High-K isomers in transactinide nuclei close to N=162

Prassa, Vaia; Lu, Bing-Nan; Nikšić, Tamara; Ackermann, D.; Vretenar, Dario

Source / Izvornik: Physical Review C - Nuclear Physics, 2015, 91

Journal article, Published version Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevC.91.034324

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:112092

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-01-21

Repository / Repozitorij:

Repository of the Faculty of Science - University of Zagreb

High-*K* isomers in transactinide nuclei close to N = 162

V. Prassa,¹ Bing-Nan Lu,² T. Nikšić,¹ D. Ackermann,³ and D. Vretenar¹

¹Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

²Institut fur Kernphysik, Institute for Advanced Simulation, and Jülich Center for Hadron Physics,

Forschungszentrum Jülich, D-52425 Jülich, Germany

³GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291 Darmstadt, Germany

(Received 14 January 2015; revised manuscript received 2 March 2015; published 23 March 2015)

We extend our recent study of shape evolution, collective excitation spectra, and decay properties of transactinide nuclei [V. Prassa, T. Nikšić, and D. Vretenar, Phys. Rev. C 88, 044324 (2013)], based on the microscopic framework of relativistic energy density functionals, to two-quasiparticle (2qp) excitations in the axially deformed Rf, Sg, Hs, and Ds isotopes, with neutron number N = 160-166. The evolution of high-*K* isomers is analyzed in a self-consistent axially symmetric relativistic Hartree-Bogoliubov calculation using the blocking approximation with time-reversal symmetry breaking. The occurrence of a series of low-energy high-*K* isomers is predicted, in particular the 9_{ν}^{-} in the N = 160 and N = 166 isotopes, and the 12_{ν}^{-} in the N = 164 nuclei. The effect of the N = 162 deformed-shell closure on the excitation of 2qp states is discussed. In the N = 162 isotones we find a relatively low density of 2qp states, with no two-neutron states below 1.6 MeV excitation energy and two-proton states at ≈ 0.5 MeV higher energy than the lowest 2qp states in neighboring isotopes. This is an interesting result that can be used to characterise the occurrence of deformed shell gaps in very heavy nuclei.

DOI: 10.1103/PhysRevC.91.034324

PACS number(s): 21.60.Jz, 21.10.Gv, 21.10.Hw, 27.90.+b

I. INTRODUCTION

Relatively long-lived elements beyond the actinides owe their existence to the underlying single-nucleon shell structure. Nuclei in this region often display axially deformed equilibrium shapes and intruder single-nucleon states with high- Ω values (projection of the single-particle angular momentum onto the symmetry axis of the nucleus) appear close to the Fermi level. The unpaired quasiparticle excitations form isomeric states with high values of total $K = \sum_i \Omega_i$ [2]. Because they can only decay by K-forbidden transitions, these states have lifetimes that are significantly longer than most of the neighboring states. The decay of isomeric states provides information on the nuclear wave function, singlenucleon states, pairing gaps, and residual interactions [3]. Systematic experimental efforts in the region of very heavy nuclei have produced detailed spectroscopic data in nuclei around ²⁵⁴No [4–8]. In addition to the detection of α and γ decays, recent studies have made use of conversion electrons (CE) to investigate possible K-isomeric states in heavy high-Znuclei such as, for instance, ²⁵⁶Rf, in which internal conversion becomes the preferred decay mode [9,10]. The heaviest nuclei for which characteristic high-K isomeric decays have been investigated are ²⁷⁰Ds and its α -decay daughter ²⁶⁶Hs [11,12].

Theoretical studies of quasiparticle excitations in the region of transactinide nuclei have been based on the microscopic-macroscopic approach [13–24], self-consistent models with Skyrme functionals [25–30], the Gogny force [31–33], and relativistic energy density functionals [1,34–38].

