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Two-pion femtoscopy in p-Pb collisions at

\/m =5.02 TeV

J. Adam et al.
(ALICE Collaboration)
(Received 3 February 2015; published 24 March 2015)

We report the results of the femtoscopic analysis of pairs of identical pions measured in p-Pb collisions at

Sun = 5.02 TeV. Femtoscopic radii are determined as a function of event multiplicity and pair momentum in
three spatial dimensions. As in the pp collision system, the analysis is complicated by the presence of sizable
background correlation structures in addition to the femtoscopic signal. The radii increase with event multiplicity
and decrease with pair transverse momentum. When taken at comparable multiplicity, the radii measured in p-Pb
collisions, at high multiplicity and low pair transverse momentum, are 10%-20% higher than those observed in
pp collisions but below those observed in A-A collisions. The results are compared to hydrodynamic predictions
at large event multiplicity as well as discussed in the context of calculations based on gluon saturation.

DOI: 10.1103/PhysRevC.91.034906

I. INTRODUCTION

The Large,Hadron Collider (LHC) [1] delivered Pb-Pb
collisions at ~ Syn = 2.76 TeV in 2010 and in 2011. Several
signatures of a quark-gluon plasma were observed, including
a strong suppression of high-pt particle production (“jet
quenching™) [2-4], as well as collective behavior at low
pr [5,6], which is well described by hydrodynamic models
with a low shear-viscosity-to-entropy ratio, /A comparison
to reference results from pp collisions at s = 0.9, 2.76,
and 7 TeV shows that these effects cannot be described by
an incoherent superposition of nucleon-nucleon collisions.
As such, they can be interpreted as final-state phenomena,
characteristic of the new state of matter [7-10] created in
heavy-ion collisions, To verify the creation of such a state,
p-Pb collisions at ~ Syny = 5.02 TeV, where a quark-gluon
plasma is not expected to form, were provided by the
LHC. In particular, cold-nuclear-matter effects, such as gluon
saturation, which are expected to influence a number of
observables, are being investigated [11].

One of the observables characterizing the bulk collective
system is the size of the particle-emitting region at freeze-
out, which can be extracted with femtoscopic techniques
[12,13]. In particular, two-particle correlations of identical
pions [referred to as Bose-Einstein, or Hanbury-Brown-Twiss
correlations] provide a detailed picture of the system size and
its dependence on the pair transverse momentum and the event
multiplicity. Femtoscopy measures the apparent width of the
distribution of relative separation of emission points, which
is conventionally called the “radius parameter.” The radius
can be determined independently for three directions: long
along the beam axis, out along the pair transverse momentum,
and side, perpendicular to the other two. Such measurements
were performed at the LHC for central Pb-Pb collisions [14]
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as well as for pp collisions at \/§ =0.9 and 7 TeV [15-18]
and compared to results from heavy-ion collisions at lower
collision energies. Two clear trends were found. (i) In A-A
collisions all radii scale approximately linearly with the cube
root of the final-state charged-particle multiplicity density
at midrapidity dNg/dn 2 for all three radii separately,
consistent with previous findings [13]. For pp collisions, the
radii scale linearly with the cube root of charged-particle
multiplicity density as well; however, the slope and intercept
of the scaling line are clearly different than for A-A. (ii) A
significant, universal decrease of the radii with pair momentum
has been observed in A-A collisions, while the analogous trend
in pp depends on the considered direction (out, side, or long)
and event multiplicity. A transverse momentum dependence of
the radii similar to A-A was observed for the asymmetric d-Au
collision system at the BNL Relativistic Heavy lon Collider
(RHIC) [19,20]. The one-dimensional radii extracted from the
ALICE three-pion cumulant analysis were also investigated
in pp, p-Pb, and Pb-Pb collisions at the LHC [21]. For the
p-Pb system, at a given multiplicity, the radii were found to
be 5%-15% larger than those in pp, while the radii in Pb-Pb
were 35%-55% larger than those in p-Pb.

The A-A pion femtoscopy results are interpreted within
the hydrodynamic framework as a signature of collective
radial flow. Models including this effect are able to reproduce
the ALICE data for central collisions [22,23]. Attempts
to describe the pp data in the same framework have not
been successful so far and it is speculated that additional
effects related to the uncertainty principle may play a role
in such small systems [24]. In p-A collisions, hydrodynamic
models that assume the creation of a hot and dense system
expanding hydrodynamically predict system sizes larger than
those observed in pp, and comparable to those observed in
lower-energy A-A collisions at the same multiplicity [24,25].
However, such models have an inherent uncertainty of the
initial-state shape and size, which can also differ between pp
and peripheral A-A collisions.

Alternatively, a model based on gluon saturation suggests
that the initial system size in p-A collisions should be similar
to that observed in pp collisions, at least in the transverse
direction [26,27]. At that stage both systems are treated in

©2015 CERN, for the ALICE Collaboration
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the same manner in the color glass condensate (CGC) model,
so that their subsequent evolution should lead to comparable
radius parameter at freeze-out. Reference [28] suggests a
(small) Yang-Mills evolution in addition. The observation of
a larger size in the p-A system with respect to pp would
mean that a comparable initial state evolves differently in
the two cases, which is not easily explained within the
CGC approach alone. The d-Au data measured at RHIC
suggest that hydrodynamic evolution may be present in such a
system, while the ALICE three-pion analysis at the LHC [21]
leaves room for different interpretations. The pion femtoscopic
radii as a fung}ion of pair transverse momentum from p-Pb
collisions at ~ Syn = 5.02 TeV, which are reported in this
paper, provide additional constraints on the validity of both
approaches.

