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Abstract: The strength of forward-backward (FB) multiplicity correlations is measured

by the ALICE detector in proton-proton (pp) collisions at
√
s = 0.9, 2.76 and 7 TeV.

The measurement is performed in the central pseudorapidity region (|η| < 0.8) for the

transverse momentum pT > 0.3 GeV/c. Two separate pseudorapidity windows of width

(δη) ranging from 0.2 to 0.8 are chosen symmetrically around η = 0. The multiplicity

correlation strength (bcorr) is studied as a function of the pseudorapidity gap (ηgap) between

the two windows as well as the width of these windows. The correlation strength is found

to decrease with increasing ηgap and shows a non-linear increase with δη. A sizable increase

of the correlation strength with the collision energy, which cannot be explained exclusively

by the increase of the mean multiplicity inside the windows, is observed. The correlation

coefficient is also measured for multiplicities in different configurations of two azimuthal

sectors selected within the symmetric FB η-windows. Two different contributions, the

short-range (SR) and the long-range (LR), are observed. The energy dependence of bcorr is

found to be weak for the SR component while it is strong for the LR component. Moreover,

the correlation coefficient is studied for particles belonging to various transverse momentum

intervals chosen to have the same mean multiplicity. Both SR and LR contributions to

bcorr are found to increase with pT in this case. Results are compared to PYTHIA and

PHOJET event generators and to a string-based phenomenological model. The observed

dependencies of bcorr add new constraints on phenomenological models.
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1 Introduction

We report a detailed study of correlations between multiplicities in pp collisions at 0.9, 2.76

and 7 TeV. The correlations are obtained from event-by-event multiplicity measurements

in pseudorapidity (η) and azimuth (ϕ) separated intervals. The intervals are selected one

in the forward and another in the backward hemispheres in the center-of-mass system,

therefore the correlations are referred to as forward-backward (FB) correlations.

The FB correlation strength is characterized by the correlation coefficient, bcorr, which

is obtained from a linear regression analysis of the average multiplicity measured in the

backward rapidity hemisphere (〈nB〉nF
) as a function of the event multiplicity in the forward

hemisphere (nF):

〈nB〉nF
= a+ bcorr · nF . (1.1)
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This linear relation (1.1) has been observed experimentally [1–4] and is discussed in [5–7].

Under the assumption of linear correlation between nF and nB, the Pearson correlation

coefficient

bcorr =
〈nBnF〉 − 〈nB〉〈nF〉
〈n2F〉 − 〈nF〉2

(1.2)

can be used for the experimental determination of bcorr [2]. Since the parameter a is given

by a=〈nB〉−bcorr〈nF〉, it adds no additional information and usually is not considered [5–7].

Heretofore, FB multiplicity correlations were studied experimentally in a large number

of collision systems including e+e−, µ+p, pp, pp and A–A interactions [3, 4, 8–13]. No

FB multiplicity correlations were observed in e+e− annihilation at
√
s = 29 GeV. This

was interpreted as the consequence of independent fragmentation of the forward and back-

ward jets produced in this process [14]. In contrast, in pp collisions at the ISR [13] at√
s = 52.6 GeV [4] and in pp interactions at the SppS collider [15] sizeable positive FB

multiplicity correlations have been observed. Their strength was found to increase strongly

with collision energy [3], which was confirmed later at much higher energies (
√
s & 1 TeV)

in pp collisions by the E735 collaboration at the Tevatron [12] and in pp collisions by

the ATLAS experiment at the LHC (
√
s = 0.9 and 7 TeV) [16]. One of the observations

reported by ATLAS is the decrease of bcorr with the increase of the minimum transverse

momentum of charged particles.

The STAR collaboration at RHIC analysed the FB multiplicity correlations in pp and

Au–Au collisions at
√
sNN = 200 GeV [17]. Strong correlation was observed in case of

Au–Au collisions, while in pp collisions bcorr was found to be rather small (∼ 0.1). In the

present paper we relate this to the use of smaller pseudorapidity windows as compared to

previous pp and pp measurements.

Forward-backward multiplicity correlations in high energy pp and A–A collisions also

raise a considerable theoretical interest. First attempts to explain this phenomenon [7, 18–

20] were made in the framework of the Dual Parton Model (DPM) [2] and the Quark Gluon

String Model (QGSM) [21, 22]. They provide a quantitative description of multiparticle

production in soft processes. In improved versions of the models, collectivity effects arising

due to the interactions between strings, which are particularly important in the case of

A–A interactions, were taken into account [23–26]. These effects are based on the String

Fusion Model (SFM) proposed in [27, 28]. It was shown that these string interactions lead

to a considerable modification of the FB correlation strength, along with the reduction

of multiplicities, the increase of mean particle pT, and the enhancement of heavy flavour

production in central A–A collisions [23, 29, 30].