In the study of Ref. [1] we used a microscopic theoretical framework based on relativistic energy density functionals (REDFs) to analyze shape evolution, collective excitation spectra, and decay properties of transactinide nuclei. Axially symmetric and triaxial relativistic Hartree-Bogoliubov (RHB) calculations [36,39], based on the functional DD-PC1 [40] and with a separable pairing force of finite range [41,42], were carried out for the even-even isotopic chains between Fm and Fl. The occurrence of a deformed shell gap at neutron number N = 162 and its role on the stability of nuclei in the region around Z = 108 was investigated. A quadrupole collective Hamiltonian, with parameters determined by selfconsistent constrained triaxial RHB calculations, was used to examine low-energy spectra of No, Rf, Sg, Hs, and Ds with neutron number in the interval $158 \le N \le 170$. In particular, we explored the isotopic dependence of several observables that characterize the transitions between axially symmetric rotors, γ -soft rotors, and spherical vibrators. The ratio $R_{4/2}$ of excitation energies of the yrast states 4_1^+ and 2_1^+ , the ratio of reduced transition probabilities $R = B(E2; 4_1^+ \rightarrow$ $2_1^+)/B(E2; 2_1^+ \rightarrow 0_1^+), B(E2)$ values for transitions within the ground-state band, and the level of K-mixing as reflected in the energy staggering between odd- and even-spin states in the (quasi-) γ bands, clearly show that all five isotopic chains display minimal variation from the axial rigid-rotor limit in the interval N = 158-166. For neutron numbers $N \ge 168$ their potential energy surfaces become more γ -soft. This is also reflected in the characteristic observables of rotational spectra.

As an illustration, in Fig. 1 we plot the self-consistent triaxial RHB energy surfaces in the β - γ plane (0° $\leq \gamma \leq 60^{\circ}$) for ^{268,270,272,274}Hs (Z = 108). For each nucleus energies are normalized with respect to the binding energy of the equilibrium deformation. The color code refers to the energy at each point on the surface relative to the minimum. Details of the calculation and the choice of effective interactions in the particle-hole (DD-PC1 [40]) and particle-particle (a pairing force separable in momentum space [41,42]) channels, are given in Refs. [1,35]. The energy surfaces of Hs isotopes,

FIG. 1. (Color online) Self-consistent RHB triaxial energy maps of even-even Hs isotopes in the β - γ plane ($0^{\circ} \leq \gamma \leq 60^{\circ}$). For each nucleus energies are normalized with respect to the binding energy of the absolute minimum.

already reported in [1], display pronounced prolate axial minima ($\gamma \approx 0^{\circ}$) near N = 162, and the evolution of γ -softness with increasing neutron number.

II. TWO-QUASIPARTICLE EXCITATIONS IN AXIALLY DEFORMED TRANSACTINIDES

The occurrence of isomeric states based on single-nucleon Nilsson orbitals, and characterized by the projection K of the total angular momentum on the symmetry axis, is associated with axially symmetric shapes and, in even-even nuclei, these states are formed through broken-pair (two-quasiparticle or four-quasiparticle) excitations [3]. In the present study, therefore, we extend the analysis of constrained mean-field energy surfaces and collective excitation spectra of Ref. [1], to two-quasiparticle excitations in the axially deformed isotopes of Rf (Z = 104), Sg (Z = 106), Hs (Z = 108), and Ds (Z = 110), with neutron number N = 160-166. We are particularly interested in the occurrence of high-K isomers and the effect of the N = 162 closure on the structure and distribution of two-quasiparticle (2qp) states.

Two-quasiparticle neutron or proton states are obtained in a self-consistent RHB calculation using the blocking approximation. Axially symmetric solutions are assumed but the calculation includes time-reversal symmetry breaking. The 2qp states are determined by blocking the lowest neutron or proton quasiparticle orbitals located in the vicinity of the Fermi energy that corresponds to the fully paired equilibrium solution. After performing the iterative minimization, the energy of the two-quasiparticle excitation is obtained as the difference between the energy of the self-consistent blocked RHB solution and the energy of the fully paired equilibrium minimum. The breaking of time-reversal symmetry removes

FIG. 2. Lowest two-quasiparticle states in Rf (upper panel) and Sg (lower panel) isotopes with neutron number N = 160-166. The 2qp states correspond to axially symmetric solutions obtained with the relativistic functional DD-PC1 and a pairing force separable in momentum space. The calculation includes time-reversal symmetry breaking.

the degeneracy between signature partner states with angularmomentum projection on the symmetry axis $K_{\min} = |\Omega_i - \Omega_j|$ and $K_{\max} = \Omega_i + \Omega_j$, and with parity $\pi = \pi_i \pi_j$.

