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Abstract

We show that Weyl points can be realized in all-dielectric superlattices based on three-

dimensional layered photonic crystals. Our approach is based on creating an inversion-breaking

array of weakly-coupled planar defects embedded in a periodic layered structure with a large om-

nidirectional photonic band gap. Using detailed band structure calculations and tight-binding

theory arguments, we demonstrate that this class of layered systems can be tailored to display

three-dimensional linear point degeneracies between two photonic bands, without breaking time-

reversal symmetry and using a configuration that is readily-accessible experimentally. These results

open new prospects for the observation of Weyl points in the near-infrared and optical regimes and

for the application of Weyl-physics in integrated photonic devices.
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Stimulated by the extraordinary properties of graphene [1–3], the development of artificial

systems displaying Dirac-like physics has become a very active research area of condensed-

matter science and related fields [4]. In this context, photonic-crystal structures [5] and pho-

tonic lattices (waveguides arrays) have emerged as versatile platforms for mimicking with

light waves the electronic transport properties of graphene [6–30]. Specific examples of the

exotic phenomena enabled by the presence of photonic Dirac cones include conical diffrac-

tion [6], pseudo-diffuse light transport [7], directional optical waveguiding [8, 9, 11], photonic

Klein tunneling [14], angular selectivity of spontaneous emission [30], pseudo-magnetic prop-

erties in the optical regime [23] and large-area single-mode behavior [20, 27].

This endeavor for creating photonic-graphene systems has also inspired novel ways of

accessing fundamental physical phenomena that, although originally predicted in the context

of condensed-matter theory, are difficult (if not virtually impossible) to observe in electronic

systems. A good example are Weyl points –the higher dimensional analogs of photonic Dirac

points. Derived for the first time almost nine decades ago to describe massless chiral fermions

[31], Weyl points feature unique topological properties from which rich new physics has been

predicted to stem [32–44]. Remarkably, very recently, the first experimental observations

of Weyl points have been reported in a three-dimensional double-gyroid photonic crystal

[45] and in Fermi-arc surface states of TaAs [46, 47]. In this work, we report on a novel

route to realize Weyl points in a layered photonic structure that is suitable for optical

integration. First, we obtain line node dispersion by creating a periodic array of weakly-

coupled planar defects embedded in a three-dimensional (3D) photonic crystal. Then, we

break the inversion-symmetry of the system by varying the interlayer coupling between every

three layers. Using detailed ab-initio electromagnetic (EM) calculations, we show that this

class of systems exhibits Weyl points in their band structure.

A schematic view of the considered system is displayed in Fig. 1. The underlying 3D

photonic-crystal structure (yellow volumes in Fig. 1) consists of an alternating stack of

rod layers, formed by a triangular lattice of dielectric rods of index nb, and hole layers,

consisting of dielectric slabs (also of index nb) milled by a triangular lattice of air holes. The

radius and height of the dielectric rods are rc and hc, respectively, whereas the thickness

of the dielectric slabs and the radius of the air holes are rh and hs, respectively. Both the

rod and hole triangular lattices feature the same lattice constant a. The structure is also

characterized by a sequential in-plane shift between consecutive layers. Specifically, the in-
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FIG. 1. Schematic view of the layered three-dimensional photonic crystal analyzed in this work.

Transversal cross-sections of the rod, hole and defect layers are displayed in the right insets. The

geometrical parameters defining each of the layers, as well as the reference system, are also included

in the figure. The parameters t1, t2 and t3 represent the electromagnetic coupling between the

corresponding planar defects of the array.

plane triangular lattice of each of the layers is sequentially shifted following the positions

of a ABC stacking, rA = (0, 0), rB = a(1/(2
√

3), 1/2), rC = a(1/
√

3, 0). Note that the

unit cell in the out-of-plane direction (z-direction) consists of an alternating stack of 3 rod

layers and 3 hole layers. This class of structures was proposed for the first time in Ref. [48]

as the result of creating an fcc lattice of overlapping air cylinders in a dielectric medium.

