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Measurements of bottomonium production in heavy-ion and p + p collisions at the Relativistic Heavy Ion
Collider (RHIC) are presented. The inclusive yield of the three ϒ states, ϒ(1S + 2S + 3S), was measured in
the PHENIX experiment via electron-positron decay pairs at midrapidity for Au + Au and p + p collisions
at

√
sNN = 200 GeV. The ϒ(1S + 2S + 3S) → e+e− differential cross section at midrapidity was found to

be Beedσ/dy = 108 ± 38 (stat) ± 15 (syst) ± 11 (luminosity) pb in p + p collisions. The nuclear modification
factor in the 30% most central Au + Au collisions indicates a suppression of the total ϒ state yield relative to
the extrapolation from p + p collision data. The suppression is consistent with measurements made by STAR at
RHIC and at higher energies by the CMS experiment at the Large Hadron Collider.

DOI: 10.1103/PhysRevC.91.024913 PACS number(s): 25.75.Dw

I. INTRODUCTION

One of the main physics programs in relativistic heavy-ion
collisions is the study of heavy quarkonia yields, namely
charm quark pairs (charmonia) and bottom quark pairs
(bottomonia). At zero temperature, the binding energy between
the heavy quark and antiquark (QQ̄) in these vector mesons
may be described by an effective potential consisting of a
confining term at large distance and Coulomb-like term at short
distance [1].

When the temperature of the medium formed after the
collision is higher than a transition temperature Tc ≈ 170 MeV,
the effective potential between light quark and antiquark
weakens and deconfines the constituent quarks of mesons

*Deceased
†PHENIX cospokesperson: morrison@bnl.gov
‡PHENIX cospokesperson: jamie.nagle@colorado.edu

and baryons. The quark-gluon plasma (QGP) formed can be
described as a dense, strongly coupled state of matter which
reaches thermalization in less than 1 fm/c [2].

In the QGP medium, the effective color electric potential
between Q and Q̄ can be screened by the dense surrounding
color charges. This color screening is similar to the Debye
screening observed in electromagnetic plasmas [3]. The
temperature at which the heavy quark state becomes unbound
owing to this screening depends on the corresponding binding
energy of the state. Because of the large variation in radii
between the different heavy quarkonia, they are expected to
become unbound at different temperatures.

There are many theoretical calculations which predict the
temperature at which each quarkonium state is suppressed
by color screening. A compilation of results can be found in
Ref. [4], including lattice quantum chromodynamics (QCD)
[5–15], QCD sum rules [4,16–20], anti-de-Sitter space/QCD
[21–24], resummed perturbation theory [25,26], effective
field theories [27,28], and potential models [15,29–35].

024913-3

http://dx.doi.org/10.1103/PhysRevC.91.024913


A. ADARE et al. PHYSICAL REVIEW C 91, 024913 (2015)

c
 melting T/T

1 1.5 2 2.5 3 3.5 4 4.5 5

 ′ψ

C
χ

ψJ/

(3S)ϒ

(2S)ϒ

B1
χ

B2
χ

(1S)ϒ

Lattice QCD

QCD Sum rules

AdS/QCD

Potential Models

=200GeV
NN

s 
peak

T

FIG. 1. (Color online) Compilation of medium temperatures rel-
ative to the critical temperature (Tc), where quarkonium states are
dissociated in the QGP. Note that these estimations were performed
assuming different Tc values. Each horizontal bar corresponds to one
estimation and its temperature extension (when applied) represents
the range where the quarkonia state undergoes a mass/size modi-
fication until it completely melts. Techniques used in calculations:
lattice QCD [5–15], QCD sum rules [4,16–20], AdS/QCD [21–24],
effective field theories [27,28], and potential models [15,29–35]. The
shaded band from 1.8T/Tc to 3.5T/Tc represents the hydrodynamic
estimation for the peak temperature reached in Au + Au collisions at
200 GeV [36].

Figure 1 shows the dissociation temperature range for several
quarkonium states as expected from these models. Besides
the different techniques used in these calculations, the melting
range also depends on the choice of the transition temperature,
the use of the internal energy or the free energy of the system
for the temperature dependence of the heavy quark potential,
and the criteria adopted for defining the dissociation point.
No cold nuclear-matter effects have been considered in these
estimations.

A comparison between hydrodynamical model calculations
and the PHENIX thermal photon data [36] suggests that the
peak temperature of the medium formed at RHIC in central
Au + Au collisions at

√
sNN = 200 GeV lies in the region

between 300 and 600 MeV, or 1.8Tc and 3.5Tc. The majority
of the estimates shown in Fig. 1 indicates that only the
ground states, the J/ψ and ϒ(1S), remain bound at these
temperatures.

PHENIX reported a strong suppression of the J/ψ yield
in central Au + Au collisions compared to binary collision
scaling from p + p yields [37,38]. According to measure-
ments performed in p + p collisions at RHIC, (42 ± 9)% of

TABLE I. Composition of the ϒ family in the dilepton channel
as measured by E866/NuSea [46], CDF [47], LHCb [48], and CMS
[49]. Fractions are in % and only statistical uncertainties are shown.