Figures 2 and 3 display the excitation energies of twoquasiparticle $K_{\nu(\pi)}$ states for the Rf, Sg, Hs, and Ds isotopes with neutron number N = 160-166. The high density of single-particle levels close to the Fermi surface in ²⁶⁴Rf yields a number of quasiparticle excitations in the energy window below 1.8 MeV. Our calculation predicts the occurrence of the two-neutron isomeric states $K^{\pi} = 9_{\nu}^{-}$ and 2_{ν}^{-} at energies 0.76 MeV and 0.78 MeV, respectively, originating from the single-particle orbitals $\nu 7/2^+[613] \otimes \nu 11/2^-[725]$. The neutron orbitals $\nu 1/2^+$ [620] and $\nu 7/2^+$ [613] are coupled to form the states 4_{ν}^{+} and 3_{ν}^{+} at excitation energy close to 1 MeV. The proton 2qp states 5_{π}^{-} and 4_{π}^{-} occur at 1.21 MeV and 1.26 MeV, respectively, and correspond to the configuration $\pi 1/2^{-}$ [521] $\otimes \pi 9/2^{+}$ [624]. An interesting result, that can also be noticed in the three other isotopic chains considered in this study, is that the lowest two-quasiparticle states in the N = 162 isotones are predicted at considerably higher excitation energies. For the particular choice of the energy

Energy (MeV)

Energy (MeV)

 $0.8 \begin{bmatrix} 3^+ & 1^- & -4^$

isotopes of Hs (upper panel) and Ds (lower panel).

density functional and pairing interaction used in this and our previous study [1], the lowest two-quasiparticle states typically occur at ≈ 0.8 MeV, whereas in the N = 162 isotones the excitation energies of the lowest 2qp states are predicted at $E \ge 1.2$ MeV. For ²⁶⁶Rf, in particular, the doublet of states 5_{π}^{-} and 4_{π}^{-} states at energy 1.35 MeV originates from the twoproton configuration $\pi 1/2^{-}[521] \otimes \pi 9/2^{+}[624]$. The lowest two-neutron excitations occur at even higher energies: the 9^+_{μ} and 2_{ν}^{+} states at 1.60 MeV and 1.65 MeV, respectively, based on the high-j configuration $\nu 7/2^+[613] \otimes \nu 11/2^+[606]$. The occurrence of 2qp excitations in ²⁶⁸Rf already at energies ≈ 1 MeV is consistent with the increase of the singleparticle level density near the Fermi surface. The lowest-lying two-neutron excitations 12^-_ν and 1^-_ν are calculated at 0.95 and 1.08 MeV, respectively, and originate from the configuration $\nu 13/2^{-}[716] \otimes \nu 11/2^{+}[606]$. Blocking the orbitals $v13/2^{-}[716]$ and $v5/2^{+}[613]$ in ²⁷⁰Rf (N = 166), yields the lowest high-K isomeric state 9_{ν}^{-} and the state 4_{ν}^{-} , at E = 0.92and 1.02 MeV, respectively.

The lowest calculated two-quasiparticle isomers in Rf, Sg, Hs, and Ds isotopes are also listed in Table I in order of increasing excitation energies, together with the corresponding Nilsson configurations. Similarly to its isotone ²⁶⁴Rf, in ²⁶⁶Sg the lowest lying two-quasiparticle excitations are the 9^{-}_{ν} and

 2_{ν}^{-} , at 0.79 and 0.81 MeV, respectively, followed by 4_{ν}^{+} at 0.94 MeV and 3_{ν}^{+} at 0.96 MeV. In ²⁶⁸Sg, as a result of the neutron shell closure at N = 162, the lowest 2qp excitations are the proton states 7_{π}^{-} and 2_{π}^{-} at 1.32 and 1.33 MeV, respectively, originating from the Nilsson levels $\pi 5/2^{-}[512]$ and $\pi 9/2^{+}$ [624]. We note that for this nucleus the only two-neutron qp states, predicted below 1.8 MeV are the 9^+_{μ} and 2_{ν}^{+} ($\nu 11/2^{+}[606] \otimes \nu 7/2^{+}[613]$) at 1.70 and 1.74 MeV, respectively. The lowest 2qp state in 270 Sg is the high-K isomer 12_{ν}^{-} which, together with the partner state 1_{ν}^{-} , has its origin in the high-j orbitals $v11/2^+$ [606] and $v13/2^-$ [716]. At slightly higher excitation energies we find the sequence of states 8^+_{ν} and 3^+_{ν} ($\nu 5/2^+$ [613], $\nu 11/2^+$ [606]), followed by 9^-_{ν} and 4_{ν}^{-} ($\nu 5/2^{+}$ [613], $\nu 13/2^{-}$ [716]). In ²⁷²Sg the lowest 2qp configurations are $v5/2^+[613] \otimes v13/2^-[716]$ (9⁻_v and 4⁻_v), $\nu 9/2^+[604] \otimes \nu 13/2^-[716]$ (11⁻_{ν} and 2⁻_{ν}), $\nu 11/2^+[606] \otimes$ $\nu 13/2^{-}[716]$ (12⁻_v and 1⁻_v), and $\nu 5/2^{+}[613] \otimes \nu 11/2^{+}[606]$ $(8_{\nu}^{+} \text{ and } 3_{\nu}^{+}).$