The paper is organized as follows. In Sec. Il the data-taking
conditions, together with event and track selections, are
described. The femtoscopic correlation function analysis, as
well as the extraction of the radii and associated systematic
uncertainties and the discussion of the fitting procedure, are
explained in Sec. Ill. In Sec. IV the results for the radii
are shown and compared to model predictions. Section V
concludes the paper.

1. DATA TAKING AND TRACK RECONSTRUCTION

he LHC delivered p-Pb collisions at the beginning of 2013
at Syn = 5.02TeV (4and 1.58 TeV per nucleon for the p and
Pb beams, respectively). The nucleon-nucleon center-of-mass
system is shifted with respect to the ALICE laboratory system
by 0.465 unit of rapidity in the direction of the proton beam.

The ALICE detector and its performance are described
in Refs. [29,30]. The main triggering detector is the VO,
consisting of two arrays of 32 scintillator counters, which
are installed on each side of the interaction point and cover
2.8 <np <5.1 (VOA, located on the Pb-remnant side),
and —3.7 < nip < —1.7 (VOC). The minimum-bias trigger
requires a signal in both VO detectors within a time window
that is consistent with the collision occurring at the center of
the ALICE detector. Additionally, specific selection criteria
to remove pileup collisions are applied [30]. Approximately
8 < 107 minimum-bias events were analyzed.

The analysis was performed in multiplicity classes, which
were determined based on the signal from the VOA de-
tector, located along the Pb-going beam. This ensures that
the multiplicity determination procedure uses particles at
rapidities significantly different from the ones used for the pion
correlation analysis, avoiding potential autocorrelation effects.
Events are grouped in four multiplicity classes: 0%—20%,
20%—-40%, 40%—-60%, and 60%—-90%, defined as fractions of
the analyzed event sample sorted by decreasing VVOA signal,
which is proportional to the multiplicity within the acceptance
of this detector. Table | shows the multiplicity class definitions
and the corresponding mean charged-particle multiplicity
densities dNcn/dn averaged over |n| < 0.5 as obtained
using the method presented in Ref. [31]. The dNg/dn
values are not corrected for trigger and vertex-reconstruction
inefficiency, which is about 4% for nonsingle diffractive events
[31].
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TABLE 1. Definition of the VOA multiplicity classes as frac-
tions of the analyzed event sample and their corresponding
dNen/dn(Inis| 0.5,pr 0) . The given uncertainties are systematic
only because the statistical uncertainties are negligible.

Event class (%) dNgn/dn

INian| 0.5,pr 0 (GeV/c)

60-90 8.2+0.3
40-60 16.1+04
20-40 23.2+0.5
0-20 35.5+0.8

Charged track reconstruction is performed using the Time
Projection Chamber (TPC) and the Inner Tracking System
(ITS). The TPC is a large-volume cylindrical gaseous tracking
chamber, providing information of particle trajectories and
their specific energy loss. The readout chambers mounted on
the end caps are arranged in 18 sectors on each side (covering
the full azimuthal angle) measuring up to 159 samples per
track. The TPC covers an acceptance of || < 0.8 for tracks
which reach the outer radius of the TPC and |np| < 1.5
for shorter tracks. The ITS is composed of position-sensitive
silicon detectors. It consists of six cylindrical layers: two
layers of silicon pixel detector (SPD) closest to the beam
pipe covering |Nia| < 2.0 and |Niaw| < 1.4 for inner and outer
layers, respectively, two layers of silicon drift detector in the
middle covering |nip| < 0.9, and two layers of silicon strip
detector on the outside covering |Nia| < 1.0. The information
fromthe ITS is used for tracking and primary particle selection.
The momentum of each track is determined from its curvature
in the uniform magnetic field of 0.5 T oriented along the beam
axis, provided by the ALICE solenoidal magnet.

The primary-vertex position is determined with tracks
reconstructed in the ITS and TPC, as described in Ref. [32].
Events are selected if the vertex position along the beam
direction is within 210 cm of the center of the detector. This
ensures a uniform acceptance in nap.

Each track is required to exploit signals in both TPC and
ITS. The track segments from both detectors have to match.
Additionally, each track is required to have at least one hit in
the SPD. A TPC track segment is reconstructed from space
points (clusters). Each track is required to be composed of
at least 50 of the 159 such clusters. The parameters of the
track are determined by a Kalman fit to the set of TPC + ITS
clusters. The quality of the fit x? was required to be better
than 4 per cluster in the TPC and better than 36 in ITS.
Tracks that show a kink topology in the TPC are rejected. To
ensure that dominantly primary-particle tracks are selected,
the distance of closest approach to the primary vertex is
required to be closer than 2.0 cm in the longitudinal direction
and (0.0105 + 0.0350 x p;**) cm, with pr in GeV/c, in the
transverse direction. The kinematic range of particles selected
for this analysis is 0.12 < pt < 4.0 GeV/c and || < 0.8.