Exp. System ϒ(1S) ϒ(2S) ϒ(3S)
9.46 GeV

c2 10.02 GeV
c2 10.36 GeV

c2

E866 p + p
√

s = 39 GeV 69.1 ± 1.0 22.2 ± 0.9 8.8 ± 0.6
CDF p + p̄

√
s = 1.8 TeV 72.6 ± 2.8 17.6 ± 1.7 9.7 ± 1.4

LHCb p + p
√

s = 7 TeV 73.0 ± 0.3 17.9 ± 0.2 9.0 ± 0.2
CMS p + p

√
s = 7 TeV 71.6 ± 1.3 18.5 ± 0.8 10.0 ± 1.3

the J/ψ yield comes from χc and ψ ′ decays [39]. The complete
suppression of these states in Au + Au collisions can explain
only part of the suppression seen for the J/ψ . There are
other possible contributions to J/ψ suppression and therefore
the interpretation of the data is not straightforward. Other
mechanisms of suppression include initial- and final-state
cold nuclear-matter effects, studied in d + Au collisions by
PHENIX [40,41]. There are also effects that can reduce the
suppression. The dissociated charm (and anticharm) quark
can undergo multiple scatterings and recombine with its
former partner once the medium cools down. In addition,
the presence of about 6–20 open charm pairs in each central
Au + Au collision at RHIC1 provides a good chance that
the ground-state charmonium was formed by coalescence
of uncorrelated charm and anticharm quarks present in the
medium [43]. Thus, even if all the initially produced J/ψ’s
are dissociated in the QGP medium, J/ψ’s can be re-created
at a later stage by the coalescence process.

The probability for creating a bottomonium state through
coalescence is quite small at

√
sNN = 200 GeV, given that

only about 0.07 bb̄ pairs per central event are produced.2

Therefore, bottomonium states are a better probe of color
screening in Au + Au collisions at RHIC. Figure 1 shows
that no lattice QCD or potential model calculation predicts
that ϒ(1S) will melt at a temperature lower than around 2Tc.
This is an outcome of the tighter binding energy and smaller
radius of the 1S state compared to other quarkonium states.
Some calculations suggest that the ground-state charmonium
is dissociated at a temperature close to Tc [20,31,34].

Bottomonia have been measured mostly in the dilepton
channel with a branching ratio around 2.5% [45]. Table I
lists the fraction of the three ϒ states present in the dilepton
spectrum as measured at Fermilab and the Large Hadron
Collider (LHC) by E866/NuSea [46], CDF [47], LHCb [48],
and CMS [49]. No significant variations on the relative yields
have been observed in spite of the broad collision energy
range of these experiments or whether the antiproton was one
of the collision particles or not. The ground-state ϒ(1S) has
many feed-down contributions from excited states. The CDF
experiment reported the fraction of these contributions [50],
which can be seen in Table II.

1This estimation is based on the c − c̄ total cross section reported in
Ref. [42] and 1000 binary collisions in very central Au + Au events.

2Estimation based on the total bb̄ cross section published in
Ref. [44].
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TABLE II. Feed-down fractions of the ϒ(1S) state in p + p

collisions as measured by CDF for pT > 8 GeV/c [50].

Source Fraction ± stat ± syst

Direct ϒ(1S) 0.509 ± 0.082 ± 0.090
ϒ(2S) 0.107 ± 0.077 ± 0.048
ϒ(3S) 0.008 ± 0.006 ± 0.004
χB1 0.271 ± 0.069 ± 0.044
χB2 0.105 ± 0.044 ± 0.014

Fermilab experiments found no modification of the relative
yields in cold nuclear matter as measured in p + d [46] and
p + A [51]. The initial-state effects on bottomonia production
were investigated by E605 [52], E772 [51], and E866/NuSea
[46] in p + A collisions at

√
sNN = 38.8 GeV with targets of

2H, C, Ca, and Fe. The ϒ yields are suppressed by ∼5% for
incident gluon momentum fraction x2 ∼ 0.1. The suppression
gets stronger for larger x2, reaching a level of ∼15% at
x2 ∼ 0.3. PHENIX measured the medium modification of
the ϒ family (1S + 2S + 3S) yield in d + Au collisions
at

√
sNN = 200 GeV [53]. The result is consistent with no

modification within the large statistical uncertainties at x2 ∼
10−2 and presents a one-standard-deviation suppression at
x2 ∼ 0.2, which is consistent with the Fermilab results and the
STAR experiment at midrapidity in d + Au collisions [54].
The RHIC results can be accounted for by a combination
of initial-state effects, calculated by the parton modification
function EPS09 [11], and quarkonium breakup when crossing
the cold nuclear matter.

QGP effects on ϒ production were studied at the LHC by
the CMS experiment [55] using Pb + Pb collisions at

√
sNN =

2.76 TeV. The excited state ϒ(2S) is more suppressed than
the ϒ(1S) and the ϒ(3S) state is not seen in CMS data. This
is qualitatively consistent with expectations of the effects of
color screening from several models discussed earlier. The
question which arises is whether or not the suppression also
happens at lower energies and in an environment with a much
smaller number of bottom quarks present in the medium.