In ²⁶⁸Hs the lowest-lying 2qp excitations are the signature partner levels 9_{ν}^{-} , 2_{ν}^{-} and 4_{ν}^{+} , 3_{ν}^{+} . The two configurations coincide in energy, with the aligned Ω states at 0.86 MeV and the anti-aligned ones at 0.88 MeV. In ²⁷⁰Hs, because of the deformed shell closure, the neutron two-quasiparticle states 9_{ν}^{+} and 2_{ν}^{+} are predicted at energies 1.65 and 1.69 MeV, respectively. The lowest-lying 2qp states calculated for ²⁷⁰Hs are the proton excitations 7^+_{π} and 2^+_{π} , with the structure of Nilsson orbitals $\pi 5/2^{-}[512] \otimes \pi 9/2^{-}[505]$. Consistent with the results obtained for Rf and Sg isotopes, ²⁷²Hs and ²⁷⁴Hs exhibit an increased density of two-quasiparticle states at low excitation energies. The dominant high-i orbitals from which these 2qp states originate are the $v13/2^{-}[716]$, $v11/2^{+}[606]$, and $\nu 5/2^{+}[613]$. ²⁷⁰Hs has been observed in the reaction 248 Cm(26 Mg, 4*n*). However, because of the low production cross section and consequently low number of observed events (three), no detailed spectroscopic data are available except for α decay energies and decay times [43].

Adding two more protons, the doublet 4^+_{ν} and 3^+_{ν} $(\nu 1/2^+[620] \otimes \nu 7/2^+[613])$ becomes the lowest 2qp excitation in the nucleus ²⁷⁰Ds, at energy ≈ 0.8 MeV. The partner levels 9_{ν}^{-} and 2_{ν}^{-} , which are the lowest 2qp states in the N = 160 Rf, Sg, and Hs isotopes, are calculated ≈ 200 keV higher in energy. The prediction of a high-K two-neutron quasiparticle configuration at energy ≈ 1 MeV is in agreement with the experimental observation of a two-neutron high-Kisomeric decay in ²⁷⁰Ds [11]. The calculation for ²⁷²Ds predicts the proton two-quasiparticle states 10^{-}_{π} and 1^{-}_{π} at energies 1.33 and 1.43 MeV, respectively, based on the configuration $\pi 9/2^{-}[505] \otimes \pi 11/2^{+}[615]$. Because of the N = 162deformed shell gap the two-neutron doublets 9_{ν}^{+} , 2_{ν}^{+} and 5_{ν}^{+} , 6_{ν}^{+} , appear only at higher excitation energies (1.5 MeV). ²⁷²Ds is the α -decay daughter of ²⁷⁶Cn, which could be produced in a similar way as ²⁷⁰Ds [11] via the reaction ²⁰⁷Pb(⁷⁰Sn, $(1n)^{276}$ Cn. An order of magnitude lower production cross section could be compensated by higher beam intensities at future linear accelerator facilities, e.g., the LINAG project presently under construction for SPIRAL2 [44], or the project for a high-intensity continuous wave machine at GSI [45]. In ²⁷⁴Ds and ²⁷⁶Ds the density of 2qp excitations is evidently enhanced, reflecting the increased number of neutron

TABLE I. Lowest calculated two-quasiparticle isomers in Rf, Sg, Hs, and Ds isotopes with neutron number N = 160-166. For a given configuration of Nilsson orbitals breaking of time-reversal symmetry removes the degeneracy between signature partner states with angular-momentum projection on the symmetry axis $K_{\min} = |\Omega_1 - \Omega_2|$ and $K_{\max} = \Omega_1 + \Omega_2$.

