org/10.1088/0954-3899/38/12/124007
http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1103/PhysRevLett.68.1480
http://dx.doi.org/10.1103/PhysRevLett.68.1480
http://dx.doi.org/10.1007/978-3-642-01539-7_17
http://dx.doi.org/10.1007/978-3-642-01539-7_16
http://dx.doi.org/10.1016/j.ppnp.2010.09.001
http://dx.doi.org/10.1103/PhysRevC.86.064904
http://arxiv.org/abs/1312.5003
http://dx.doi.org/10.1103/PhysRevLett.110.082302
http://dx.doi.org/10.1103/PhysRevLett.110.082302
http://dx.doi.org/10.1016/j.nuclphysa.2011.09.018
http://dx.doi.org/10.1016/j.nuclphysa.2011.09.018
http://dx.doi.org/10.1103/PhysRevD.82.074011
http://dx.doi.org/10.1103/PhysRevD.81.054001
http://dx.doi.org/10.1140/epjc/s10052-008-0592-8
http://dx.doi.org/10.1140/epjc/s10052-008-0592-8
http://dx.doi.org/10.1016/j.physletb.2010.06.028
http://dx.doi.org/10.1016/j.physletb.2010.06.028
http://dx.doi.org/10.1103/PhysRevLett.88.022301
http://dx.doi.org/10.1103/PhysRevLett.88.022301
http://dx.doi.org/10.1103/PhysRevLett.89.202301
http://dx.doi.org/10.1103/PhysRevLett.89.202301
http://dx.doi.org/10.1103/PhysRevLett.108.072302
http://dx.doi.org/10.1103/PhysRevLett.108.072302
http://dx.doi.org/10.1103/PhysRevC.87.034911
http://dx.doi.org/10.1103/PhysRevC.87.034911
http://dx.doi.org/10.1103/PhysRevC.88.024906
http://dx.doi.org/10.1103/PhysRevC.88.024906
http://dx.doi.org/10.1103/PhysRevLett.90.082302
http://dx.doi.org/10.1103/PhysRevLett.90.082302
http://dx.doi.org/10.1103/PhysRevLett.97.162301
http://dx.doi.org/10.1103/PhysRevLett.97.162301
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.130
http://dx.doi.org/10.1016/j.nuclphysa.2005.02.130
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.086
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.086
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.084
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1016/j.nuclphysa.2005.03.085
http://dx.doi.org/10.1103/PhysRevLett.91.072301
http://dx.doi.org/10.1103/PhysRevLett.91.072301
http://dx.doi.org/10.1103/PhysRevLett.101.232301
http://dx.doi.org/10.1103/PhysRevLett.101.232301
http://dx.doi.org/10.1103/PhysRevC.79.024901
http://dx.doi.org/10.1103/PhysRevLett.101.162301
http://dx.doi.org/10.1103/PhysRevLett.101.162301
http://dx.doi.org/10.1103/PhysRevLett.109.152301
http://dx.doi.org/10.1103/PhysRevLett.109.152301
http://dx.doi.org/10.1016/j.physletb.2010.12.020
http://dx.doi.org/10.1016/j.physletb.2010.12.020
http://dx.doi.org/10.1140/epjc/s10052-012-1945-x
http://dx.doi.org/10.1140/epjc/s10052-012-1945-x
http://dx.doi.org/10.1016/j.physletb.2013.01.051
http://dx.doi.org/10.1016/j.physletb.2013.01.051
http://dx.doi.org/10.1103/PhysRevC.80.054902
http://dx.doi.org/10.1016/j.physletb.2011.09.045
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://dx.doi.org/10.1088/1748-0221/5/03/P03003
http://dx.doi.org/10.1088/1748-0221/5/03/P03003
http://dx.doi.org/10.1016/j.nima.2010.04.042
http://dx.doi.org/10.1016/j.nima.2010.04.042
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1088/1748-0221/3/08/S08002
http://dx.doi.org/10.1103/PhysRevC.88.044909
http://dx.doi.org/10.1103/PhysRevC.88.044909
http://dx.doi.org/10.1140/epjc/s10052-013-2456-0
http://dx.doi.org/10.1140/epjc/s10052-013-2456-0
http://dx.doi.org/10.1016/j.physletb.2012.09.015
http://dx.doi.org/10.1016/j.physletb.2012.09.015
http://arxiv.org/abs/1402.4476
http://dx.doi.org/10.1088/0954-3899/32/10/001
http://dx.doi.org/10.1088/0954-3899/32/10/001
http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html
http://dx.doi.org/10.1016/j.nuclphysa.2011.02.059
http://dx.doi.org/10.1016/j.nuclphysa.2011.02.059
http://dx.doi.org/10.1016/j.cpc.2008.01.036
http://dx.doi.org/10.1103/PhysRevD.52.1459
http://dx.doi.org/10.1103/PhysRevD.52.1459
http://dx.doi.org/10.1016/0010-4655(94)90057-4