Its significance in photonics stems mainly from their large omnidirectional bandgap (usually

larger than 20% for common integrated photonics materials), its suitability for optical device

integration using a layer-by-layer approach [49], and its highly-controllable optical response

through the individual modification of only one of the layers forming the structure [50, 51].
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As shown in Fig. 1, in the analyzed structure, a one-dimensional array of planar defects is

embedded inside the above described layered 3D photonic-crystal. These planar defects are

introduced by replacing each of the rods forming the rod-layers lying at position A (within

the ABC sequence mentioned before) by a three-cylinder column made from a defect rod of

index nd (green rods in Fig. 1) sandwiched by two short rods of index nb. The defect rods

have radius rd and height hd. The dielectric cylinders on top and bottom have heights hu

and hb, respectively, and the same radius as the rods in the rod-layers (rc). Notably, by

changing the values of hu and hb separately, one can control the electromagnetic coupling

between a given planar defect and its upper and lower nearest-neighbor planar defects (the

couplings between three consecutive layers are represented by t1, t2, and t3 in Fig. 1). In

addition, in the realization sketched in Fig. 1, there are three hole-layers and two rod-layers

separating nearest-neighbor planar defects. Placing the planar defects at closer distances to

each other would make the EM coupling between nearest-neighbor defect planes to depart

from the weak-coupling condition used in our approach.

We start by analyzing the properties of a configuration in which all planar defects forming

the array have the same geometrical parameters (this case corresponds to make t1 = t2 = t3

in Fig. 1). Figure 2 displays the corresponding band structure, obtained by assuming the

following set of geometrical parameters: rc = 0.26a, hc = 0.50a, rh = 0.45a, and hs = 0.32a

(defining underlying 3D photonic crystal), and rd = 0.32a, hd = 0.30a, and hu = hb = 0.24a

(defining the defect planes). The refractive indices of the high-index regions of the system are

nb = 3.5 and nd = 4.0. These values for nb and nd are assumed in all the calculations shown

in this work. Yellow areas in Fig. 2 render the projected band structure for the perfectly

periodic 3D photonic crystal (i.e., the photonic crystal without the defect layer). This

dispersion diagram was obtained by plotting the frequencies ω of the extended bulk states

of the system as a function of the in-plane wavevector along the high-symmetry directions

of the Irreducible Brillouin Zone (IBZ) corresponding to a 3D hexagonal lattice (see inset

of Fig. 2). Solid blue lines in Fig. 2 display the dispersion relation of modes associated to

the array of planar defects. All the calculations displayed in this work have been performed

with a supercell method using the MIT Photonic-Bands package [52].

As deduced from Fig. 2, the considered 3D photonic crystal exhibits a large omnidirec-

tional band gap, centered at a frequency ω = 0.4550 (2πc/a) (c is the speed of light in

vacuum) and featuring a gap-midgap ratio of 19%. Of special interest among the number of
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FIG. 2. Photonic band structure of the array of defect planes depicted in Fig. 1, as computed for

a configuration featuring inversion symmetry (t1=t2=t3). The following geometrical parameters

have been assumed in the calculations: rc = 0.26a, hc = 0.50a, rh = 0.45a, and hs = 0.32a,

rd = 0.32a, hd = 0.30a, and hu = hb = 0.24a (see the definition of these parameters in Fig. 1).

The refractive indices of the high-index regions of the system system are nb = 3.5 and nd = 4.0.

Yellow areas display the bulk photonic bands of the system, whereas the blue solid lines correspond

to the modes supported by the planar defects. The inset shows a sketch of the corresponding 3D

hexagonal First Brilloun Zone, together with its corresponding high-symmetry points. The red

arrow marks the position of the band corresponding to a line node.

defect bands that can be observed inside this full band gap is the frequency-isolated band

centered at a frequency ωD = 0.4951(2πc/a) that emerges along the K-H direction (marked

by a red arrow in Fig. 2). An enlarged view of that band is displayed in Fig. 3(a) (see

blue solid lines). The physical origin of this band can be understood by using the following

tight-binding picture of this problem. When isolated in the underlying 3D photonic crystal,

each of the planes forming the defect array exhibits a frequency-isolated Dirac cone in the

(kx, ky) plane at the K-point [20]. The effective Hamiltonian close to that Dirac point can

be expressed as H2D(kx, ky) = h̄ωD + νxkxσx + νykyσz, where νi are the group velocities and

5



σi are the Pauli matrices. Diagonalization of H2D(kx, ky) yields the canonical Dirac-cone

dispersion ω2D(kx, ky) = ωD ±
√
ν2xk

2
x + ν2yk

2
y. When extended to 3D, H2D(kx, ky) actually

describes a line node, i.e., two bands that are forming a line degeneracy along kz (as illus-

trated by the cyan solid lines in Fig. 3(a)), but that they disperse linearly along the other

two directions [38, 39]. Now, to describe the array of planar defects considered in Fig. 2,

we introduce an additional term (representing the coupling between nearest-neighbor pla-

nar defects) to the effective Hamiltonian, H2D. This yields the following new Hamiltonian

H3D(k) = H2D(kx, ky)−2t cos(kzd)1 (where k = (kx, ky, kz), d is the periodicity of the defect

array along z and 1 is the unity matrix). Diagonalization of H3D(k) produces a dispersion

relation given by ω3D(k) = ω2D(kx, ky) − 2 t cos(kz d), which agrees in all three-dimensions

with the dispersion obtained from our bands structure calculations (see green dots and inset

of Fig. 3(a); the latter shows the Dirac cones obtained in the (kx, ky) plane for an exemplary

k-point along K-H). Thus, from this analysis we can conclude that a line node (featuring

cosine-like dispersion) emerges in the considered system as the result of periodically stacking

weakly-coupled planar defects, each of which exhibits Dirac cones when isolated.