The time-of-flight (TOF) detector is used together with
the TPC for pion identification. The TOF is a cylindrical
detector of modular structure, consisting of 18 azimuthal
sectors divided into 5 modules along the beam axis at a
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radiusr 380 cm. The active elements are multigap resistive
chambers (MRPCs). For both TPC and TOF, the signal
(specific energy loss dE/dx for the TPC and the time of flight
for TOF) for each reconstructed particle is compared with the
one expected for a pion. The difference is confronted with
the detector resolution. The allowed deviations vary between
20 and 50 for the TPC and 20 and 3¢ for TOF depending
on the momentum of the particle. The selection criteria are
optimized to obtain a high-purity sample while maximizing
efficiency, especially in the regions where the expected signal
for other particles (electrons, kaons, and protons for the TPC;
kaons for TOF) approaches the pion value. The purity of the
pion sample is above 98%.

The accepted particles from each event are combined
to pairs. The two-particle detector acceptance effects, track
splitting and track merging, are present. Track splitting occurs
when a single trajectory is mistakenly reconstructed as two
tracks. The ALICE tracking algorithm has been specifically
designed to suppress such cases. In a rare event when splitting
happens, two tracks are reconstructed mostly from the same
clusters in the ALICE TPC. Therefore, pairs which share more
than 5% of clusters are removed from the sample. Together
with the antimerging cut described below, this eliminates the
influence of the split pairs. Track merging can be understood
as two-particle correlated efficiency and separation power. In
the ALICE TPC, two tracks cannot be distinguished if their
trajectories stay close to each other through a significant part
of the TPC volume. Although this happens rarely, such pairs
by definition have low relative momentum and therefore their
absence distorts the correlation function in the signal region.
Track splitting and track merging are taken into account and
corrected with the procedure described in Ref. [16]. The effect
of the two-particle detector acceptance on the final results is
similar to what was observed in pp and is limited to low
pair relative momentum, where it slightly affects the shape
of the correlation function. However, in p-Pb collisions the
femtoscopic effect is an order of magnitude wider than any
region affected by this inefficiency and, as a consequence, the
extracted radii are not affected by the two-track acceptance.

I11. CORRELATION FUNCTION ANALYSIS

A. Construction of the correlation function

The correlation function C(py,p2) of two particles with
momenta p; and p, is defined as

A(p1.p2)
_— 1
B(p1.p2) @

The signal distribution A is constructed from pairs of particles
from the same event. The background distribution B should
be constructed from uncorrelated particles measured with
the same single-particle acceptance. It is built using the
event mixing method with the two particles coming from
two different events for which the vertex positions in beam
direction agree within 2 cm and the multiplicities differ by
no more than 1/4 of the width of the given event class. The
denominator is normalized to the number of entries in the
numerator, so that the absence of correlation gives a correlation
function at unity.

C(p1,p2) =

PHYSICAL REVIEW C 91, 034906 (2015)

The femtoscopic correlation is measured as a function of
the momentum difference of the pair q = p, — p1 as

A)

= — 2
€@ = 5q @
where the dependence on the pair total transverse momentum
kr = [p11 + p2,7|/2is investigated by performing the analysis
in the following ranges in kr: 0.2-0.3, 0.3-0.4, 0.4-0.5, 0.5-
0.6,0.6-0.7,0.7-0.8,and 0.8-1.0 GeV/c. The kt ranges are the
same for each multiplicity class, resulting in 28 independent
correlation functions overall. Systematic uncertainties on the

correlation functions are discussed in Sec. 11 D.

The momentum difference q is evaluated in the lon-
gitudinally comoving system (LCMS) frame in which the
total longitudinal pair momentum vanishes: p1_ + p2 =0,
similarly to previous measurements in small systems [16].
In Fig. 1 correlation functions are shown, projected over
128 MeV/c-wide slices along the Qout, Usige, and Qiong axes.
An enhancement at low relative momentum is seen in all
projections. The width of this correlation peak grows with
decreasing multiplicity or with increasing k. The femtoscopic
effect is expected to disappear at large g = |q|, with the
correlation function approaching unity. We observe, especially
for large ky and small multiplicities, that the correlation
function is not flat in this region and has different values
in different projections.! The cause may be nonfemtoscopic
correlations, which are presumably also affecting the shape
of the correlation function in the femtoscopic (low-q) region.
This issue is a major source of systematic uncertainty on the
extracted radii and is discussed in detail in Secs. 11 Band 111 C.

The pair distributions and the correlation function can be
represented in spherical harmonics (SH) [33,34] alternatively
to the traditionally used Cartesian coordinates. All odd-I
and odd-m components of such a representation vanish for
symmetry reasons. The important features of the correlation
function are fully captured by the following ones: | =0,
m =0 is sensitive to the overall size of the pion source,
I =2, m=0 is sensitive to the difference between the
longitudinal and transverse sizes, and | =2, m = 2 reflects
the difference between the sidewards and outwards transverse
radii. Therefore, three independent sizes of the source can also
be extracted from these three SH components.

In Fig. 2 we show the first three nonvanishing components
of the SH representation corresponding to the correlation func-
tions shown in Fig. 1. In the (0,0) component, the enhancement
atlow q is clearly visible, decreasing (increasing) in width with
multiplicity (k7). The other two components, (2,0) and (2,2),
also show structures in this region, indicating that the source
shape is not spherically symmetric in the LCMS frame.