Nucleus	Configuration	$K = \Omega_1 + \Omega_2$		$K = \Omega_1 - \Omega_2 $	
		K^{π}	E (MeV)	$\overline{K^{\pi}}$	E (MeV)
²⁶⁴ Rf	$v7/2^+[613] \otimes v11/2^-[725]$	9_{v}^{-}	0.76	2_{ν}^{-}	0.78
	$\nu 7/2^+[613] \otimes \nu 1/2^+[620]$	4_{ν}^{+}	1.01	3_{ν}^{+}	1.03
	$\pi 1/2^{-}[521] \otimes \pi 9/2^{+}[624]$	5^{-}_{π}	1.21	4_{π}^{-}	1.26
²⁶⁶ Rf	$\pi 1/2^{-}[521] \otimes \pi 9/2^{+}[624]$	5-	1.33	4-	1.37
	$v7/2^+[613] \otimes v11/2^+[606]$	9^+	1.60	2^{+}	1.65
²⁶⁸ Rf	$v_{13/2}^{-}[716] \otimes v_{11/2}^{+}[606]$	12-	0.95	$1^{-\nu}$	1.08
	$v5/2^+[613] \otimes v11/2^+[606]$	8^{+}_{ν}	1.09	3^{+}	1.11
	$v5/2^{+}[613] \otimes v13/2^{-}[716]$	9-	1.26	4-	1.37
	$\nu 1/2^{-}[750] \otimes \nu 11/2^{+}[606]$	6-	1.34	5	1.36
	$\pi 1/2^{-}[521] \otimes \pi 9/2^{+}[624]$	5_	1.39	4_	1.43
²⁷⁰ Rf	$v_{13/2}^{-}[716] \otimes v_{5/2}^{+}[613]$	9 ^{<i>n</i>}	0.92	4-	1.02
	$v9/2^{+}[604] \otimes v13/2^{-}[716]$	11.	1.35	$2^{\frac{\nu}{-}}$	1.37
	$\nu 11/2^{+}[606] \otimes \nu 13/2^{-}[716]$	12^{ν}_{μ}	1.38	$1^{\frac{\nu}{-}}$	1.51
	$v5/2^{+}[613] \otimes v11/2^{+}[606]$	8 ⁺	1.45	3.+	1.47
	$v3/2^{+}[611] \otimes v13/2^{-}[716]$	$8^{\frac{\nu}{\mu}}$	1.48	5	1.48
²⁶⁶ Sg	$y^{7}/2^{+}[613] \otimes y^{11}/2^{-}[725]$	0 ⁻	0.70	2-	0.81
	$v7/2^{+}[613] \otimes v11/2^{+}[620]$	9_{ν}	0.79	$\frac{2}{2^+}$	0.01
	$\frac{1}{2} \frac{1}{2} \frac{1}$	4, 7-	0.94	$\frac{3}{v}$	0.90
²⁶⁸ Sg	$\pi 5/2 \ [512] \otimes \pi 9/2 \ [624]$ $\pi 5/2^{-}[512] \otimes \pi 9/2^{+}[624]$	7_{π}	1.32	$2\pi^{-}$	1.33
	$\frac{1}{2} \frac{1}{2} \frac{1}$	n_{π}^{\prime}	1.32	2π	1.55
270 с. –	$V//2^{-}[013] \otimes V11/2^{-}[000]$	9_{v}^{-}	1.70	$\frac{2}{v}$	1.74
Sg	$v_{13/2} [710] \otimes v_{11/2} [000]$ $v_{5/2}^{+}[613] \otimes v_{11/2}^{+}[606]$	$\frac{12_{\nu}}{2^+}$	1.00	$\frac{1}{\nu}$	1.02
	$\nu 5/2 \ [613] \otimes \nu 11/2 \ [600]$	o_{ν}	1.09	J_{ν}	1.07
	$\pi 5/2^{-}[512] \otimes \pi 0/2^{+}[624]$	9 _v 7-	1.15	$\frac{4}{v}$	1.23
272 Sg	$y_{2}^{-1}[512] \otimes y_{2}^{-1}[524]$	η_{π}	0.89	$\frac{2\pi}{4}$	0.99
