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The framework of nuclear energy density functionals is applied to a study of the formation and evolution of
cluster states in nuclei. The relativistic functional DD-ME2 is used in triaxial and reflection-asymmetric relativistic
Hartree-Bogoliubov calculations of relatively light N = Z and neutron-rich nuclei. The role of deformation and
degeneracy of single-nucleon states in the formation of clusters is analyzed, and interesting cluster structures are
predicted in excited configurations of Be, C, O, Ne, Mg, Si, S, Ar, and Ca N = Z nuclei. Cluster phenomena in
neutron-rich nuclei are discussed, and it is shown that in neutron-rich Be and C nuclei cluster states occur that
are characterized by molecular bonding of α particles by the excess neutrons.
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I. INTRODUCTION

Nuclear energy density functionals (EDFs) provide a com-
prehensive and accurate description of ground-state properties
and collective excitations over the whole nuclide chart. In
the past decade EDFs have also been successfully applied to
studies of clustering phenomena, and this framework enables a
consistent microscopic analysis of the formation and evolution
of cluster structures that is not limited to the lightest nuclei
[1–9]. To describe the phenomenon of nuclear clustering
already in the most basic EDF implementation, the self-
consistent mean-field level, it is necessary to break as many
spatial symmetries of the nuclear system as possible, and this
implies a considerable computational cost. This explains the
rather recent application of EDF-based methods to detailed
quantitative studies of nuclear clustering. Consequently this
approach provides a basis for the theoretical study of coex-
istence of cluster states and mean-field-type states. Cluster
structures can, in fact, be considered a transitional phase
between the quantum liquid (nucleonic matter) phase and a
crystal phase that does not occur in finite nuclei. Similar phase
transitions between the liquid and crystal phases are found in
studies of mesoscopic systems such as quantum dots [10], or
bosons in a rotating trap [11].

The solid (crystal) versus quantum liquid nature of nuclear
matter has been analyzed using the quantality parameter [12],
defined as the ratio of the zero-point kinetic energy of the
confined nucleon to its potential energy. The typical value
obtained for nuclear matter is characteristic of a quantum liquid
phase and reflects the well-known fact, recently confirmed by
microscopic self-consistent Green’s function calculation [13],
that a nucleon in nuclear matter has a large mean free path
of 4–5 fm. The quantality parameter, however, is defined
for infinite homogeneous systems, and its applicability to
finite nuclei is limited by the fact that it does not contain
any nuclear mass or size dependence. Cluster states in finite
nuclei introduce an additional phase of nucleonic matter, and
to analyze localization and the phenomenon of clustering a
quantity must be considered that is sensitive to the nucleon
number and size of the nucleus. This is the localization

parameter introduced in Refs. [4–6]. Its value increases with
mass and describes the gradual transition from a hybrid phase
in light nuclei, characterized by the spatial localization of
individual nucleon states that leads to the formation of cluster
structures, toward the Fermi liquid phase in heavier nuclei.
The relationship between the quantality and the localization
parameters is detailed in the Appendix.

In this work we apply a nuclear EDF to a study of
the formation and evolution of cluster states in nuclei. The
framework of nuclear EDFs and the role of spatial localization
of the individual single-nucleon states is reviewed in Sec. II.
Section III presents an analysis of the role of deformation and
pronounced level degeneracy on the formation of clusters and
includes a number of examples of cluster structures in excited
states. Cluster phenomena and molecular bonds in neutron-rich
nuclei are discussed in Sec. IV, and Sec. V contains a short
summary and conclusion of the present study.

II. NUCLEAR ENERGY DENSITY FUNCTIONALS

The framework of EDFs provides a global approach to
nuclear structure and enables an accurate description of
ground-state properties and collective excitations over the
whole chart of nuclides. At a moderate computational cost
modern nonrelativistic and relativistic EDFs can describe the
evolution of structure phenomena from relatively light systems
to superheavy nuclei, and from the valley of β stability to the
particle drip lines.

The nuclear EDF is built from powers and gradients
of ground-state nucleon densities and currents, representing
distributions of matter, spins, momentum, and kinetic energy.
In principle a nuclear EDF can incorporate all short-range
correlations related to the repulsive core of the internucleon
interaction, and long-range correlations mediated by nuclear
resonance modes. An additional functional of the pairing
density is included to account for effects of superfluidity in
open-shell nuclei.