B. Nonfemtoscopic structures

As mentioned in the discussion of Figs. 1 and 2, a
significant nonfemtoscopic correlation is observed in the range

1We note that the overall normalization of the correlation function
is a single value for the full three-dimensional object and cannot be
independently tuned in all projections.
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FIG. 1. (Color online) Projections of the three-dimensional
n*n* correlation functions for three selected multiplicity and kr
ranges along the out (top), side (middle), and long (bottom) directions.
The other components are integrated over the four bins closest to zero
in their respective g directions.

in g that is much larger than the characteristic width of
the femtoscopic effect. As an example, in Fig. 3 we show
the correlation in the SH representation up to 2.0 GeV/c
in g. For the lowest multiplicity, and to a smaller degree at
higher multiplicities, a significant slope in the low-q region
is seen in the (0,0) component and a deviation from zero in
the (2,0) component up to approximately 1 GeV/c. Similar
correlations have been observed by ALICE in pp collisions
[16]. They were interpreted, based on Monte Carlo model
simulations, to be a manifestation of minijets, the collimated
fragmentation of partons scattered with modest momentum
transfer. The lowest multiplicities observed in p-pb collisions
are comparable to those in pp collisions at s =7 TeV.
Therefore, a similar interpretation of the nonfemtoscopic
correlations in this analysis is natural. Similar structures have
been observed in d-Au collisions by STAR [19]. This picture

PHYSICAL REVIEW C 91, 034906 (2015)

ALICE p-Pb |s,,, = 5.02 TeV
nm* pairs

VOA multiplicity classes (Pb-side)
" 0-20%, 0.2 < k; < 0.3 (GeVi/c)
° 0-20%, 0.6 < k; < 0.7 (GeVi/c)
o 60-90%, 0.2 < k; < 0.3 (GeVic)

(

0 0.2 0.4 0.6
g (GeV/c)

FIG. 2. (Color online) First three nonvanishing components of
the SH representation of the m*nt™ correlation functions for three
multiplicity and kr ranges, | = 0, m = 0 (top), | = 2, m = 0 (middle),
and I = 2, m = 2 (bottom).

is corroborated by the analysis using the three-pion cumulants,
where, expectedly, the minijet contribution is suppressed [21].

Two important features of the nonfemtoscopic correlation
affect the interpretation of our results. First, it is a broad
structure, extending up to 1 GeV/c and we have to assume
that it also extends to 0 GeV/c in q. Therefore, it affects the
extracted femtoscopic radii and has to be taken into account in
the fitting procedure. It can be quantified in the high-q region
and then extrapolated, with some assumptions, to the low-q
region, under the femtoscopic peak. The procedure leads to
a systematic uncertainty. Second, it becomes visibly larger
as multiplicity decreases and also as kr increases, which is
consistent with the minijet-like correlation.

The background was studied in Monte Carlo models,
such as, for p-Pb collisions, AMPT [35], HUING [36], DPMJET
[37], epos 3.076 [38,39], and PYTHIA 6.4 (Perugia-O tune)
[40,41] for pp collisions at similar multiplicities. In all
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ALICE p-Pb s, =5.02 TeV
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FIG. 3. (Color online) Dependence of the SH components of
the correlation function on event multiplicity in a broad relative
momentum range.

cases, the Monte Carlo correlation functions exhibit significant
structures similar to the long-range effects observed in data,
which is another argument for their nonfemtoscopic origin.
However, quantitative differences in the magnitude and shape
of these structures when compared to those observed in
data are seen for AMPT, HIJING, and DPMJET. These models
are therefore unsuitable for a precise characterization of the
background, which is needed for the fitting procedure. The
only models that qualitatively describe the features of the
background (enhancement at low g, growing with ky, and
falling with multiplicity) are eros 3.076 and PYTHIA 6.4
(Perugia-0 tune), which was also used in the pp analysis
[16]. We note that PYTHIA simulation included full detector
response modeling, while the Eros 3.076 one did not. The
comparison with data is shown in Fig. 4. The behavior of the
correlation is well reproduced above 0.5 GeV/c in q, where
nonfemtoscopic correlations are expected to dominate. At low
g, below 0.3 GeV/c, the data and models diverge, which is
expected, as the femtoscopic correlations are not included in
the model calculation. Above 0.3 GeV/c, EPOS reproduces
the (0,0) component well, PYTHIA slightly overestimates the
data. For the (2,0) and (2,2) components, which describe the

PHYSICAL REVIEW C 91, 034906 (2015)
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FIG. 4. (Color online) First three nonvanishing components of
the SH representation of the m*mt* correlation functions for a selected
multiplicity and k range, compared to a calculation from EP0s3.076
[38,39] (generator level only) and PYTHIAG6.4 Perugia-0 tune [40,41]
forpp at s =7 TeV (full simulation with detector response).

three-dimensional shape of the nonfemtoscopic correlations,
PYTHIA is closer to the experimental data. Overall, for like-sign
pairs, both models are reasonable approximations of the
nonfemtoscopic background. We use these models to fix the
background parameters in the fitting procedure.

Similarly to the pp analysis [16], the unlike-sign pairs
have also been studied. We found that correlations in the
(0,0) component of PYTHIA are slightly larger than in data
in the femtoscopic region for all ky ranges and similar to
data in the (2,0) and (2,2) components. EPOS was found to
reasonably describe the unlike-sign pairs for low kr ranges
and has smaller correlation than data in the (0,0) component
in higher kt ranges.

C. Fitting the correlation functions

The space-time characteristics of the source are reflected in
the correlation function

C@= s(ra)l (@ndr, ©)
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where r is the pair space-time separation four-vector. S is the
source emission function, interpreted as a probability density
describing the emission of a pair of particles with a given
relative momentum and space-time separation.  is the two-
particle interaction kernel.