Sg	0.0^{+1}	ν _ν	0.09	τ_{ν}	0.99
	$v9/2$ [604] $\otimes v13/2$ [716]	11 _v	1.38	2_{ν}	1.40
	$v_{11/2}$ [606] $\otimes v_{13/2}$ [/16]	12_{ν}	1.39	I_{ν}	1.52
	$v5/2^{+}[613] \otimes v11/2^{+}[606]$	8_{v}^{+}	1.44	3^+_{v}	1.46
²⁶⁸ Hs	$\nu 7/2^+[613] \otimes \nu 11/2^-[725]$	9^{ν}	0.86	$2^{ u}$	0.88
	$\nu 7/2^+[613] \otimes \nu 1/2^+[620]$	4^+_{ν}	0.86	3^+_{ν}	0.88
	$\pi 5/2^{-}[512] \otimes \pi 9/2^{-}[505]$	7^+_{π}	1.03	2^{+}_{π}	1.07
²⁷⁰ Hs	$\pi 5/2^{-}[512] \otimes \pi 9/2^{-}[505]$	7^{+}_{π}	1.19	2^+_{π}	1.23
	$\nu 7/2^{+}[613] \otimes \nu 11/2^{+}[606]$	$9^+_{ u}$	1.65	2^+_{ν}	1.69
²⁷² Hs	$\nu 11/2^{+}[606] \otimes \nu 13/2^{-}[716]$	12_{ν}^{-}	0.77	1_{ν}^{-}	0.89
	$\nu 5/2^{+}[613] \otimes \nu 11/2^{+}[606]$	$8^+_{ u}$	1.04	3^+_{ν}	1.06
	$\nu 5/2^{+}[613] \otimes \nu 13/2^{-}[716]$	9_{ν}^{-}	1.07	4_{ν}^{-}	1.17
	$\pi 5/2^{-}[512] \otimes \pi 9/2^{-}[505]$	7^+_{π}	1.16	2^{+}_{π}	1.19
²⁷⁴ Hs	$\nu 5/2^+[613] \otimes \nu 13/2^-[716]$	9_{ν}^{-}	0.81	4_{ν}^{-}	0.92
	$\nu 5/2^{+}[613] \otimes \nu 11/2^{+}[606]$	$8^+_{ u}$	1.37	3^{+}_{ν}	1.35
	$\nu 11/2^+[606] \otimes \nu 13/2^-[716]$	12^{-}_{ν}	1.37	1_{ν}^{-}	1.49
	$\nu 9/2^{+}[604] \otimes \nu 13/2^{-}[716]$	11_{ν}^{-}	1.40	2_{ν}^{-}	1.42
²⁷⁰ Ds	$\nu 7/2^+[613] \otimes \nu 1/2^+[620]$	4^{+}_{ν}	0.80	3^{+}_{ν}	0.82
	$\nu 7/2^+[613] \otimes \nu 11/2^-[725]$	9_{ν}^{-}	0.99	2_{ν}^{-}	1.01
	$\nu 1/2^+[620] \otimes \nu 11/2^-[725]$	6_{ν}^{-}	1.27	5_{v}^{-}	1.25
²⁷² Ds	$\pi 9/2^{-}[505] \otimes \pi 11/2^{+}[615]$	10^{-}_{π}	1.33	1_{π}^{-}	1.43
	$\nu 7/2^+[613] \otimes \nu 11/2^+[606]$	9^{+}_{ν}	1.52	2^{+}_{ν}	1.56
	$\nu 1/2^+[620] \otimes \nu 11/2^+[606]$	6^+_{ν}	1.61	5_{v}^{+}	1.61
²⁷⁴ Ds	$v11/2^{+}[606] \otimes v13/2^{-}[716]$	12_{ν}^{-}	0.74	1_{ν}^{-}	0.87
	$\nu 5/2^+[613] \otimes \nu 11/2^+[606]$	8^+_{ν}	1.13	3_{ν}^{+}	1.15
	$v5/2^+[613] \otimes v13/2^-[716]$	9_{v}^{-}	1.18	4_{v}^{-}	1.29
	$\pi 9/2^{-}[505] \otimes \pi 11/2^{+}[615]$	10^{-}_{π}	1.51	$1\frac{1}{\pi}$	1.61
	$\pi 11/2^+[615] \otimes \nu 5/2^-[512]$	8_	1.58	3^{-}_{π}	1.60