The ground-state energy and density of a given system
can be determined by minimizing an EDF with respect to the
three-dimensional (3D) density. The self-consistent scheme
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introduces a local effective single-particle potential, such
that the exact ground-state density of the interacting system
of particles equals the ground-state density of the auxiliary
noninteracting system, expressed in terms of the lowest
occupied single-particle orbitals. The many-body dynamics
is represented by independent nucleons moving in local self-
consistent mean-field (SCMF) potentials that correspond to
the actual density and current distributions of a given nucleus.

A broad range of nuclear structure phenomena have been
analyzed using Skyrme, Gogny, and relativistic EDFs [14–20].
These global functionals present different realizations of a
universal nuclear EDF governed by the underlying theory
of strong interactions. With relatively small sets of global
parameters determined by empirical properties of nucleonic
matter and data on finite nuclei, structure models based on
Skyrme, Gogny, or relativistic functionals provide a consistent
description of a vast quantity of nuclear data. Even though
results for ground-state observables (e.g., binding energies
and charge radii) obtained with different functionals are rather
similar and of comparable agreement with data, calculated
quantities that are not directly observable can show marked
differences. One such quantity is the auxiliary local SCMF
potential. In Fig. 1 we plot the neutron single-particle levels
of 36Ar calculated with the Skyrme functional SLy4 [21], the
Gogny effective interaction D1S [22,23], and the relativistic
density functional DD-ME2 [24]. The levels are labeled by
the Nilsson quantum numbers and correspond to ground-state
SCMF solutions with the assumption of an axially symmetric
quadrupole deformation. Dotted lines denote the position of
the Fermi level. Even though all three functionals predict very
similar ground-state properties (cf. also Fig. 2) and, therefore,
similar ordering and density of levels close to the Fermi
surface, the depths of the corresponding SCMF potentials
are markedly different. The deepest potential corresponds to
the relativistic functional DD-ME2 (−82.4 MeV), whereas
the potential of the Skyrme functional SLy4 is fairly shallow
(−72.4 MeV). The position of the 1s state shows that the

FIG. 1. (Color online) Neutron single-particle levels of 36Ar that
correspond to the SCMF solutions calculated with the Skyrme
functional SLy4, the Gogny effective interaction D1S, and the
relativistic density functional DD-ME2. The levels are labeled by
the Nilsson quantum numbers, and dotted lines denote the position
of the Fermi level.

FIG. 2. (Color online) Self-consistent binding energy curves of
36Ar as functions of the quadrupole deformation parameter β2,
calculated with the functionals (a) SLy4, (b) D1S and (c) DD-
ME2. The insets display the corresponding intrinsic nucleon density
distributions in the reference frame defined by the principal axes of
the nucleus.

effective depth of the D1S potential lies between the ones of
DD-ME2 and SLy4. One finds the same picture for the proton
states except, of course, for the effect of Coulomb repulsion.

In Ref. [4] we found qualitatively the same difference for the
SCMF potentials of 20Ne calculated with SLy4 and DD-ME2.
Even though the SCMF potential is not an observable, a deeper
confining potential leads to a more pronounced localization of
the single nucleon wave functions and enhances the probability
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of formation of cluster structures in excited states close to the
energy threshold for α-particle emission. The formation of
nuclear clusters is similar to a transition from a superfluid to a
Mott insulator phase in a gas of ultracold atoms held in a three-
dimensional optical lattice potential [25,26]. As the potential
depth of the lattice is increased, a transition is observed from a
phase in which each atom is spread out over the entire lattice, to
the insulating phase in which atoms are localized with no phase
coherence across the lattice. In the nuclear case one cannot, of
course, vary the depth of the single-nucleon potential because
the nucleus is a self-bound system. However, the same effect
can be obtained by performing self-consistent calculations
using different EDFs or effective interactions, as illustrated
in Fig. 1 for SLy4, D1S, and DD-ME2.