Previous femtoscopy studies in heavy-ion collisions at
CERN Super Proton Synchrotron [42], RHIC [43-49], and
at the LHC [14] used a Gaussian static source S,

ot rég Fiong
S =exp —— o inbrar BN O
4Rout 4Rside 4'Rlong

The R&y R, and R, parameters describe the single-
particle source size in the LCMS in the out, side, and long
directions, respectively.

The Gaussian source provides a commonly used approxi-
mation of the source size and was used to compare to other
experimental results, especially the ones coming from A-A
collisions, where the source shape is more Gaussian than in
small systems. While pursuing the standard procedure with
the Gaussian assumption, we also carefully look for any
deviations between the fit function and data that might suggest
a significantly non-Gaussian shape of the source, which would
be an important similarity to the pp case.

In the analysis of pp collisions by ALICE [16], a Gaussian
is used together with other source shapes, exponential and
Lorentzian [16]. A Lorentzian parametrization in the out and
long directions and a Gaussian parametrization in the side
direction were found to fit the data best according to x?/ndf.
Therefore, we use this source parametrization also in the
analysis of p-Pb collisions,

r2 1
S(r) = Sexp ——e 5. (5)
rc%ut + Rgut 4Rs(?de rI%)ng + RI%ng

The corresponding source sizes in out and long are RE, and
RE,.. while for the side direction the size parameter RE,, is
the same as in the Gaussian case.

For identical pions, which are bosons, = must be sym-
metrized. Because charged pions also interact via the Coulomb
and strong final-state interactions (FSIs), | |? corresponds to
the Bethe-Salpeter amplitude [50]. For like-sign pion pairs the
contribution of the strong interaction is small for the expected
source sizes [50] and is neglected here. The used  therefore
is a symmetrized Coulomb wave function. It is approximated
by separating the Coulomb part and integrating it separately,
following the procedure known as Bowler-Sinyukov fitting
[51,52], which was used previously for larger sizes observed
in Pb-Ph [14], as well as smaller sizes observed in pp collisions
[16]. In this approximation, the integration of Eq. (3) with S
given by Eq. (4) results in the following functional form for
the correlation function which is used to fit the data

Cr(a) = (1 —A) + AKc(q) 1+ exp —RS, a2,

out
2 2
- RsGide qside - RIGong qlzong . (6)
The function K¢(q) is the Coulomb part of the two-pion wave

function integrated over the spherical Gaussian source with a
fixed radius. The value of this radius is chosen to be 2 fm.

PHYSICAL REVIEW C 91, 034906 (2015)

Its uncertainty has systematic effects on the final results (see
Sec. 111 D). This form of the correlation function from Eq. (6)
is denoted in the following as GGG. Similarly for the source
shape given by Eq. (5), the correlation function is

Ci(q) = (1 —A) +AKc 1+exp — RE g2,

—RG 242 _
Rside qside

Riing Gitng - )
It has an exponential shape in out and long and a Gaussian
shape in the side direction. Therefore, it is referred to as EGE
form of the correlation function. Parameter A in Egs. (6) and
(7) represents the correlation strength.

Additionally, a component  describing nonfemtoscopic
correlations needs to be introduced. There is no a priori
functional form which can be used for this component.
Several of its features can be deduced from the correlations
shown in Figs. 1, 2, and 3: It has to allow for different
shapes in the out, side, and long directions; in the (0,0)
component it has to extrapolate smoothly to low g and have
a vanishing slope at g = 0. Because this structure is not
known, maximum information about its shape and magnitude
should be gained from an observation of the raw correlation
functions and the corresponding effects in Monte Carlo in
as many representations as possible. It is therefore crucial to
simultaneously use the Cartesian and SH representations as
they provide complementary ways to study the correlation
shape.

An ad hoc, Monte Carlo-driven parametrization of the
nonfemto background that reasonably describes the correlation
functionis ,composed of three independent one-dimensional
functions  § (Gaussian plus fixed constant), 9 (Gaussian plus
variable constant), and 3 (Gaussian plus an additional linear
component),

_ q°
0@ =N 1+ajexp —o os (®)
0Q) = Qexp —=3 +pg, ©)
2(09y?
2 2 q° 2 2
2(0) = oz exp _—2(022)2 +B; +v30, (10)

where N9, a3, 62, a2, 62, 02, 02, and y.2 are fixed to the values
obtained from fits to Monte Carlo events separately for each
multiplicity and kr range. In the fit procedure the B9 and B3
parameters are kept free. This results in the fit formula

C@=N-Cia): 5@ Y0®.0)
+ @) YJ0.0)+ 5@ Y7(6.0) . (11)

where N is the overall normalization factor and YJ(8,9),
Y2(8,4), and Y2(8,0) are the real parts of the relevant spherical
harmonic functions.

The fit is performed with the log-likelihood method in three
dimensions for the Cartesian representation. The Gaussian fit
reproduces the overall width of the femtoscopic correlation in
all cases. The background component describes the behavior of
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FIG. 5. (Color online) First three nonvanishing components of
the SH representation of the m* ™ correlation functions for three
multiplicity and kr combinations, | =0, m =0 (top), | =2, m =0
(middle), and I = 2, m = 2 (bottom). The lines show the correspond-
ing components of the Gaussian (GGG) fit.

the correlation at large g, but can also have nonzero correlation
at0ing.