FB correlations are usually divided into short and long-range components [2, 7]. In

phenomenological models, short-range correlations (SRC) are assumed to be localized over a

small range of η-differences, up to one unit. They are induced by various short-range effects

from single source fragmentation, including particles produced from decays of clusters or

resonances, jet and mini-jet induced correlations. Long-range correlations (LRC) extend

over a wider range in η. They originate from fluctuations in the number and properties of

particle emitting sources (clusters, cut pomerons, strings, mini-jets etc.) [2, 7, 19, 23–26].

– 2 –
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The SFM predicts that the variance of the number of particle-emitting sources (strings)

should be damped by their fusion, implying a reduction of multiplicity long-range correla-

tions [23, 25, 26]. Contrary to this prediction, long-range correlations arising in the Color

Glass Condensate model (CGC) [31] have been shown to increase with the centrality of

the collision [32]. Therefore, the investigation of correlations between various observables,

measured in two different, sufficiently separated η-intervals, is considered to be a power-

ful tool for the exploration of the initial conditions of hadronic interactions [33]. In the

case of A–A collisions, these correlations induced across a wide range in η are expected

to reflect the earliest stages of the collisions, almost free from final state effects [32, 34].

The reference for the analysis of A–A collision dynamics can be obtained in pp collisions

by studying the dependence of FB correlations on collision energy, particle pseudorapidity,

azimuth and transverse momenta.

This paper is organized as follows: section 2 provides experimental details, including

the description of the procedures used for the event and track selection, the efficiency

corrections and systematic uncertainties estimates. Sections 3 and 4 discuss the results on

FB multiplicity correlation measurements in η in pp collisions at
√
s = 0.9, 2.76 and 7 TeV

and in η–φ windows at
√
s = 0.9 and 7 TeV. In section 3, we present dependences of the

correlation coefficient on the gap between windows, their widths and the collision energy.

In section 4, multiplicity correlations in windows separated in pseudorapidity and azimuth

are studied, and the comparison with Monte Carlo generators PYTHIA6 and PHOJET

is discussed. Results on multiplicity correlations in different pT ranges in pp collisions at√
s = 7 TeV are presented in section 5.

2 Data analysis

2.1 Experimental setup, event and track selection

The data presented in this paper were recorded with the ALICE detector [35] in pp collisions

at
√
s = 0.9, 2.76 and 7 TeV. Charged primary particles are reconstructed with the central

barrel detectors combining information from the Inner Tracking System (ITS) and the

Time Projection Chamber (TPC). Both detectors are located inside the 0.5 T solenoidal

field.

The ITS is composed of 3 different types of coordinate-sensitive Si-detectors. It con-

sists of 2 silicon pixel innermost layers (SPD), 2 silicon drift (SDD) and 2 silicon strip

(SSD) outer detector layers. The design allows for two-particle separation in events with

multiplicity up to 100 charged particles per cm2. The SPD detector covers the pseudora-

pidity ranges |η| < 2 for inner and |η| < 1.4 for outer layers, acceptances of SDD and SSD

are |η| < 0.9 and |η| < 1, respectively. All ITS elements have a radiation length of about

1.1% X0 per layer. The ITS provides reliable charged particle tracking down to transverse

momenta of 0.1 GeV/c, ideal for the study of low-pT (soft) phenomena.

The ALICE TPC is the main tracking detector of the central rapidity region. The

TPC, together with the ITS, provides charged particle momentum measurement, particle

identification and vertex determination with good momentum and dE/dx resolution as well

as two-track separation of identified hadrons and leptons in the pT region below 10 GeV/c.

– 3 –
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Figure 1. Illustration of the variables δη, ηgap
and ηsep used in the present analysis.

Figure 2. Illustration of sets of η-windows with

different widths δη and separation gaps ηgap.

The TPC has an acceptance of |η| < 0.9 for tracks which reach the outer radius of the

TPC and up to |η| < 1.5 for tracks that exit through the endcap of the TPC.

For the present analysis, minimum bias pp events are used. The minimum-bias trigger

required a hit in one of the forward scintillator counters (VZERO) or in one of the two SPD

layers. The VZERO timing signal was used to reject beam-gas and beam-halo collisions.