To investigate the role of deformation in the formation of
clusters, we perform deformation-constrained SCMF calcula-
tions by imposing constraints on the mass multipole moments
of a nucleus. The corresponding equations (Schrödinger-like
for nonrelativistic functionals, or Dirac-like for relativistic
EDFs, with the Hamiltonian defined as the functional deriva-
tive of the corresponding EDF with respect to density) are
solved in the intrinsic frame of reference attached to the
nucleus, in which the shape of the nucleus can be arbitrarily
deformed. In the present study we employ SCMF models that
allow breaking both the axial and reflection symmetries [14].
As an illustration in Fig. 2 we display the binding ener-
gies of the self-conjugate nucleus 36Ar as functions of the
axial quadrupole deformation parameter β2, calculated with
SLy4 and D1S using the Hartree-Fock-Bogoliubov (HFB)
model [23,27], and with the functional DD-ME2 employing
the relativistic Hartree-Bogoliubov (RHB) approach [18].
Pairing correlations are taken into account by a delta-pairing
force for calculations with the Skyrme functional, whereas for
the RHB calculations with DD-ME2 the pairing interaction is
separable in momentum space and determined by two parame-
ters adjusted to reproduce the Gogny pairing gap in symmetric
nuclear matter [28]. The curves of the total energy as a
function of quadrupole deformation are obtained in a SCMF
approach by imposing a constraint on the axial quadrupole
moment. The parameter β2 is directly proportional to the
intrinsic mass quadrupole moment. For all three functionals
the calculated equilibrium shape of 36Ar is a slightly oblate,
axially symmetric quadrupole ellipsoid with β2 ≈ −0.2. For
the equilibrium deformation and few additional values of β2,
in the insets of Fig. 2 we also include the corresponding
intrinsic nucleon density distributions in the reference frame
defined by the principal axes of the nucleus. Here one already
observes an interesting effect that was previously noted in our
studies of Refs. [4–6], namely that deeper potentials lead to a
more pronounced spatial localization of nucleonic densities. In
general, we find that relativistic functionals, when compared
to Skyrme and Gogny functionals, are characterized by deeper
SCMF potentials. As noted in Ref. [4], the depth of a relativistic
potential is determined by the difference between two large
fields: an attractive (negative) Lorentz scalar potential of
magnitude around 400 MeV, and a repulsive Lorentz vector
potential of roughly 320 MeV (plus the repulsive Coulomb
potential for protons). The sum of these potentials (about
700 MeV) determines the effective single-nucleon spin-orbit

force in a unique way, whereas in a nonrelativistic EDF
framework the spin-orbit potential is included in a purely
phenomenological way, with a strength parameter adjusted to
empirical energy spacings between spin-orbit partner states. In
the relativistic case the scalar and vector fields determine both
the effective spin-orbit force and the SCMF potential, and the
latter is generally found to be deeper than the nonrelativistic
mean-field potentials. In the following sections we, therefore,
perform SCMF calculations based on the relativistic functional
DD-ME2, which predicts equilibrium density distributions that
are more localized, often with pronounced cluster structures.

III. DEFORMATIONS AND EXCITED CONFIGURATIONS

A unique feature of light nuclei is the coexistence of
the nuclear mean-field and cluster structures, as expressed
by the well-known Ikeda diagram [29–33]. A certain degree
of localization of nucleonic densities is already present in
mean-field ground-state configurations [4,34,35], and this
facilitates the formation of cluster structures in excited states.
Close to the particle emission threshold continuum effects
become important for a quantitative description of nuclear
clustering [36]. Deformation in light nuclei plays, of course,
an important role in the formation of clusters [1,2,6,31,37].
The relationship between α clusters and single-particle states
in deformed nuclei has been extensively studied [31,32,38].
For instance, the Bayman-Bohr theorem [39] states that the
SU(3) shell model wave function of a ground state is in most
cases equivalent to the cluster Brink wave function in the limit
when the inter-α distance vanishes. However, this important
link only relates a cluster wave function to a mean-field-type
one in this specific limit. The present EDF-based approach
allows one to go a step further and establish a link between
cluster states and the single-particle spectrum.