A corresponding fit is also performed for the SH rep-
resentation of the correlation, which is shown in Fig. 5.
The formula from Eq. (6) or Eq. (7) (for the GGG fit or
the EGE fit, respectively) is numerically integrated on a
¢ — 0 sphere for each g bin, with proper Y," weights, to
produce the three components of the SH decomposition.
Statistical uncertainties on each component as well as the
covariance matrix between them are taken into account in this
simultaneous fit to the three histograms. The results are shown
in Fig. 5. The fit describes the general direction-averaged
width of the correlation function, shown in the top panel. The
background component  describes the behavior at large ¢
but also contributes to the correlation at low g. The shape
in three-dimensional space, captured by the (2,0) and (2,2)
components, is also a combination of the femtoscopic and
nonfemtoscopic correlations.

Overall, the GGG fit describes the width of the correlation
but the data at low g are not perfectly reproduced, which can be
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FIG. 6. (Color online) First three nonvanishing components of
the SH representation of the m* ™ correlation functions for three
multiplicity and kr combinations, | =0, m =0 (top), | =2, m =0
(middle), and I = 2, m = 2 (bottom). The lines show the correspond-
ing components of the EGE fit.

attributed to the limitations of the Bowler-Sinyukov formula
as well as to the non-Gaussian, long-range tails which are
possibly present in the source. Some deviations from the pure
Gaussian shape can also be seen for the long direction for the
higher multiplicities. The EGE fit [Eq. (7)] better reproduces
the correlation peak in the (0,0) component, as shown in Fig. 6.
The (2,0) and (2,2) components show similar quality of the fit.
The x? values for both fits are comparable.

D. Systematic uncertainties on the radii

The analysis was performed separately for positively and
negatively charged pions. For the practically zero-net-baryon-
density system produced at the LHC they are expected to give
consistent results. Both data sets are statistically consistent at
the correlation function level.

The main contributions to the systematic uncertainty are
given in Table 11 for GGG radii and in Table I11 for EGE radii.

We used two alternative representations (Cartesian and
SH) of the correlation function. The same functional form
for both of them was used for the fitting procedure.
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TABLE II. List of contributions to the systematic uncertainty of
the femtoscopic radii extracted via GGG fits. Values are averaged
over kr and multiplicity except for the first row where a minimum-

maximum range is shown.

Uncertainty source RSy (%) R$e (%)  RE,, (%)
CF representation and 5-32 4-22 4-35
background parametrization
Fit-range dependence 10 8 10
nrntvsmon” 3 3 3
Momentum resolution correction 3 3 3
Two-track cut variation <1 <1 <1
Coulomb correction <1 <1 <1
Total correlated 12-34 9-24 11-36
Total 12-34 11-24 12-36

However, the implementation of the fitting procedure is
quite different: log-likelihood for Cartesian vs regular x?
fit for SH, three-dimensional Cartesian histogram vs three
one-dimensional histograms, cubic or spherical fitting range
in the (Qout,Uside,0iong) SPace. Therefore, the fits to the two
representations may react in a systematically different way
to the variation of the fitting procedure (fit ranges, Bowler-
Sinyukov approximation, etc.).

The fitting procedure requires the knowledge of the non-
femtoscopic background shape and magnitude. Two models
were used to estimate it, EPOS 3.076 [39] and PYTHIA 6.4
(Perugia-0 tune) [40,41], as described in Sec. I11 B.

In addition, the correlation function shape is not ideally
described by a Gaussian form. The EGE form is better (lower
x 2 values for the fit), but still not exactly accurate. As a result,
the fit values depend on the fitting range used in the procedure
of radius extraction. We have performed fits with an upper
limit of the fit range varied between 0.3 and 1.1 GeV/c.

The three effects mentioned above are the main sources of
systematic uncertainty on the radii. Their influence, averaged
over the event multiplicity and pair k, is given in Tables 11 and
I11. The background parametrization and the CF representation
effects lead to systematic uncertainties of less than 10% at
low kr and up to 35% for large kr and low multiplicities.

TABLE Il1l. List of contributions to the systematic uncertainty
of the femtoscopic radii extracted via EGE fits. Values are averaged
over kr and multiplicity except for the first row, where a minimum-
maximum range is shown.

Uncertainty source REx (%)  REye (%) Rigy (%)
CF representation and 4-18 3-14 8-20
background parametrization
Fit-range dependence 10 6 10
nntvsmon” 3 3 3
Momentum resolution correction 3 3 3
Two-track cut variation <1 <1 <1
Coulomb correction <1 <1 <1
Total correlated 11-21 7-16 13-23
Total 12-21 8-16 14-23

PHYSICAL REVIEW C 91, 034906 (2015)

In particular, the radius could not be reliably extracted for
the two highest kr ranges in the lowest multiplicity range;
therefore, these two sets of radii are not shown. Moreover,
radii obtained with the background parametrization from
PYTHIA are always larger than the ones obtained with the EPOS
parametrization. These uncertainties are correlated between kt
ranges. Similarly, the radii from the narrow fit range are always,
on average, 10% higher than the ones from the wide fit range.
This also gives a correlated contribution to the systematic
uncertainty. The final radii are calculated as an average of four
sets of radii: the two representations with both EPOs and PYTHIA
background parametrization. The systematic uncertainties are
symmetric and equal to the largest difference between the
radius and one of the four sets of radii.