Next, in order to create Weyl points from this line node, it is crucial to consider the

significant fundamental differences between Dirac points and Weyl points. Dirac cones are

protected by PT -symmetry, which is the product of time-reversal symmetry (T ) and parity

(P ) inversion (note that here we discuss PT -symmetry only in the context of Hermitian sys-

tems). Weyl points, on the other hand, are topologically protected gapless dispersions that

can exist only when PT -symmetry is broken. This necessary condition for the realization

of Weyl points can be deduced from the Hamiltonian that governs Weyl point dispersions,

HW (k) = νxkxσx + νykyσy + νzkzσz. Indeed, the term σy of HW (k) can exist only when PT -

symmetry is broken [38, 39]. Thus, in order to realize Weyl points in the analyzed class of

systems without breaking time-reversal symmetry, we need to break the inversion-symmetry

(ε(r) = ε(−r), where ε(r) is the dielectric constant distribution) that the array of planar

defects considered in Fig. 4(a) features with respect to the center of the defect rods. To do

that, we introduce three different values (t1, t2, and t3) of the EM coupling between the pla-

nar defects and their corresponding upper nearest-neighbor defect layers. More specifically,

we create an inversion-symmetry breaking superlattice of defect layers formed by stacking

periodically (following the configuration shown in Fig. 1) three different defect layers fea-

turing three different values of the parameter hu (see definition of that parameter in Fig.
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FIG. 3. (a) Enlarged view of the band marked with an arrow in Fig. 2 (blue solid lines). For

comparison, the results corresponding to the single-defect configuration are also displayed (cyan

solid lines). Green dots correspond to the analytical tight-binding expression discussed in the main

text. The inset shows the Dirac cones obtained at the indicated point of the K-H path. (b)

Computed band structure of the system considered in (a), but now calculated with an artificial

supercell three times larger along z. (c) Photonic band structure of the array of defects depicted

in Fig. 1, as computed for a configuration with broken inversion symmetry (with different values

of the interlayer couplings t1, t2 and t3). The considered superlattice of defect layers is formed

by periodically stacking three planar defects featuring the following sequence of values for the

parameter hu/a: 0.245, 0.250, and 0.255. (d) Same as (c), but now with a sequence of hu/a values

given by 0.240, 0.250, and 0.260. The insets of both panels render an enlarged view of the band

crossing marked by an arrow in the corresponding main panel.

1). By varying hu, we modify the degree of overlap between the evanescent-field tails of two

nearest-neighbor defect layers, and consequently the mutual EM coupling between them.

The first important point to realize regarding the superlattice described above is that its
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unit cell along z is three times larger than of the array discussed in Fig. 3(a). The larger

unit cell leads to a folding of the photonic bands along kz (the high-symmetry path of the

IBZ along kz is now three times smaller, which yields a new limit, H ′, of the IBZ along kz).

To illustrate this point, Fig. 3(b) displays the folded bands of the same structure considered

in Fig. 3(a) (which still retains inversion symmetry), but now computed using an artificial

supercell of size 3d along the z direction. Note that, as can be deduced from tight-binding

arguments, the considered three-defect unit cell (featuring three different couplings t1, t2 and

t3) is the minimal system that breaks PT -symmetry in this structure. A system featuring

only two different couplings (t1 and t2) always presents inversion symmetry.

The second important point to highlight derives from the symmetry arguments discussed

above. Based on the fact that Dirac cones are not robust to PT -symmetry breaking, we

expect that the degeneration between the two bands forming each of the superlattice folded

bands (shown in Fig. 3(b)) is lifted once the inversion symmetry is broken (i.e., once the

three different interlayer couplings t1, t2 and t3 are introduced into the system). This

is apparent from the band structures rendered in Figs. 3(c) and 3(d), which correspond,

respectively, to two superlattices with increasing asymmetry. Figure 3(c) corresponds to

the following sequence of hu/a values of the three defect layers forming the unit cell: 0.240,

0.245, and 0.255. Figure 3(d) corresponds to the following sequence of hu/a values: 0.240,

0.250, and 0.260. The rest of geometrical parameters are the same as those used for Fig. 2.