The primary vertex was reconstructed using the combined track information from the TPC

and ITS, and only events with primary vertices lying within ±10 cm from the centre of

the apparatus are selected. In this way a uniform acceptance in the central pseudorapidity

region |η| < 0.8 is ensured. The data samples for
√
s = 0.9, 2.76 and 7 TeV comprise

2 × 106, 10 × 106, and 6.5 × 106 events, respectively. Only runs with low probability to

produce several separate events per one bunch crossing (so-called pile-up events) were used

in this analysis.

To obtain high tracking efficiency and to reduce efficiency losses due to detector bound-

aries, tracks are selected with pT > 0.3 GeV/c in the pseudorapidity range |η| < 0.8.

Employing a Kalman filter technique, tracks are reconstructed using space-time points

measured by the TPC. Tracks with at least 70 space-points associated and track fitting

χ2/ndof less than 2 are accepted. Additionally, at least two hits in the ITS must be associ-

ated with the track. Tracks are also rejected if their distance of closest approach (DCA) to

the reconstructed event vertex is larger than 0.3 cm in either the transverse or the longitu-

dinal plane. For the chosen selection criteria, the tracking efficiency for charged particles

with pT > 0.3 GeV/c is about 80%.

2.2 Definition of counting windows

Two intervals separated symmetrically around η = 0 with variable width δη ranging from

0.2 to 0.8 are defined as “forward” (F, η > 0) and “backward” (B, η < 0) . Correlations

between multiplicities of charged particles (n) are studied as a function of the gap between

the windows (denoted as ηgap). Another convenient variable is ηsep which is the separa-

tion in pseudorapidity between centres of the windows. These variables are illustrated in

figure 1, and all configurations of window pairs chosen for the analysis are drawn in figure 2.

– 4 –
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Figure 3. Illustration of 8 configurations of azimuthal sectors. Forward and backward pseudora-

pidity windows of the width δη = 0.2 are additionally split into 8 azimuthal sectors with the width

δϕ = π/4. The red sectors correspond to the first window of the FB pair, the green sectors to the

second one. The variable ϕsep is the separation in azimuthal angle between centres of the sectors.

The analysis is extended to correlations between separated regions in the η–ϕ plane

(sectors). The ϕ-angle space is split into 8 sectors with the width δϕ = π/4 as shown in

figure 3. This selection is motivated by a compromise between granularity and statistical

uncertainty. The definitions and equations, described in section 1, remain the same for the

η–ϕ windows. The acceptance of the windows is determined by their widths δη and δϕ as

the ALICE acceptance is approximately uniform in the selected ranges of η and ϕ.

2.3 Experimental procedures of the FB correlation coefficient measurement

The present paper focuses on the study of FB correlation phenomena related to soft particle

production. Therefore we restrict pT in 0.3 < pT < 1.5 GeV/c, except for the study of the

pT dependence presented in section 5, where the pT range is 0.3 < pT < 6 GeV/c.

The correlation coefficients, bcorr, for each window pair can be calculated using two

methods [1–4]. In the first method values of 〈nBnF〉, 〈nB〉, 〈nF〉 and 〈n2F〉 are accumulated

event-by-event and then bcorr is determined using eq. (1.2). In the second method, bcorr is

calculated using linear regression. The 2-dimensional distributions (nB, nF) are obtained

integrating over all selected events, then the average backward multiplicity is calculated

for each fixed value of the forward multiplicity, and bcorr is obtained from a linear fit to

the correlation function (see illustration in figure 4). Deviations from linear behavior may

provide additional information, however, a detailed study of non-linearity in the correlation

function is beyond the scope of this paper.

It has been shown that the results obtained with the two methods agree within statis-

tical uncertainty. In this work, results using the first method are presented.

2.4 Corrections and systematic uncertainties

Acceptance and tracking efficiency corrections are extracted from Monte Carlo simulations

using PYTHIA6 [36] (Perugia 0 tune) and PHOJET [37, 38] as particle generators followed

by a full detector response simulation based on GEANT3 [39]. Corrections are done to

primary charged particle correlations and multiplicities. Correction factors obtained with

these two generators are found to agree within 1% and the difference is neglected. Three

independent correction procedures are investigated.

In the first procedure, the correction factors for bcorr are obtained as the ratio of

bcorr obtained at generator level (true value) to bcorr after detector response simulation

– 5 –
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Figure 4. Illustrative example of forward versus backward raw multiplicity distribution for windows

with δη = 0.6 and ηgap = 0.4 at
√
s = 7 TeV (left) and corresponding correlation function (right).

The correlation strength bcorr is obtained from a linear fit according to eq. (1.1). Since most of the

statistics is at low multiplicities, the fit is mainly determined by the first points.