A. Axially symmetric quadrupole deformations

As stated by Rae [40], the degeneracy of single-nucleon
states at a given deformation could generate clusters because
of levels crossing. Here we analyze how degeneracy affects
the formation of α clusters in self-conjugate nuclei. As noted
by Aberg [38], an isolated level of the single-particle energy
spectrum in a deformed self-conjugate N = Z nucleus can
correspond to an α cluster, because of both time-invariance
symmetry and isospin symmetry: two protons and two neu-
trons have similar wave functions, and the localization of
these functions facilitates the formation of α clusters. Hence,
pronounced level degeneracy (or isolated levels in the case
of α clustering) allows us to explain (i) why N = Z and
deformed nuclei favor cluster formation, (ii) the link between
the depth of the confining potential and cluster formation, and
(iii) why cluster structures mainly occur in light nuclei. The
second point is related to the fact that pronounced degeneracy
is driven by the depth of the potential [41], and this issue
was already analyzed in our previous studies [4–6]. The
answer to the third question comes from the fact that level
density is generally smaller in lighter nuclei and this favors
the occurrence of isolated single-particle levels or degeneracy
at certain deformations.
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Let us illustrate this concept using the microscopic EDF
framework with the examples of axially deformed quadrupole
shapes of 12C and 20Ne. The self-consistent mean-field calcula-
tions with the relativistic functional DD-ME2 and a separable
pairing interaction are performed using the implementation of
the RHB model described in Ref. [42]. The RHB equations are
solved in the configurational space of harmonic oscillator wave
functions with appropriate symmetry, whereas the densities are
computed in coordinate space. The method can be applied to
spherical and axially and nonaxially deformed nuclei. The map
of the energy surface as a function of quadrupole deformation
parameters is obtained by solving the RHB equation with
constraints on the axial and triaxial mass quadrupole moments
of a given nucleus. The method of quadratic constraints uses
an unrestricted variation of the function

〈Ĥ 〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)2, (1)

where 〈Ĥ 〉 is the total energy and 〈Q̂2μ〉 denotes the expecta-
tion value of the mass quadrupole operators

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2, (2)

and q2μ is the constrained value of the multipole moment and
C2μ the corresponding stiffness constant [41].

By increasing the prolate quadrupole deformation in the
axially symmetric self-consistent calculation with the con-
straint on the axial quadrupole moment, 12C and 20Ne display
a series of cluster configurations until eventually reaching the
linear α-chain structure (Fig 3). To show the role of level
degeneracy, Fig. 3 displays the mean value of the energy gap
between consecutive occupied neutron single-particle levels as
a function of the deformation parameter β2. The mean value
of the energy gap is defined as

�εn ≡ 〈�εi〉, (3)

where �εi ≡ εi+1 − εi is the energy gap between two succes-
sive neutron single-particle levels. At deformations for which
the maximum mean value of the energy gap exceeds 5 MeV, we
only plot this value so that the scale of the vertical axis does not
become too large to display. A pronounced correlation between
the enhancement of energy gaps between the single-particle
levels and α-cluster formation can clearly be identified. Both
for 12C and 20Ne the density profiles show more pronounced
localization of α clusters at deformations at which the mean
value of the energy gap between consecutive levels exhibits a
sharp increase.

B. Quadrupole and octupole deformations and parity-projected
energy surfaces

Recent cranking SCMF calculations of high-spin rotating
nuclei produced interesting exotic cluster configurations, for
instance, in 16O and 40Ca [1,2,43]. In the present study cluster
shapes occur as local minima at large deformations on the
(β2,γ,β3,β32) energy hypersurface. As an illustration, Fig. 4
displays a sample of various cluster shapes in self-conjugate
nuclei, obtained in triaxial and reflection-asymmetric RHB
calculations using the functional DD-ME2. For each of the

FIG. 3. (Color online) Mean value of the energy gap between
consecutive occupied neutron levels as a function of the axial
quadrupole deformation parameter β2 for (a) 12C and (b) 20Ne.
The insets display the total nucleonic density at the corresponding
deformation. To limit the vertical scale the maximum mean value of
the energy gap in the plot does not exceed 5 MeV.