The effect of the momentum resolution on the correlation
function was studied using a Monte Carlo simulation. For
tracks with a low pt, below 1 GeV/c, the momentum
resolution in the TPC is better than 1%. Smearing of the
single-particle momenta reduces the height and increases the
width of the correlation function. It was estimated that this
effect changes the reconstructed radius by 2% for a system
size of 2 fm and 3% for a size of 3 fm. Therefore, the 3%
correlated contribution from momentum resolution is always
added to the final systematic uncertainty estimation.

Smaller sources of systematic uncertainties include those
originating from the difference between positively and nega-
tively charged pion pairs (around 3%), track selection variation
(less than 1%), and the Coulomb factor (less than 1%). All the
uncertainties are added in quadrature.

IV. RESULTS
A. Three-dimensional radii

We have extracted Rout, Rsige, and Riong in intervals of
multiplicity and kr, which results in 26 radii in each direction.
The fit procedure did not make it possible to reliably extract
values of the radii for the two highest ky ranges in the
60%-90% multiplicity class. For the GGG fit, they are shown
in Fig. 7. The radii are in the range of 0.6 to 2.4 fm in all
directions and universally decrease with k. The magnitude of
this decrease is similar for all multiplicities in the out and long
directions and is visibly increasing with multiplicity in the
side direction. The radii rise with evenymultiplicity. The plot
also shows data from pp collisionsat s = 7 TeV [16] at the
highest multiplicities measured by ALICE, which is slightly
higher than the multiplicity measured for the 20%—-40% VOA
signal range in the p-Pb analysis. At small kr, the pp radii
are lower by 10% (for side) to 20% (for out) than the p-Pb
radii at the same dNg/dn 3. At high kr the difference in
radius grows for Rqyt, While for Rjong the radii for both systems
become comparable. The distinct decrease of radii with kr is
observed both in both pp and p-Pb.

The correlation strength A increases with ky from 0.44 to
0.58 for the collisions with the highest multiplicities. It is
also higher for low-multiplicity collisions, with a difference of
0.1 between collisions with highest multiplicities and lowest
multiplicities. A nonconstant A parameter as a function of kr
is an indication of a non-Gaussian shape of the correlation
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FIG. 7. (Color online) Femtoscopic radii (GGG fit) as a function
of the pair transverse momentum kr for four multiplicity g}asses.
For comparison, radii from high-multiplicity pp collisionsat s =7
TeV [15] and 4 predictions for p-Pb [24,25] are shown as crosses
and lines, respectively. The top, middle, and bottom panels show
Rout, Rsige, and Riong radii, respectively. The points for multiplicity
classes 209%—-40% and 40%-60% have been slightly shifted in kt for
visibility.

function. The correlation functions are normalized to the ratio
of the number of pairs in the signal and background histograms.
The positive correlation at low g has to be then compensated
by the normalization parameter N, which is in the range of
0.9-1.0. The x2/ndf for the three-dimensional fit is on the
order of 1.2.

The extracted background parameters indicate that this
contribution increases with kt and decreases with multiplicity,
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FIG. 8. (Color online) Femtoscopic radii (EGE fit) as a function
of the pair transverse momentum ky for four multiplicity clg}sses.
For comparison, radii from high-multiplicity pp collisions at s =
7 TeV [15] are shown. The top, middle, and bottom panels show RE,,
R&ser Ring radii, respectively. The data points for the multiplicity
classes 20%-40% and 40%-60% have been slightly shifted in kr for
visibility.

which is consistent with qualitative expectations for the minijet
effect. The shape of the background is not spherical, leading
to finite contributions to the (2,0) and (2,2) components.
The constant shift in these components, given by BY and B2
respectively, is only significant for the (2,0) component in
lower multiplicities.

The corresponding fit results for the EGE fit are shown in
Fig. 8. In the side direction the radii are consistent with the
GGG results. The radii in the out and long directions are not
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Gaussian widths in this case and cannot be directly compared
to previous fits. However, all the trends are qualitatively the
same in both cases: Radii increase with event multiplicity
and decrease with pair transverse momentum. The values are
10% (for side and long) to 20% (for out) higher than those
measured in pp collisions at similar event multiplicity [16].
The A parameter for the EGE fit is on the order of 0.7 for the SH
fits and growing from 0.7 at low kt to approximately 0.9 at the
highest kr for the Cartesian fit, therefore significantly higher
than in the Gaussian case. The observation that A is closer to
unity when moving from GGG to EGE fits is expected, as the
EGE fit describes the shape of the correlation much better at
low q and therefore better accounts for the non-Gaussian tails
in the source function.

B. Model comparisons

Hydrodynamic model calculations for p-Pb collisions
[24,25], shown as lines in Fig. 7, predict the existence of
a collectively expanding system. Both models employ two
initial transverse size assumptions, Rjni: = 1.5 fm and Rjnit =
0.9 fm, which correspond to two different scenarios of the
energy deposition in the wounded nucleon model [25]. The
resulting charged-particle multiplicity densities dNg,/dn of
45 [25] and 35 [24] are equal to or higher than the one in
the ALICE 0%-20% multiplicity class. The calculations for
Rout Overestimate the measured radii, while the ones with
large initial size strongly overpredict the radii. The scenarios
with lower initial size are closer to the data. For Rsjge, the
calculations are in good agreement with the data in the highest
multiplicity class, both in magnitude and in the slope of the
kt dependence. Only the Shapoval et al. [24] calculation for
large initial size shows higher values than data. For Rigng,
calculations by Bozek and Broniowski [25] overshoot the
measurement by at least 30% for the most central data, while
those by Shapoval et al. are consistent within systematics.
Again, the slope of the k+ dependence is comparable. The study
shows that the calculation with large initial size is disfavored
by data. The calculations with lower initial size are closer to
the experimental results, but are still overpredicting the overall
magnitude of the radii by 10%-30%. Further refinement of
the initial conditions may lead to a better agreement of the
models with the data, especially at large multiplicities. The
slope of the kr dependence is usually interpreted as a signature
of collectivity. Interestingly, it is very similar in data and
the models in all directions, which suggests that the system
dynamics might be correctly modeled by hydrodynamics.