Eur. Phys. J. C (2014) 74:3108 Page 15 of 20 3108

59. G. Lafferty, T. Wyatt, Nucl. Instrum. Meth. A 355, 541 (1995).
doi:10.1016/0168-9002(94)01112-5

60. B. Abelev et al., Phys. Rev. Lett. 111, 222301 (2013). doi:10.1103/
PhysRevLett.111.222301

61. D. d’Enterria, K.J. Eskola, I. Helenius, H. Paukkunen, Nucl. Phys.
B 883, 615 (2014). doi:10.1016/j.nuclphysb.2014.04.006

62. D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 75, 114010
(2007). doi:10.1103/PhysRevD.75.114010

63. J. Pumplin, D. Stump, J. Huston, H. Lai, P.M. Nadolsky et al., JHEP
0207, 012 (2002). doi:10.1088/1126-6708/2002/07/012

64. R. Corke, T. Sjostrand, JHEP 1103, 032 (2011). doi:10.1007/
JHEP03(2011)032

65. T. Lappi, H. Mantysaari. Phys. Rev. D 88, 114020 (2013). doi:10.
1103/PhysRevD.88.114020

66. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Ann. Rev. Nucl.
Part. Sci. 57, 205 (2007). doi:10.1146/annurev.nucl.57.090506.
123020

67. B. Alver, M. Baker, C. Loizides, P. Steinberg, nucl-ex/0805.4411
(2008)

68. B. Abelev, et al., arXiv:1401.1250 (2014)
69. M. Aggarwal et al., Phys. Rev. Lett. 100, 242301 (2008). doi:10.

1103/PhysRevLett.100.242301
70. S. Adler et al., Phys. Rev. C 76, 034904 (2007). doi:10.1103/

PhysRevC.76.034904
71. W.A. Horowitz, Int. J. Mod. Phys. E 16, 2193 (2007). doi:10.1142/

S0218301307007672
72. K. Werner, I. Karpenko, M. Bleicher, T. Pierog, S. Porteboeuf-

Houssais, Phys. Rev. C 85, 064907 (2012). doi:10.1103/PhysRevC.
85.064907

73. B. Kopeliovich, J. Nemchik, I. Potashnikova, I. Schmidt, Phys. Rev.
C 86, 054904 (2012). doi:10.1103/PhysRevC.86.054904

74. J. Nemchik, I.A. Karpenko, B. Kopeliovich, I. Potashnikova, Y.M.
Sinyukov, arXiv:1310.3455 (2013)

75. B.B. Abelev et al., Eur. Phys. J. C 73, 2662 (2013). doi:10.1140/
epjc/s10052-013-2662-9

The ALICE Collaboration

B. Abelev69, J. Adam37, D. Adamová77, M. M. Aggarwal81, M. Agnello88,105, A. Agostinelli26, N. Agrawal44, Z.
Ahammed124, N. Ahmad18, I. Ahmed15, S. U. Ahn62, S. A. Ahn62, I. Aimo88,105, S. Aiola129, M. Ajaz15, A. Akindinov53, S. N.
Alam124, D. Aleksandrov94, B. Alessandro105, D. Alexandre96, A. Alici12,99, A. Alkin3, J. Alme35, T. Alt39, S. Altinpinar17, I.
Altsybeev123, C. Alves Garcia Prado113, C. Andrei72, A. Andronic91, V. Anguelov87, J. Anielski49, T. Antičić92, F. Antinori102,
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M. Krivda54,96, F. Krizek77, E. Kryshen34, M. Krzewicki91, V. Kučera77, Y. Kucheriaev94,a, T. Kugathasan34, C. Kuhn50,
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78 Oak Ridge National Laboratory, Oak Ridge, TN, USA
79 Petersburg Nuclear Physics Institute, Gatchina, Russia
80 Physics Department, Creighton University, Omaha, NE, USA
81 Physics Department, Panjab University, Chandigarh, India
82 Physics Department, University of Athens, Athens, Greece
83 Physics Department, University of Cape Town, Cape Town, South Africa
84 Physics Department, University of Jammu, Jammu, India
85 Physics Department, University of Rajasthan, Jaipur, India
86 Physik Department, Technische Universität München, Munich, Germany
87 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
88 Politecnico di Torino, Turin, Italy
89 Purdue University, West Lafayette, IN, USA
90 Pusan National University, Pusan, South Korea
91 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung,

Darmstadt, Germany
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