nuclei shown in Fig. 4 densities that correspond to positive-
parity projected intrinsic states are arranged in order of
increasing energy. Most of them correspond to local minima on
the deformation energy surface, except for the ring states. The
bottom row displays the lowest energy (equilibrium) density
distributions. This figure represents the microscopic EDF-
based analog of the original Ikeda diagram, which illustrates
the coexistence of the nuclear mean-field and various cluster
structures that appear close to the (multi-)α-separation thresh-
old energies [29]. For instance, already the equilibrium density
of 8Be displays a two-α-particle cluster configuration [44–46].
In the case of 12C, the equilibrium self-consistent mean-field
configuration exhibits a slightly oblate triangular distribution
of the three α particles (i.e., the axial octupole moment
does not vanish in the equilibrium configuration), which
becomes much more pronounced in the excited configuration
shown in the second row, in agreement with very recent
experimental results [47]. At still higher energies we find a
linear chain configuration of the three α particles. 16O displays
the very interesting 4α cluster configuration with tetrahedral
symmetry, a result very recently obtained using the constrained
SCMF method [3,6], the algebraic cluster model [48], and ab
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FIG. 4. (Color online) Positive-parity projected density plots ob-
tained for a number of excited configurations in N = Z nuclei.
For each nucleus the density in the bottom row corresponds to the
equilibrium configuration. Other selected densities are displayed in
order of increasing excitation energy.

initio lattice calculations using chiral nuclear effective field
theory [49]. For heavier Z = N nuclei, in Fig. 4 we include
a variety of exotic cluster configurations. For instance, as
noted in the original Ikeda description [29], the lowest cluster
configuration of 20Ne corresponds to an α + 16O core state.

In the next section we consider, in particular, the occurrence
of clusters in exotic Be and C isotopes. In the case of the N = Z
nuclei, the axial quadrupole and octupole nucleonic density
distributions of 8Be and 12C correspond to local minima on the
energy surfaces as functions of axial quadrupole and octupole
deformations displayed in Figs. 5 and 6, respectively. The self-

consistent reflection-asymmetric axial energy surfaces are cal-
culated by imposing constraints on both the axial quadrupole
and octupole deformation parameters β2 and β3, respectively.
In addition, with the constraint on the moment associated to the
octupole operator Q̂3 = r3Y30, a constraint is also imposed on
the center of mass of the nucleus: 〈r1Y10〉 = 0, to exclude the
coupling to the spurious center of mass motion. The 3D energy
maps and their projections on the β2-β3 plane in the left-hand
part are obtained in SCMF calculations. The corresponding
positive parity-projected energy surfaces are shown in the
right-hand part. Positive (π = +1) and negative (π = −1)
parity-projected states are obtained by acting with the projector
P̂π on the intrinsic state: |�π (β2,β3)〉 = P̂π |�(β2,β3)〉, where

P̂π = 1
2 (1 + π	̂). (4)

The parity-projected energy surfaces are labeled with the
deformation parameters of the intrinsic state and calculated
using the relation [50]

Eπ (β2,β3)

= 〈�(β2,β3)|Ĥ |�(β2,β3)〉
〈�(β2,β3)|�(β2,β3)〉 + π〈�(β2,β3)|	̂|�(β2,β3)〉

+π
〈�(β2,β3)|Ĥ 	̂|�(β2,β3)〉

〈�(β2,β3)|�(β2,β3)〉 + π〈�(β2,β3)|	̂|�(β2,β3)〉 .

(5)

For the equilibrium deformations and few additional local
minima the nucleon density distributions in the reference
frame defined by the principal axes of the nucleus are shown
in the insets. The projected energy surface of 8Be displays
a deep minimum at very large quadrupole deformation that
corresponds to a two-α-particle configuration in agreement
with a number of previous studies [44–46]. 12C offers the
possibility to investigate properties of three-center clusters.
Linear chains of α particles are predicted at very large prolate
quadrupole deformations. A further possibility for three-
center systems involves the formation of triangular shapes
characterized by a discrete symmetry, and such structures are
found in the region of oblate deformations (cf. also Ref. [47]).

FIG. 5. (Color online) Self-consistent energy surfaces of 8Be, calculated with DD-ME2 by (a) imposing constraints on both the axial
quadrupole and octupole deformation parameters β2 and β3, and (b) the corresponding positive parity-projected energy surfaces.
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FIG. 6. (Color online) Same as in Fig. 5 but for the isotopes 12C.