Also in the data the source shape is distinctly non-Gaussian.
Further studies would require examination of the source shape
in p-Pb collision models to see if similar deviations from a
Gaussian form are observed.

The CGC approach has provided a qualitative statement on
the initial size of the system in p-Pb collisions, suggesting
that it is similar to that in pp collisions [27,28]. The measured
radii, at high multiplicities and low k, are 10%—20% larger
than those observed at similar multiplicities in pp data.
For lower multiplicities the differences are smaller. These
differences could still be accommodated in CGC calculations.
Furthermore, the evolution of the slope of the kr dependence
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is similar between pp and p-Pb collisions in the side direction.
Another similarity is the distinctly non-Gaussian shape of
the source, which in pp and p-Pb is better described by an
exponential-Gaussian-exponential form. It appears that data
in p-Pb collisions still exhibit strong similarities to results
from pp collisions. However, some deviations, which make
the p-Pb more similar to A-A collisions, are also observed,
especially at high multiplicity. The differences between small
systems such as pp and p-Pb and peripheral A-A data are most
naturally explained by the significantly different initial states
in the two scenarios. Dedicated theoretical investigation of this
issue is needed for a more definite answer, which may be able
to accommodate both CGC and the hydrodynamic picture.

C. Comparison to the world data

In Fig. 9 the results from this analysis of the p-Pb
data from the LHC (red solid circles) are compared to the
world heavy-ion data, including results obtained at lower
collision energies, as well as to results from pp collisions
from ALICE and STAR. It has been observed [13] that the
three-dimensional femtoscopic radii scale roughly with the
cube root of the measured charged-particle multiplicity density
not only for a single energy and collision system, but also
across many collision energies and initial system sizes. The pp
and A-A data sets show significantly different scaling behavior,
although both are linear in dNg,/dn /2.

The p-Pb radii agree with those in pp collisions at low
multiplicities. With increasing multiplicity, the radii for the
two systems start to diverge. An analysis of one-dimensional
averaged radii in pp, p-Pb, and Pb-Pb collisions using the
three-pion cumulant correlations technique reveals that the
multiplicity scaling for p-Pb lies between pp and Pb-Pb
trends [21], which is consistent with results presented here.
However, the deviation of the correlation shape from Gaussian
is similar to that observed in pp collisions and unlike the
shapes observed in A-A collisions.

V. CONCLUSIONS

We reported on the threg;dimensional pion femtoscopic
radii in p-Pb collisions at " Syn = 5.02 TeV, measured in
four multiplicity and seven pair momentum intervals. The
radii are found to decrease with kr in all cases, similar to
measurements in A-A and high-multiplicity pp collisions. The
radii increase with event multiplicity. At low multiplicities they
are comparable to the pp values, while at higher multiplicities
and low pair transverse momentum they are larger by 10%—
20%. However, they do not reach the values observed in
A-A collisions at lower energies. The high-multiplicity data
are compared to predictions from two models, both of them
incorporating a fast hydrodynamic expansion of the created
medium. They overpredict the values of the Roy and Riong
parameters; however, the introduction of a smaller initial size
results in a better description. The values of the Rjge parameter
and the slope of the k dependence of the radii are in reasonable
agreement. The models based on the CGC formalism suggest
sizes similar to those obtained in pp data. The observed
differences of about 10%-20% for high-multiplicity p-Pb

034906-10



TWO-PION FEMTOSCOPY IN p-Pb COLLISIONS AT ...

— :
k_ =0.25GeVic .
* *i 1
~~ — ¥ ¢ —
E > 7
~ o % 1
of |
- 28 _
’9
1 _ﬁ- |
L L L 1 L 1
0 5 10
1/3
dN_/dn
T T T N
E 5 - 4 ﬁ. —
~ * %k
2 %
CRe r . @ E
o %
@;@‘@ ]
o @
ot :
| |
1 1
0 5 10

1/3
dN_/dn

PHYSICAL REVIEW C 91, 034906 (2015)

(fm)
(63}

G
side
-

R

-
<>
oo

1/3
dN_/dn

+ STAR Au-Au |[s, = 200 GeV
% STAR Cu-Cu \sy,, = 200 GeV
STAR Au-Au \[s, = 62 GeV
¢ STAR Cu-Cu \s,, =62 GeV
* CERES Pb-Au |y, = 17.2 GeV
* ALICE Pb-Pb \s = 2760 GeV
= ALICE pp (s = 7000 GeV
O ALICE pp (s = 900 GeV
STAR pp Vs = 200 GeV
e ALICE p-Pb \s,, = 5020 GeV

FIG. 9. (Color online) Comparison of femtoscopic radii (Gaussian), as a function of the measured charged-particle multiplicity density,
measured for various collision systems and energies by CERES [42], STAR [45,46,53], PHENIX [54], and ALICE [16].

collisions might not exclude this scenario. The observed
non-Gaussian shape of the correlation is also similar in the
pp and p-Pb collision systems.
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