This paper reports the measurement of the inclusive
ϒ(1S + 2S + 3S) yield at |y| < 0.35 in Au + Au collisions
at

√
s = 200 GeV. Section II describes the experimental

apparatus and the data sample used in the measurement.
Section III details the signal extraction, detector response, and
systematic uncertainties involved in this measurement. The
results and comparisons with other measurements and models
are presented in Sec. IV. The final conclusions are presented
in Sec. V.

II. EXPERIMENTAL APPARATUS AND DATA SET

The PHENIX experiment measures quarkonia at midrapid-
ity through their dielectron decays with the two-arm central
spectrometers [56] shown in Fig. 2. The central-arm detectors
measure electrons, photons, and hadrons over pseudorapidity
of |η| < 0.35 with each arm covering azimuthal angle �φ =
π/2. Charged-particle tracks in the central arms are recon-
structed using the drift chambers (DCs), the pad chambers,
and the collision point. Electron candidates are selected using

FIG. 2. (Color online) The PHENIX Central Arm Spectrometers
for the 2010 data-taking period.

information from the ring-imaging Čerenkov detector (RICH)
and the electromagnetic calorimeter (EMCal) [39]. The total
radiation length before the DC during the 2006 p + p run
was 0.4%. During the 2010 Au + Au run more material was
introduced from the hadron blind detector (HBD), which added
2.4% radiation lengths to what the detector had in 2006. In the
2010 run, the magnetic field configuration was also modified to
cancel the field in the HBD volume, decreasing the momentum
resolution by about 25%.

Beam interactions were selected with a minimum bias (MB)
trigger that requires at least one hit (two in Au + Au collisions)
per beam crossing in each of the two beam-beam counters
(BBCs) placed at 3.0 < |η| < 3.9. In the Au + Au data set, this
was the only trigger used. A dedicated EMCal-RICH trigger
(ERT) was used in coincidence with the MB trigger during the
2006 p + p data acquisition. The ERT required a minimum
energy in any 2 × 2 group of EMCal towers, corresponding to
�η × �φ ≈ 0.02 × 0.02 rad, plus associated hits in the RICH.
The minimum EMCal energy requirement was 400 MeV for
the first half of the run and 600 MeV for the second half.

The collision point along the beam direction was deter-
mined with a resolution of 1.5 cm in p + p collisions and
0.5 cm in Au + Au collisions by using the difference between
the time signals measured between the two BBC detectors.
The collision point was required to be within ±30 cm of
the nominal center of the detector in p + p collisions and
±20 cm in Au + Au collisions. The 2006 data sample was
taken from Npp = 143 × 109 MB events, corresponding to an
integrated luminosity of 6.2 pb−1. The 2010 data sample was
obtained from NAuAu = 5.41 × 109 MB events, corresponding
to 0.9 nb−1.

In p + p collisions, electron candidates were identified
by requiring at least one fired phototube within an annulus
3.4 < Rring [cm] < 8.4 centered in the projected track position
on the RICH. The RICH is filled with a CO2 radiator at 1
atm. Pions with momentum larger than 4.8 GeV/c can also
produce Čerenkov light in the RICH. Electron candidates are
also required to be associated with an energy cluster in the

024913-5



A. ADARE et al. PHYSICAL REVIEW C 91, 024913 (2015)
co

un
ts

0

10

20

30

40  from unlike-sign pairs±e
 from like-sign pairs±e

(a)
>5 GeV/c

T
p

p+p

E/pσ[(E/p)-1]/
-10 -8 -6 -4 -2 0 2 4

ne
t c

ou
nt

s

-10

0

10

20 (b)background subtracted
±expected distribution from pure e

co
un

ts

0

10

20

30

40

50 (c)Au+Au

E/pσ[(E/p)-1]/
-10 -8 -6 -4 -2 0 2 4

ne
t c

ou
nt

s

-10

-5
0

5

10

15

20 (d)

FIG. 3. (Color online) Distribution of the parameter used to identify electrons with the EMCal. E/p is the ratio between the energy deposited
by the particle in the EMCal cluster and its momentum, σE/p is the variance of the expected energy/momentum expected for electrons. The
sample shown in (a) from p + p collisions and (c) from Au + Au collisions is from unlike-sign electron pairs (containing signal + combinatorial
background) and like-sign pairs (containing only background). Panels (b) and (d) are the background-subtracted distributions along with the
expected line shape from pure electrons.

EMCal that falls within the 4σposition of the projected track
position and within 4σE/p of the expected energy/momentum
ratio for electrons, where σ represents one standard deviation
in the position and energy + momentum resolution of the
EMCal + DC determined using electrons from fully recon-
structed Dalitz decays. Figure 3 shows the distribution of the
parameter used to select electrons in the EMCal using electron
candidates used in high-mass dielectrons with pT > 5 GeV/c,
above the Čerenkov threshold. Hadron contamination appears
as an enhancement of this distribution for negative values.
The distribution, after subtracting the background mainly
composed of hadrons, represents a clean sample of electrons
for (E/p) − 1 < 4σE/p.