IV. CLUSTER STRUCTURES IN NUCLEI FAR FROM
STABILITY

Low-energy structures in a number of relatively light
neutron-rich nuclei can be described by molecular bonding (π
or σ ) of α particles by the excess neutrons [30,31,33,51–56].
Figure 7 displays the total, proton, and neutron axially sym-
metric intrinsic densities of Be isotopes in their equilibrium
configurations, calculated using the RHB model with the
DD-ME2 functional. One clearly notices the two-α-particle
structure, except in 10−13Be (the calculation for the odd-N
isotopes is performed using the equal filling approximation),
which display nearly spherical shapes because of the N = 8

FIG. 7. (Color online) Total, proton, and neutron SCMF equilib-
rium intrinsic densities for beryllium isotopes, calculated using the
RHB model with the functional DD-ME2.

shell closure. Even though recent experimental studies of
charge radii and the corresponding Fermionic molecular
dynamics (FMD) calculations [57] indicate a pronounced
quenching of the N = 8 shell in 12Be, a simple SCMF model
based on a global functional that has not been specifically
adjusted to this mass region cannot produce such a structural
change without additional adjustment of parameters and/or
inclusion of correlations related to restoration of broken
symmetries and configuration mixing.

To analyze the cluster content of Be isotopes, we investigate
the partial densities that correspond to occupied single-particle
states. Figure 8 displays the total neutron distribution of
8Be at equilibrium deformation and details its decomposition
into partial densities of each of the two occupied Nilsson
states. A very similar picture is found for the proton density
distributions. The partial densities provide a very clear picture

FIG. 8. (Color online) (a) Contour plot of the 8Be neutron den-
sity, and (b, c) surface plots of the partial densities of each of the two
occupied Nilsson states in the (Oxz) plane.
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FIG. 9. (Color online) Intrinsic densities of 10Be (a) at equilibrium deformation and (b) for an excited configuration. Bottom to top: 3D
density of the α + α core, contour plots of the core density and the density of the valence neutrons in the (Oxz) plane, and 3D density of the
valence neutrons.

of the formation of the two α clusters that appear in the total
density distribution.

In the case of the neutron-rich Be isotopes, decomposing
the total density into the α + α structure and the density of
the additional valence neutrons, a picture of nuclear molecular
states emerges. A negative-parity orbital perpendicular to the
α + α direction is called a π orbital, and a positive-parity
orbital parallel to the α + α direction is called a σ orbital
(cf. Fig. 7 of Ref. [58]). As an example here we consider
10Be and 14Be. The valence neutrons stabilize the two-center
cluster structure of the α + α core with π -like and σ -like
molecular bonds (Figs. 9 and 10). The results obtained in
the present calculation are consistent with predictions of
the antisymmetrized molecular dynamics (AMD) model (cf.
Ref. [58] and references cited therein), that is, the valence
neutrons form a π bond in the equilibrium state and a σ bond
in the excited state shown in Fig. 9. In the case of the more
neutron-rich nucleus 14Be, as shown in Fig. 10, already in
the equilibrium state the valence neutrons form both π and σ
bonds, similar to the results reported in Ref. [58].

An interesting topic is the occurrence of clusters in excited
states of neutron-rich carbon isotopes [31]. In particular,

the molecular-orbital structure in neutron-rich C isotopes
was investigated using a microscopic molecular-orbit (MO)
α + α + α + n + n + · · · model [59], and it was shown that
valence neutrons which occupy the π orbit increase the
binding energy and stabilize the linear chain of three α
particles against the breathing-like breakup. However, when
considering 12C, 14C, and 16C, it was found that the linear-
chain structure of 16C ((3/2−

π )2(1/2−
σ )2) is the only one to

be simultaneously stable against the breathing-like breakup
and the bending-like breakup. Figures 11 and 12 display
the excess-neutron molecular orbits in excited configurations
of 14C and 16C, calculated using the present EDF-based
self-consistent microscopic approach. The decomposition of
the density of an excited configuration of 14C in terms of the
three-α-particle core and the two valence neutrons is shown
in Fig. 11. We note that in this case correlations between
the valence neutrons tend to favor a reflection-asymmetric
chain configuration. Accordingly, the intrinsic reflection-
asymmetric chain configuration α − 2n − α − α, with the
two valence neutrons forming a π bond between the two α
particles, is found at lower energy with respect to the reflection-
symmetric chain α − n − α − n − α. A reflection-symmetric