Nucleus	Configuration	$K = \Omega_1 + \Omega_2$		$K = \Omega_1 - \Omega_2 $	
		K^{π}	E (MeV)	$\overline{K^{\pi}}$	E (MeV)
²⁷⁶ Ds	$v5/2^{+}[613] \otimes v13/2^{-}[716]$	9 <u>-</u>	0.79	4_{ν}^{-}	0.89
	$\nu 5/2^{+}[613] \otimes \nu 11/2^{+}[606]$	8+	1.33	3^{+}_{n}	1.35
	$\nu 3/2^{+}[611] \otimes \nu 13/2^{-}[716]$	8,-	1.45	5^{-}_{n}	1.44
	$\nu 11/2^{+}[606] \otimes \nu 13/2^{-}[716]$	12^{-}_{μ}	1.58	1_	1.45
	$\nu 9/2^{+}[604] \otimes \nu 13/2^{-}[716]$	11,	1.49	2^{ν}_{ν}	1.51
	$\pi 11/2^+[615] \otimes \pi 5/2^-[512]$	$8\pi^{-}$	1.50	$3\frac{1}{\pi}$	1.52

TABLE I. (Continued.)

single-particle orbitals close to the Fermi surface. The lowest Nilsson levels that form the 2qp configurations in the energy window below 1.8 MeV are the $13/2^{-}[716]$, $11/2^{+}[606]$, $5/2^{+}[613]$, and $3/2^{+}[611]$ for neutrons, and the orbitals $11/2^{+}[615]$, $9/2^{-}[505]$, and $5/2^{-}[512]$ for protons.

III. CONCLUSIONS

In summary, we have employed the self-consistent mean-field framework based on relativistic energy density functionals to study the structure of two-quasiparticle excitations in axially deformed Rf, Sg, Hs, and Ds isotopes, with neutron number N = 160-166. The calculation of excitation energies of 2qp states is based on the blocking approximation with time-reversal symmetry breaking. In addition to a few already available data (an α -decaying isomer at $E_x \approx 1.13$ MeV in ²⁷⁰Ds with a suggested two-neutron configuration [11], populates excited states in the daughter nucleus ²⁶⁶Hs, among which one is an isomer [12]), in the near future one can expect more spectroscopic information on high-K isomeric states in the region of transactinide nuclei around N = 162. Our microscopic self-consistent calculation has provided a detailed prediction for the evolution of 2qp states close to the N = 162 deformed-shell gap. The excitation energies of 2qp configurations depend, in addition to the specific choice of the energy density functional, also on the strength of the pairing interaction. As in our recent study of shape evolution, collective excitation spectra, and decay properties of transactinide nuclei [1], in the particle-hole channel we have used the relativistic functional DD-PC1 that was adjusted to the experimental masses of a set of 64 axially deformed nuclei in the mass regions $A \approx 150\text{--}180$ and $A \approx 230\text{--}250$. The strength of the separable pairing force of finite range was fine-tuned to reproduce the odd-even mass differences in the region $A \approx 230-250$. A stronger (weaker) pairing would automatically increase (decrease) the energies of the 2qp states (shown in Figs. 2 and 3) with respect to the corresponding ground states. The calculation predicts the occurrence of a series of low-energy high-K isomers, most notably the 9_{ν}^{-} in the N = 160 and N = 166 isotopes, and the 12_{ν}^{-} in the N = 164 nuclei. A very interesting result is the low density of 2qp states in the N = 162 isotones, with no two-neutron states predicted below 1.6 MeV excitation energy. The two-proton states in these nuclei are calculated almost 0.5 MeV higher in energy than the lowest 2qp states in neighboring isotopes. This is a consequence of the deformed-shell closure at N = 162 and presents an interesting observable that can be used, together with the separation energies and Q_{α} values, to characterize the evolution of deformed shell gaps in this mass region, and possibly verified experimentally in the near future for ²⁷⁰Hs and 272 Ds.

ACKNOWLEDGMENTS

This work has been supported by the NEWFELPRO project of Ministry of Science, Croatia, co-financed through the Marie Curie FP7-PEOPLE-2011-COFUND program. B.-N.L. and D.V. acknowledge the support of the Helmholtz-Institut Mainz.

- V. Prassa, T. Nikšić, and D. Vretenar, Phys. Rev. C 88, 044324 (2013).
- [2] K. E. G. Löbner, Phys. Lett. B 26, 369 (1968).
- [3] P. M. Walker and G. D. Dracoulis, Nature 399, 35 (1999).
- [4] R.-D. Herzberg and P. T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008).
- [5] R.-D. Herzberg and D. M. Cox, Radiochim. Acta 99, 441 (2011).
- [6] P. T. Greenlees *et al.*, Phys. Rev. Lett. **109**, 012501 (2012).
- [7] B. Sulignano et al., Phys. Rev. C 86, 044318 (2012).
- [8] J. Rissanen et al., Phys. Rev. C 88, 044313 (2013).
- [9] H. B. Jeppesen et al., Phys. Rev. C 79, 031303(R) (2009).
- [10] A. P. Robinson et al., Phys. Rev. C 83, 064311 (2011).
- [11] S. Hofmann et al., Eur. Phys. J. A 10, 5 (2001).