In the Au + Au analysis, the cuts were optimized by looking
at the parameters in the detector simulations using generated
ϒ → e+e− decays embedded into real data for the signal and
the real data like-sign dielectrons as a background. As a result
of the optimization, we require the following:

(i) at least two fired phototubes within an annulus
3.4 < Rring [cm] < 8.4 centered in the projected track
position on the RICH;

(ii) χ2/npe0 < 25, a variable defined as χ2-like shape
of the RICH ring associated with the track over the
number of photoelectrons detected in the ring;

(iii) the displacement between the ring centroid and the
track projection should be smaller than 7 cm;

(iv) EMCal cluster-track matching should be smaller than
3σposition;

(v) EMCal cluster energy/momentum ratio should be
larger than −2.5σE/p.

These tighter cuts allowed a better hadron rejection, as can be
seen in Fig. 3(c) compared to the p + p sample in Fig. 3(a).

Figure 4 shows the reconstructed invariant mass distribution
for the three ϒ states from PHENIX detector simulations
in the 2006 p + p run configuration and in 2010 Au + Au
configuration. The detector is not able to separate the three
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FIG. 4. (Color online) Invariant mass distribution of simulated
ϒ(1S + 2S + 3S) using the PHENIX detector simulation and relative
ϒ yields from CDF experiment [47] in the 2006 run (a) and the 2010
run (b) detector configurations.
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states and a single peak should be observed. In the 2010
detector configuration the addition of more material in the
detector introduced more bremsstrahlung for the electrons
increasing the low-mass tail of the peaks.

III. ANALYSIS PROCEDURE

A. Dielectrons from ϒ in the central arms

The invariant mass was calculated for all electron pairs.
Dielectron contributions to ϒ decays are clearly identified as
a peak in the unlike-sign invariant mass distributions around
the ϒ mass range 8.5 < Mee [GeV/c2] < 11.5 (Fig. 5). There
were 12 unlike- and one like-sign dielectron within this mass
region from the p + p sample. In the Au + Au sample there
were 22 unlike- and 3 like-sign pairs in the same mass region.

Figure 6 shows the p + p dielectron mass spectrum over
an extended mass region after the like-sign distribution (used
to estimate combinatorial background) has been subtracted
from the unlike-sign data. Figure 7 shows the same invariant
mass spectrum in the ϒ mass region for p + p and Au + Au
data. The line shape of the ϒ mass peak determined from
simulations (Fig. 4) cannot be validated by the real data given
the low statistics in both p + p and Au + Au samples. In
addition, the relative contributions from different ϒ states are
unknown in Au + Au data. The number of ϒ counts was
determined from a direct count of unlike-sign and like-sign
dielectrons in the ϒ mass region and the fraction of correlated
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FIG. 5. (Color online) Invariant mass distribution of unlike-sign
and like-sign dielectrons in the ϒ mass region taken from p + p (a),
and Au + Au collisions (b).
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FIG. 6. (Color online) Fitted components to the correlated di-
electron mass spectrum in the p + p sample. The bands correspond
to the uncertainties obtained from the fit, changes in the heavy flavor
generator, and theoretical uncertainties in the Drell-Yan contribution.

background fcont in the same mass range. Given the low counts
for the signal and background, Poisson statistics precludes
the use of a simple subtraction. Therefore, the ϒ signal is
determined from

Nϒ = 〈s〉P (1 − fcont), (1)

where 〈s〉P is the average signal from a joint Poisson
distribution from the foreground unlike-sign f and background
like-sign b dielectron counts in the ϒ mass region [39],

P (s) =
f∑

k=0

(b + f − k)!

b!(f − k)!

1

2

(
1

2

)b+f −k
ske−s

k!
, (2)

and the statistical uncertainty corresponds to one standard
deviation of the P (s) distribution.

B. Estimation of the continuum contribution

The correlated background underneath the ϒ region is
determined from fits of the expected mass dependence of
Drell-Yan, correlated electrons from B meson decays, and
possible contamination of hadrons within jets.

The Drell-Yan contribution was estimated from next-to-
leading order (NLO) QCD calculations [57]. These calcula-
tions are known to reproduce lower- and higher-energy data
at Fermilab [58,59]. The calculated cross section was used to
generate dielectrons propagated through the GEANT [60] based
detector simulation. The Drell-Yan contribution is modified
by isospin and initial-state effects in Au + Au collisions.
After calculating the Drell-Yan cross section for p + n and
n + n collisions, we found that the Au + Au cross section
per binary collision is fiso = 89% of that of p + p collisions
because of the isospin effect. The initial-state effects were
accounted for by using a parton modification factor from the
EPS09 parametrization, RDY

q (Q2,x1,x2), for both Au nuclei.
The expected Drell-Yan yield in Au + Au collisions (Y AuAu

DY )
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FIG. 7. (Color online) Fits to the correlated dielectron mass distribution around the ϒ region obtained in p + p collisions (a) and Au + Au
collisions in three centrality bins (b),(c),(d). The bands correspond to fitting and theoretical uncertainties for the Drell-Yan estimation. Fitting
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relative to the yield in p + p collisions (Ypp
DY) is

Y AuAu
DY (Mee)

Ncoll
= Y

pp
DY (Mee) fisoR

DY
q (Q2,x1,x2), (3)

where Ncoll is the number of binary collisions. Q2, x1, and
x2 are taken event by event from a PYTHIA simulation [61].
Theoretical uncertainties from the NLO calculation, EPS09
quark modification factor [RDY

q (Q2,x1,x2)] and overall detec-
tor response were accounted for in the Drell-Yan contribution.