FIG. 10. (Color online) Same as in the caption to Fig. 9 but for (a) the equilibrium deformation and (b) an excited configuration of 14Be.
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FIG. 11. (Color online) Nucleonic densities for an excited con-
figuration of 14C. Bottom to top: 3D density of the α + α + α core,
contour plots of the core density and the density of the valence
neutrons in the (Oxz) plane, and 3D density of the valence neutrons.

configuration with four valence neutrons, that is, α − 2n −
α − 2n − α, is favored in 16C, as shown Fig. 12 and similar to
the results obtained with the AMD approach [31].

On the proton-rich side a particularly interesting case is
10C, which may be described as an α + α + p + p structure.
The unique feature of this system is that the removal of any
one of the four constituents results in an unbound three-body
system. It can, therefore, be considered a super-Borromean or
fourth-order Brunnian nuclear system [60,61]. As the mirror
nucleus of 10Be, 10C is expected to display a covalent two-
center chain configuration with a pair of protons as the covalent
bond. Figure 13 illustrates the results of our EDF-based self-
consistent calculation for an excited configuration of 10C, for
which the two valence protons provide the molecular bonding
for the α + α core.

FIG. 12. (Color online) Same as in Fig. 11 but for an excited
configuration of 16C.

FIG. 13. (Color online) Nucleonic densities for an excited con-
figuration of 10C. Bottom to top: 3D density of the α + α core, contour
plots of the core density and the density of the valence protons in the
(Oxz) plane, and 3D density of the valence protons.

V. CONCLUSION

The formation of cluster states in nuclei has been inves-
tigated employing a theoretical framework based on nuclear
EDF. By performing deformation constrained self-consistent
HFB calculations with Skyrme and Gogny functionals, and
RHB calculations with the functional DD-ME2, it has been
shown that a deeper mean-field confining potential leads to
a more pronounced localization of the single nucleon wave
functions and enhances the probability of formation cluster
structures in excited states. In particular, since the relativistic
functional DD-ME2 produces the deepest potential among the
considered functionals, we have used DD-ME2 in a series of
axially symmetric quadrupole and octupole constrained RHB
calculations of relatively light N = Z, as well as neutron-rich
nuclei. The role of deformation and degeneracy of single-
nucleon states in the formation of clusters has been analyzed
in detail, and a number of interesting cluster structures have
been predicted in excited configurations that correspond to
local minima on the parity-projected energy maps as functions
of the quadrupole and octupole deformation parameters.

A particularly interesting topic is the occurrence of cluster
configurations in neutron-rich nuclei. We have shown that in
neutron-rich Be and C nuclei cluster states occur as a result of a
molecular bond (π or σ ) of α particles by the excess neutrons,
and also that proton covalent bond can occur in 10C.

Results obtained in this study demonstrate the feasibility of
using nuclear EDF to explore the occurrence and evolution of
α-cluster structures in relatively light N = Z and neutron-
rich nuclei. When compared to dedicated cluster models,
this framework allows for a microscopic description of the
coexistence of cluster states and mean-field-type states at low
energies. The SCMF approach does not assume any constraint
on the nucleonic wave function or the existence of nucleon
cluster structures; rather energy density functionals implicitly
include many-body correlations that enable the formation of
cluster states starting from microscopic single-nucleon degrees
of freedom. For a quantitative description of cluster states,
however, EDF-based structure models have to be developed
that go beyond the static mean-field approximation and include
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collective correlations related to the restoration of symmetries
broken at the mean-field level, and to fluctuations of collective
variables. These models can then be employed in analyses
of cluster phenomena related to shell evolution and shape
transitions, including detailed predictions of excitation spectra
and electromagnetic transition rates.
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APPENDIX: THE LOCALIZATION AND
QUANTALITY PARAMETERS

The localization parameter is used to characterize clusters
as hybrid states between the crystal and quantum liquid phases
in nuclei [4–6], whereas the quantality parameter describes
the quantum liquid versus crystal behavior of homogeneous
nucleonic matter [12] and is defined by the relation