As seen, the frequency difference between the originally degenerated bands increases as the

asymmetry in the system grows. Remarkably, these results show clearly how the combination

of the bands folding and the degeneracy lift induced by the asymmetry enables the type of

band crossings needed for the realization of Weyl points. Insets of Figs. 3(c) and (d) show

enlarged views of the band crossings found for both configurations at ω ≈ 0.4945(2πc/a)

(the examined crossings are marked with arrows in their corresponding main panels). As

observed, linear dispersion is obtained near the two considered band crossings (similar linear

dispersions were obtained for the other crossings that can be observed in Figs. 3(c) and 3(d)

at ω ≈ 0.4955(2πc/a)), which represents a clear signature of the emergence of Weyl points

in this class of systems.

There are four Weyl points in the considered structure, with their Chern numbers (taking

values +1 or −1) cancelling each other in pairs (the Chern number of a Weyl point is defined

as the integral –within the 3D Brillouin zone of the structure– of the Berry curvature on a
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FIG. 4. (a) Illustration of the location in the First Brillouin Zone of the four Weyl points displayed

by the analyzed structure. Blue and pink circles represent Weyl points with opposite Chern num-

bers. (b) Sketch of the different orientations of the k-space planes considered in (c). The definition

of the rotation angle θ, as well as the intrinsic in-plane reference system of each plane, (k′x, k
′
y), are

displayed. The location of the considered Weyl point is also indicated. (c) Computed projected

bands along k′x corresponding to eight planes that sample θ in the interval [0, 2π), as shown in (b).

closed surface enclosing the considered Weyl point [39]). In addition to the two Weyl points

discussed above, there is another pair of Weyl points with opposite chirality. Time-reversal

symmetry maps a Weyl point at k to −k, without changing its Chern number. Then, the

presence in the structure of a mirror symmetry plane along z (which crosses the xy-plane

along y=0, see definition of axes in Fig. 1), maps these Weyl points to two Weyl points

with opposite Chern numbers. Thus, from these symmetry arguments, it derives that the
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analyzed system displays a total of four Weyl points at the boundaries of the First Brillouin

Zone (see schematic illustration in Fig. 4(a)). This is the minimal number of Weyl points

possible without breaking time-reversal symmetry [38].

Finally, to check numerically that the dispersion relation of the analyzed structure is

linear in three-dimensions around the observed band crossings, we have carried out extensive

numerical calculations of the projected bands over a large number of planes with different

orientations in k-space. Figure 4(c) summarizes the results obtained for the band crossing

displayed in inset of Fig. 3(d) (similar results were obtained for the other band crossings

described above). The orientation of each k-space plane is defined by the rotation angle θ

defined in Fig. 4(b). Specifically, Fig. 4(c) displays the results corresponding to eight values

of θ that sample the interval [0, 2π). Similar calculations were performed for the same set

of angles but replacing the rotation axis by the ky and kz axes. In all considered cases the

projected bands along the intrinsic kx axis of each of the rotated planes (labeled as k′x in

Fig. 4(b)) exhibit a linear degeneration point at the band crossing, which demonstrates that

the degeneration point observed in inset of Fig. 3(d) is indeed a Weyl point.

The proposed class of systems could be experimentally realized in the near-field frequency

region using a lithographic layer-by-layer approach [49]. Hydrogenated amorphous silicon

(a-Si:H) and a Silicon-Germanium alloy (such as SixGe1−x with x=0.25) could be used for

fabricating the underlying photonic crystal and the defect layers, respectively (the refractive

indexes of these materials at λ=1.55µm are similar to the ones employed in our numerical

calculations [53, 54]). On the other hand, it could be also possible to experimentally realize

the proposed class of systems in the microwave region using an approach similar to the one

described in Ref. [45]. Further optimization of the geometrical parameters of the structure

and the refractive indexes will be required in order to increase the bandwidth of the Weyl

dispersion analyzed in this work.

In conclusion, we have presented a novel approach to realize Weyl points in all-dielectric

and integrable layered photonic systems. We expect our results will stimulate further re-

search on the experimental observation of Weyl points in the visible and near-infrared

regimes, with applications in nano-scale coherent light generation, quantum information

processing, and solar energy harvesting. The analyzed class of systems also offers a versa-

tile platform for the discovery and demonstration of novel phenomena in the emerging field

of topological photonics. Furthermore, the approach introduced in this work can be ex-
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tended to obtaining Weyl points in condensed-matter systems by stacking two-dimensional

materials such as graphene and BN [55].
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