The line shape of the correlated high-mass dielectron
distribution from heavy flavor decays in p + p collisions was
studied in detail in Ref. [39]. Two approaches were used: (1)
a dielectron generator using the measured pT distribution of
single electrons from heavy flavor with a random opening
angle and (2) a heavy flavor simulation from PYTHIA in the
hard scattering mode to emulate NLO contributions. Both
generated dielectron distributions were introduced into the
detector simulation and reconstructed like the real data. The
mass distribution from heavy flavor decays was normalized
according to a fit to the dielectron spectrum starting at
an invariant mass at 1.7 GeV/c2, thus including the J/ψ
and the ψ ′ peaks. Figure 6 shows the overall dielectron fit
extended to the ϒ region. The uncertainty bands represent
the quadratic sum of the fit uncertainties and the differences

between approaches (1) and (2). The Drell-Yan band represents
the quadratic sum of theoretical uncertainties and detector
response uncertainties. The extrapolation of the heavy flavor
contribution to the ϒ mass range 8.5 < Mee [GeV/c2] < 11.5
in p + p data yields 0.29 ± 0.12 counts, which corresponds
to 3.9 ± 1.7 pb. The PYTHIA simulation, including parton
shower terms, yields an estimate that the correlated bottom
contribution in this mass range is 3.2 pb, in agreement with
the fit extrapolated result.

Jets can contribute to the correlated background in two
ways: Dalitz decays from π0 pairs within the jet and correlated
hadron pair contamination. For a π0 pair to produce a
correlated electron pair in the ϒ mass region, each of the π0’s
should have a transverse momentum larger than the mass of
the ϒ , which is a possibility ruled out by the current statistics.
Figure 3 shows an insignificant hadron contamination in
the high-mass dielectrons in p + p data after combinatorial
background subtraction. Hadron contamination was found
to be negligible within uncertainties. Contributions from
electron-hadron correlations are also assumed to be negligible.

The resulting continuum fraction in the selected mass
range is f

pp
cont = 13 ± 4% in the p + p sample. The continuum

fraction was also determined with a maximum likelihood fit
using the combinatorial background, Drell-Yan, B meson, and
ϒ line shapes with free parameters for their scales, except
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TABLE III. Summary of values used in BdN/dy (5) and RAA (7) calculations.

Value p + p Au + Au 0%–92% Au + Au 0%–30% Au + Au 30%–92%

Nunlike − Nlike 10.5+3.7
−3.6 18.3+5.0

−5.2 11.2+3.8
−4.0 6.4+3.3

−3.5

fcont 0.13 ± 0.04 0.216 ± 0.045 0.270 ± 0.063 0.186+0.065
−0.060

NBBC × 109 143 5.40 1.62 3.35
c 0.70 1 1 1
Acc × ε (1.64 ± 0.25)% (0.65 ± 0.13)% (0.58 ± 0.11)% (0.96 ± 0.18)%
Ncoll 1 258 ± 25 644 ± 63 72 ± 7
Npart 2 109 ± 4 242 ± 4 45 ± 2

the combinatorial background which has a fixed scale. The
total continuum found in this manner was consistent with that
estimated with a fixed Drell-Yan scale. The fit (without any
hadron contribution) provides a good description of the mass
distribution.

We cannot calculate the continuum contributions in Au +
Au collisions in the same way as we do for p + p collisions
given the unknown nuclear modification of bottom quarks.
Contributions from correlated hadrons may also start to be
significant in a high-occupancy environment. We thus perform
a fit to separate the continuum background from the ϒ signal.
The dielectron spectrum is described by the function

f (m) = NlikeYlike(m) + YDY(m) +Nbb̄,jetYbb̄,jet(m) +Yϒ (m),

Nlike = 2
√

Ne+e+Ne−e−∫
Ylike (m) dm

,

Nbb̄,jet =
[
Ncont −

∫ mhigh

mlow

YDY(m)dm

]
,

Yϒ (m) = Ng√
2πσg

exp

[
−1

2

(
m − 9.5

σg

)2]
, (4)

where Nlike ∼ 1 is the normalization of the like-sign distribu-
tion [36], Ne+e+ + Ne−e− = 2613 is the number of like-sign
dielectron pairs over the mass range 5 < Mee [GeV/c2] < 15,
Ylike(m) is the like-sign dielectron mass distribution from real
data which account for the combinatorial background and a
fraction of the correlated background, YDY(m) is the Drell-Yan
contribution as calculated in Eq. (3), mlow = 8.5 GeV/c2

and mhigh = 11.5 GeV/c2 define the mass range used in the
continuum normalization, Ncont is the continuum contribution
in the ϒ mass region, Yϒ (m) is a Gaussian function accounting
for the ϒ peak, where σg is the effective peak width of all three
ϒ states combined, and Ybb̄,jet(m) is a function normalized
in the ϒ mass range which accounts for the correlated open
bottom and hadrons from jets. We assumed both a power law
and an exponential function for the correlated bottom and jet
contributions

Ybb̄,jet(m) =
{

(α + 1)mα
/(

mα−1
high − mα−1

low

)
,

αeαm/(eαmhigh − eαmlow ).