� =̂ �
2

mr2
0 V ′

0

, (A1)

where r0 is the typical internucleon distance and V ′
0 the

characteristic magnitude of the interparticle interaction (V ′
0 �

100 MeV in the case of the nucleon-nucleon interaction). As
discussed by Mottelson, the quantum liquid phase is obtained
for � > 0.1, whereas the crystal phase is characterized by
values of � < 0.1. Nuclei, of course, are in the quantum liquid
phase. However, the quantality parameter, Eq. (A1), depends
on the nucleon-nucleon interaction only and does not take into
account the finite-size effects at work in nuclei. Hence, the
localization parameter is defined as [4–6]

α =̂ b

r0
=

√
�A1/6(

2mV0r
2
0

)1/4 , (A2)

where b is the typical dispersion of the single-nucleon wave
function, and V0 is the depth of the confining potential
(V0 � 75 MeV in the case of the nuclear mean field [4]).
One can therefore use α to analyze the evolution of nuclear
configurations with respect to the number of constituents
A [5,6] and, in particular, systems where finite-size effects
are relevant (A < 103). The crystal, cluster, and liquid phases
then correspond to α < 1, α ∼ 1, and α > 1, respectively.

To relate the quantality and localization parameters, we
need to link the depth of the mean-field potential V0 to the
magnitude of the nucleon-nucleon interaction V ′

0. Considering
a short-range n-n interaction V2(
r,
r ′) that can qualitatively
be described by a hard core for r < r0 and an attractive
part of magnitude −V ′

0 in the region between r0 and r0 + a

r0 R

a

V2(R)

-V’0

FIG. 14. Simple approximation of the n-n potential used to derive
the relation between the localization and quantality parameters,
Eq. (A11).

(Fig. 14),

V2(
r,
r ′) = V2(R) = −V ′
0 (A3)

for R between r0 and r0 + a, with R ≡ |
r − 
r ′|.
The n-n interaction can also be approximated by

V2(
r,
r ′) = −V ′′
0 δ(
r − 
r ′ − 
r0) = −V ′′

0 δ( 
R − 
r0). (A4)

This can be justified by the short-range approximation of
the nucleon-nucleon interaction, and such a zero-range ap-
proximation is successfully used, for instance, in Skyrme
functionals. To be compatible with Eq. (A3), a < r0.

The confining potential V (r) is, to a good approximation,
the mean value of the n-n interaction over the nucleonic
density [41]:

V (
r) �
∫

V2(
r,
r ′)ρ(
r ′)d 
r ′ = −V ′′
0 ρ(
r − 
r0). (A5)

Equation (A5) expresses the fact that in a saturated system
characterized by a short-range interaction, the mean-field
potential displays a spatial dependence that corresponds to the
shape of the density. From Eq. (A5) the depth of the mean-field
potential is

V0 ≈ V ′′
0 ρ0, (A6)

where ρ0 = 3/(4πr3
0 ). Moreover, Eqs. (A3) and (A4) yield∫

V2(R)d 
R = −V ′′
0 = −4πV ′

0

∫ r0+a

r0

R2dR, (A7)

and thus

V ′′
0 = 4

3πV ′
0

[
(r0 + a)3 − r3

0

]
. (A8)

Inserting Eq. (A8) into Eq. (A6), one finally obtains

V0 = γV ′
0 (A9)

with

γ ≡
[(

1 + a

r0

)3

− 1

]
. (A10)
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Therefore, the relation between the depth of the mean-
field potential V0 and the magnitude of the n-n interaction
V ′

0 is linear and only depends, in this simple approximation,
on the ratio a/r0, that is, the width of the attractive part of
the n-n interaction over the equilibrium distance between the
nucleons. In finite nuclei, for typical values of r0 and a one gets

γ � 3/4. This is in agreement with the empirical values V0 =
75 MeV and V ′

0 = 100 MeV [12,62]. Inserting now Eq. (A1)
into Eq. (A2), and using Eq. (A9) with γ = 3/4, one finds the
relation between the localization and quantality parameters:

α � A1/6�1/4. (A11)
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