- [12] D. Ackermann *et al.*, GSI Sci. Rep. **2011**, 208 (2012); (to be published).
- [13] S. Nilsson, J. Nix, A. Sobiczewski, Z. Szymański, S. Wycech, C. Gustafson, and P. Möller, Nucl. Phys. A 115, 545 (1968).
- [14] A. Sobiczewski, I. Muntian, and Z. Patyk, Phys. Rev. C 63, 034306 (2001).
- [15] A. Sobiczewski and K. Pomorski, Prog. Part. Nucl. Phys. 58, 292 (2007).
- [16] A. Sobiczewski, Radiochim. Acta 99, 395 (2011).
- [17] G. G. Adamian, N. V. Antonenko, and W. Scheid, Phys. Rev. C 81, 024320 (2010).
- [18] A. N. Kuzmina, G. G. Adamian, and N. V. Antonenko, Phys. Rev. C 85, 027308 (2012).

- [19] F. R. Xu, E. G. Zhao, R. Wyss, and P. M. Walker, Phys. Rev. Lett. 92, 252501 (2004).
- [20] D. S. Delion, R. J. Liotta, and R. Wyss, Phys. Rev. C 76, 044301 (2007).
- [21] H. L. Liu, F. R. Xu, P. M. Walker, and C. A. Bertulani, Phys. Rev. C 83, 011303(R) (2011).
- [22] H. L. Liu, F. R. Xu, and P. M. Walker, Phys. Rev. C 86, 011301(R) (2012).
- [23] H. L. Liu and F. R. Xu, Phys. Rev. C 87, 067304 (2013).
- [24] H. L. Liu, P. M. Walker, and F. R. Xu, Phys. Rev. C 89, 044304 (2014).
- [25] S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski, and W. Nazarewicz, Nucl. Phys. A 611, 211 (1996).
- [26] S. Ćwiok, W. Nazarewicz, and P. H. Heenen, Phys. Rev. Lett. 83, 1108 (1999).
- [27] T. Duguet, P. Bonche, and P.-H. Heenen, Nucl. Phys. A 679, 427 (2001).
- [28] M. Bender, P. Bonche, T. Duguet, and P.-H. Heenen, Nucl. Phys. A 723, 354 (2003).
- [29] M. Bender and P.-H. Heenen, J. Phys.: Conf. Ser. 420, 012002 (2013).
- [30] Yue Shi, J. Dobaczewski, and P. T. Greenlees, Phys. Rev. C 89, 034309 (2014).
- [31] J. L. Egido and L. M. Robledo, Phys. Rev. Lett. 85, 1198 (2000).

- [32] J.-P. Delaroche, M. Girod, H. Goutte, and J. Libert, Nucl. Phys. A 771, 103 (2006).
- [33] M. Warda and J. L. Egido, Phys. Rev. C 86, 014322 (2012).
- [34] A. V. Afanasjev, T. L. Khoo, S. Frauendorf, G. A. Lalazissis, and I. Ahmad, Phys. Rev. C 67, 024309 (2003).
- [35] V. Prassa, T. Nikšić, G. A. Lalazissis, and D. Vretenar, Phys. Rev. C 86, 024317 (2012).
- [36] D. Vretenar, A. V. Afanasjev, G. Lalazissis, and P. Ring, Phys. Rep. 409, 101 (2005).
- [37] E. Litvinova, Phys. Rev. C 85, 021303(R) (2012).
- [38] A. V. Afanasjev and O. Abdurazakov, Phys. Rev. C 88, 014320 (2013).
- [39] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).
- [40] T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. C 78, 034318 (2008).
- [41] Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009).
- [42] T. Nikšić, P. Ring, D. Vretenar, Y. Tian, and Z. Y. Ma, Phys. Rev. C 81, 054318 (2010).
- [43] J. Dvorak et al., Phys. Rev. Lett. 97, 242501 (2006).
- [44] R. Ferdinand, Proceedings of the 5th International Particle Accelerator Conference IPAC2014, Dresden, Germany (2014), p. 1852, http://hal.in2p3.fr/in2p3-01009261v1.
- [45] W. Barth, in [44], (2014), p. 3211.