The parameters Ncont, α, Ng, and σg were fit to the unlike-
sign dielectron spectrum between 5 and 16 GeV/c2 using
a maximum likelihood method. Figure 7 shows the f (m) −
NlikeYlike(m) fitting result assuming a power law function for
the bottom-jet contribution. The bands represent the fit and

theoretical uncertainties. The continuum estimate changes by
up to 0.9% depending on the choice of the bottom + jet
contribution function [Ybb̄,jet(m)]. Table III lists the number
of net counts and the continuum fraction for p + p and
three centrality ranges in the Au + Au data. The fraction of
continuum in Au + Au data obtained from these fits was found
to be larger than in p + p data. This may reflect that the nuclear
modification of Drell-Yan in Au + Au is small compared to
the ϒ yield modification.

C. Mass cut efficiency

The ϒ count is all made in the mass range 8.5 <
Mee [GeV/c2] < 11.5. The reconstructed ϒ family peaks may
have some contribution at masses out of this range. According
to the detector simulation using the CDF results [50] for the
relative yields, the mass range 8.5 < Mee [GeV/c2] < 11.5
contains a fraction εmass = 0.94 ± 0.05 of the ϒ(1S + 2S + 3S)
yield in the 2006 p + p data set. The uncertainty of this
estimate comes from the mass fit to the p + p data and from the
difference between real data and simulations. In the Au + Au
analysis, the evaluation of the detector occupancy effect on
the efficiency included the mass cut used in the analysis.
Variations in the detector mass resolution during this study
indicate a systematic uncertainty in the mass cut efficiency
of 6% in Au + Au data. The number of ϒ counts has a 2%
variation when the normalization of the like-sign dielectrons
(Nlike) is taken from different mass ranges. This is assigned as
a systematic uncertainty on the yield.

D. Detector response

The GEANT-based detector simulation was tuned as de-
scribed in Ref. [39]. The acceptance and efficiency in this
analysis was obtained from ϒ(1S + 2S + 3S) dielectron
decays generated by PYTHIA, requiring that they fall into a
rapidity range of |y| < 0.5. The relative yield between ϒ
states were taken to be those reported by CDF [50]. This same
detector simulation was used to estimate the detector response
for the heavy flavor and Drell-Yan background line shapes, as
described in the previous section.

In the p + p sample, the overall acceptance and efficiency
Acc × ε for ϒ’s calculated from simulations was found
to be (2.33 ± 0.23)% in the |y| < 0.5 rapidity region. The
uncertainty of this estimate is from variations in the detector
performance during the run, mismatches between the detector
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simulation and the detector activity in real data, and variations
of the pT shape introduced in simulation [Fig. 8(a)].

The BBC trigger samples a cross section of σpp × εBBC =
23 ± 2.2 mb in p + p collisions, according to Vernier scans
[63]. However, it samples a larger fraction of the cross section
when the collision includes a hard scattering process. Studies
with high-pT π0 yields showed an increase of the luminosity
scanned by the BBC by a factor of 1/εBBChard , εhard

BBC = (0.79 ±
0.02) [64]. In Au + Au data the BBC scans 92 ± 3% of the
total Au + Au inelastic cross section and there is no bias from
hard scattering (εhard

BBC = 1). The EMCal-RICH trigger (ERT)
efficiency of dielectrons was found to be (79.6 ± 3.6)% in the
p + p sample when emulating the ERT in MB data. The ERT
was not used for the Au + Au data.

In the Au + Au data, the electron identification cuts
were tighter, resulting in a calculated acceptance and ef-
ficiency Acc × ε = 1.41 ± 0.05% [point at 85% centrality
in Fig. 9(b)]. To quantify additional inefficiencies from the
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FIG. 9. Dependence of the acceptance × efficiency for detected
ϒ dielectron decays in p + p and Au + Au collisions on (a) trans-
verse momentum in 0%–92% centrality and (b) collision centrality.
The bars represent statistical uncertainties in the simulation.

detector occupancy, the raw detector signal from simulated
ϒ dielectron decays was embedded in real raw data. The
simulated ϒ was generated at the same collision point
measured in the real event. The reconstruction, fitting, and
mass cuts of the embedded data were the same as those used in
real data analysis. The pT and collision centrality dependence
of the resulting fraction of ϒ counts in the reconstructed
embedded data are shown in Fig. 9. The big difference between
the detector efficiency obtained in p + p data and peripheral
Au + Au reflects the tight cuts needed in Au + Au because
of the larger occupancy and additional material in front of the
detector in the 2010 run.

Because we do not have the statistic precision to determine
the transverse momentum distribution of the ϒ , we must
employ models for the pT dependence to determine an
overall acceptance and efficiency. Five functions were used
for the pT distribution: a shape from generated ϒ decays in
PYTHIA, a prediction from the color evaporation model [62],
and three fitted functions f (pT ) to the acceptance corrected
real data distribution (Fig. 8). The pT integrated acceptance
and efficiency is determined by an average using the pT

dependence shown in Fig. 9 and these functions as weights.
The difference between these calculations and the default

TABLE IV. Summary of the relative systematic uncertainties
involved in BdN/dy calculations.

Systematic Uncertainty

p + p (%) Au + Au (%)

Acceptance 7.5 7.0
Electron identification 1.1 5.0
Simulation input 7.8 7.9
Mass cut efficiency 6.3 5.0
Continuum contribution 5 5.8–8.6
Acceptance fluctuation 7.3 14.0
ERT efficiency 4.5 NA
Occupancy effect NA 2.0–7.5
Combinatorial background 2.0 2.0

Total 16.1 20.7–21.2
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TABLE V. Summary of the measured ϒ invariant multiplicities,
BdN/dy, for one p + p three Au + Au data sets.

Centrality (%) BdN/dy

p + p (×109) 2.7 ± 0.9(stat) ± 0.4(syst)

0–92 (×107) 4.1+1.1
−1.2(stat) ± 0.9(syst)

0–30 (×107) 8.7+2.9
−3.1(stat) ± 1.8(syst)

30–92 (×107) 1.6+0.8
−0.9(stat) ± 0.3(syst)

weighing using PYTHIA as an input is within 7.8% in p + p
and 7.9% in Au + Au samples.

The final values for the efficiency in our wide centrality
bins are also sensitive to the true centrality dependence of
the ϒ production. To estimate this systematic uncertainty we
assume two different centrality dependence models: (1) binary
collision scaling and (2) participant collision scaling. Within
our centrality ranges, we find that these two models yield less
than a 7% difference and we include this in our occupancy
systematic uncertainty.

IV. RESULTS

The ϒ → e+e− invariant multiplicity at midrapidity,
BdN/dy, is calculated by

B
dN

dy
= 1

�y

Nϒ

(NBBC/c)Accε
, (5)

where B is the dielectron branching ratio, Nϒ is the number
of ϒ candidates in the data set as defined in (1), �y = 1
corresponds to the rapidity range used in simulation (±0.5),
NBBC is the number of analyzed events, c = εBBC/εhard

BBC is a
correction factor accounting for the limited BBC efficiency
and the trigger bias present in events which contain a hard
scattering in p + p collisions as explained in Sec. III D, Acc
is the ϒ acceptance and ε is the ϒ reconstruction efficiency
which includes the ERT efficiency. Table III summarizes
the numbers used to calculate the ϒ yields using Eq. (5).
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FIG. 10. (Color online) Rapidity dependence of ϒ(1S + 2S +
3S) yield measured by PHENIX, forward rapidity result from [53],
and STAR midrapidity from [54]. The dashed line is a Gaussian
function fitted to the points. The points at zero rapidity are shifted for
clarity.
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collisions [49,52,54,65–72]. The curve is the estimation using the
color evaporation model [62].

Table IV details the systematic uncertainties involved in the
yield calculation. The resulting invariant multiplicities are
reported in Table V.

The ϒ(1S + 2S + 3S) cross section in p + p collisions is

B
dσϒ

dy

∣∣∣∣
|y|<0.5

= B
dN

dy
× σpp

= 108 ± 38(stat) ± 15(syst) ± 11(lum) pb,

(6)

where σpp = 42 mb is the p + p inelastic cross section at√
s = 200 GeV.
Figure 10 shows the rapidity dependence of ϒ measured

in p + p collisions by PHENIX in the mid- (this analysis)
and forward rapidities [53] and the STAR result at midrapidity
[54]. Figure 11 presents the collision energy dependence of
the differential cross section at midrapidity along with a
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FIG. 12. (Color online) The Ncoll normalized invariant yield of
ϒ’s produced during the 2006 p + p and the 2010 Au + Au
operations, as a function of Npart.
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TABLE VI. Summary of the measured ϒ nuclear modification
factors, RAA, for Au + Au data sets.

Centrality (%) RAA

0–92 0.58 ± 0.17(stat) ± 0.13(syst) ± 0.23(global)

0–30 0.50 ± 0.18(stat) ± 0.11(syst) ± 0.20(global)

30–92 0.84+0.45
−0.48(stat) ± 0.18(syst) ± 0.34(global)

NLO calculation using the color evaporation model for the
bottomonium hadronization [62].

In addition to the Au + Au 0%–92% centrality sample, we
present data in two centrality bins, 0%–30% most central,
and 30%–92% most central. Using a Monte Carlo simulation
based on the Glauber model in Ref. [73], we estimated Ncoll,
the average number of binary nucleon-nucleon collisions, and
Npart, the average number of participants, for all data samples.
Figure 12 shows the Ncoll normalized invariant yield of ϒ
decays as a function of the number of participants. For central
Au + Au collisions, we observe a reduction of the yield relative
to a pure Ncoll xoscaling that is typical of hard scattering
processes.

The nuclear modification factors for the binned and inte-
grated 0%–92% centrality data set (RAA) were calculated as

RAA = dN/dyAuAu

〈Ncoll〉dN/dypp
(7)

and are reported in Table VI. A global uncertainty of 40% is
obtained from the quadratic sum of the relative uncertainty
from 38% p + p data (statistical + systematic) and 12%
from the Glauber estimate of the number of collisions.
We assume that none of the systematic uncertainties are
correlated between p + p and Au + Au samples given the
different collision environment and changes in the detector
configuration between the 2006 and 2010 runs, namely, active
area differences and the installation of the HBD in 2010, which
increased the radiation length from 0.4% to 2.8%.
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FIG. 13. (Color online) Nuclear modification factor for centrality
binned data plotted as a function of Npart.

TABLE VII. ϒ(1S + 2S + 3S) RAA expected when the excited
states are completed suppressed in Au + Au collisions along with the
measured result in the 30% most central collision regime. Estimations
based on Tables I and II.

RAA

No 2S or 3S 0.65 ± 0.11
No 2S, 3S, or χB 0.37 ± 0.09
Measured 0.50 ± 0.18(stat) ± 0.11(syst) ± 0.19(global)

If the ϒ(1S + 2S + 3S) yield for Au + Au collisions is
equal to the yield for p + p collisions times the number of
binary collisions in Au + Au collisions, then RAA = 1 and
there are no nuclear modification effects. Figure 13 shows the
RAA as a function of the number of participants for the two
centrality-split classes. The inclusive ϒ states are suppressed
in central 200-GeV Au + Au collisions, corresponding to large
Npart. However, the degree of suppression in semiperipheral
collisions is unclear, owing to limited statistics.

In most central events, the suppression is comparable to
what is observed in p(d) + A collisions [46,51–53]. Based
on the lattice calculations discussed before, the bottomonia
excited states should be completely dissociated in the core
of Au + Au collisions at RHIC. Table VII summarizes what
would be the RAA observed in this study in case the only
nuclear-matter effect observed is the complete suppression of
these excited states. The estimation is based on the composition
of the ϒ states measured and the decays to the ϒ(1S) reported
in Tables I and II. The RAA obtained in this analysis is
consistent with the suppression of excited states if other initial-
and final-state effects are ignored.

The result presented in this work agrees with that of
the STAR experiment at the same energy [54]. The CMS
experiment reported centrality-dependent nuclear modifica-
tion factors for the separated ϒ(1S) and ϒ(2S) states at√

sNN = 2.76 TeV in Pb + Pb collisions at the LHC [55]. CMS
also reported an upper limit of RAA[ϒ(3S)] of 0.10 at the 95%
confidence level. Figure 14 compares the observed inclusive
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FIG. 15. (Color online) A comparison of PHENIX data to the
model from Ref. [74] for the strong binding scenario.

ϒ(1S + 2S + 3S) nuclear modification factor observed by
PHENIX with STAR and the inclusive ϒ(1S + 2S) measure-
ment by CMS at higher energy, showing that the observed
nuclear modification factors are very similar at the two quite
different energies.

Additionally, it is important to compare the measurements
to various model predictions. A model by Rapp et al. has
frequently been used to interpret J/ψ production [74]. It uses
a rate-equation approach, which accounts for both suppression
from cold nuclear matter, color screening of excited states
(seen in Fig. 1), and regeneration mechanisms in the QGP
and hadronization phases of the evolving medium. This study
looked at two scenarios. The first is the strong binding scenario
where the bottomonium binding energy was not affected by the
presence of the QGP, remaining at the values found in vacuum,
and is shown in Fig. 15. The other is the weak binding scenario
where the bottomonium bound-state energies are significantly
reduced in the QGP, relative to the vacuum state, adopting the
screened Cornell-potential results of Ref. [75] and is shown in
Fig. 16. Our data, albeit with large statistical uncertainties, are
consistent with both versions of this model.
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FIG. 16. (Color online) A comparison of PHENIX ϒ data to the
model from Ref. [74] for the weak and strong binding scenarios.
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FIG. 17. (Color online) Centrality-dependent RAA compared to
model predictions from Strickland and Bazow [76].

More recently, two new models were suggested by Strick-
land and Bazow [76] based on the potential model [75],
with the addition of an anisotropic momentum term. Models
A and B are identical, except for an additional term in
Model B, which adds an entropy contribution to the free
energy. Figure 17 shows the PHENIX measurement along
with the two model predictions, each with a variety of values
for the ratio of the shear viscosity to the entropy density.
No definitive statement can be made regarding the shear
viscosity. However, the extreme potential B case appears to be
favored.

V. CONCLUSIONS

In summary, we have studied the production of the
sum of ϒ states 1S, 2S, and 3S at

√
sNN = 200 GeV

in the midrapidity region. The dielectron channel differen-
tial cross section in p + p collisions is Bdσ/dy = 108 ±
38 (stat) ± 15 (syst) ± 11 (luminosity) pb. The nuclear modi-
fication seen in Au + Au MB collisions is 0.58 ± 0.17 (stat) ±
0.13 (syst) ± 0.23 (global), whereas it is 0.84+0.45

−0.48 (stat) ±
0.18 (syst) ± 0.34 (global) in the midperipheral events and
0.50 ± 0.18 (stat) ± 0.11 (syst) ± 0.20 (global) in the 30%
most central events. The nuclear modification is consistent
with the complete suppression of the bottomonium excited
states [ϒ(2S), ϒ(3S), and χB], in qualitative agreement
with most calculations as compiled in Fig. 1, assuming no
cold nuclear-matter effects. There are several detailed model
calculations that show good agreement with our measured
modifications. The nuclear modification factors measured by
PHENIX are similar to measurements by STAR at the same
energy and by CMS at much higher energy,

√
sNN = 2.76 TeV.
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