Error source 0.9 TeV 2.76 TeV 7 TeV

Number of TPC space-points 0.5–3.0 0–0.1 0.2–0.7

Number of ITS space-points 0.6–1.9 — 0.2–1.4

DCA 3.0–4.0 1.0–1.8 0.1–1.0

Vertex position along the beam line 0.2–1.1 0–1.0 0–0.7

bcorr correction procedure 2.5–4.0 2.2–4.2 1.6–2.8

Event pile-up < 1 < 1 < 1

Total (%) 3.4–4.5 2.8–4.2 2.0–3.0

Table 1. Sources of systematic errors of bcorr measurements in η-windows of width δη = 0.2, and

their contributions (in %). The minimal and maximal estimated values are indicated for each given

source.

(measured value). In the second procedure the correction factors are obtained for 〈nBnF〉,
〈nB〉, 〈nF〉 and 〈n2F〉 separately and bcorr is obtained from the corrected moments. The

third procedure takes into account approximately linear dependence of bcorr on 〈nF〉 when

〈nF〉 varies with cuts, and each corrected value of bcorr is found by extrapolation to the

corrected value of 〈nF〉.
It was found that results of all three procedures agree within 1.6–4.2% (see table 1),

thus proving the robustness of bcorr determination. The second procedure was chosen as

the most direct and commonly used to produce the final corrected value of bcorr. Correction

factors increase the values of bcorr, obtained for standard cuts, by 6–10 % for analysis in

η-windows and 9–18 % for analysis in η–φ windows and in pT intervals. By varying the

– 6 –
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Figure 5. Forward-backward correlation strength bcorr as function of ηgap and for different windows

widths δη = 0.2, 0.4, 0.6 and 0.8 in pp collisions at
√
s = 0.9, 2.76 and 7 TeV.

selection cuts (vertex-, DCA- and track selection cuts), correction procedures, and by

comparison of the high and low pile-up runs, the systematic uncertainties on bcorr have

been estimated. Adding all contributions in quadrature, the total systematic uncertainties

are below 4.5% (4.2%, 3%) at
√
s = 0.9 (2.76, 7) TeV for the bcorr analysis in η-separated

windows, and 6% for analysis in η–φ separated windows at
√
s = 0.9 and 7 TeV. For

the bcorr analysis in pT intervals for 7 TeV, the systematic uncertainties are less than 8%.

Statistical errors are small and within the symbol sizes for data points in the figures. A

summary of the contributions of systematic uncertainties for bcorr in η-separated windows

with the width δη = 0.2 is presented in table 1.

3 Multiplicity correlations in windows separated in pseudorapidity

3.1 Dependence on the gap between windows

Figure 5 shows the FB multiplicity correlation coefficient bcorr as a function of ηgap and

for different widths of the η windows (δη) in pp collisions at the three collision energies.

For each
√
s, bcorr is found to decrease slowly with increasing ηgap, while maintaining a

substantial pedestal value throughout the full ηgap range.

3.2 Dependence on the width of windows

The δη-dependence for adjacent (ηgap = 0), symmetrical windows with respect to η = 0

is shown in figure 6. For all collision energies, the correlation coefficient increases non-

linearly with δη. This trend is quite well described by PYTHIA6 and PHOJET, although

the agreement worsens with increasing
√
s. This δη-dependence can be understood, along

with other approaches [7, 25, 40], in a simple model with event-by-event multiplicity fluc-

tuations and random distribution of produced particles in pseudorapidity. In this model,

the multiplicity in an η interval containing the fraction p of the mean multiplicity 〈N〉 in

the full η-acceptance is binomially distributed and its mean square is given by

〈n2F〉 = 〈n2B〉 = p(1− p)〈N〉+ p2〈N2〉 , (3.1)

– 7 –



J
H
E
P
0
5
(
2
0
1
5
)
0
9
7

Figure 6. Correlation strength bcorr as a function of δη for ηgap = 0 in pp collisions for
√
s = 0.9,

2.76 and 7 TeV. The MC results from PYTHIA6 Perugia 0 (solid line), Perugia 2011 (dotted line)

and PHOJET (dashed line), calculated at generator level, are shown for comparison. The bottom

panels show the ratio of bcorr between data and MC. The red dashed curves correspond to the model

of independent particle emission from a fluctuating source (see text).

where N is the charged particle multiplicity measured in the pseudorapidity interval Y and

p =
〈nF〉
〈N〉

=
〈nB〉
〈N〉

=
δη

Y
. (3.2)

One can connect the multiplicity fluctuations in the full η-acceptance considered in this

analysis (Y = 1.6) with the correlation strength bcorr (see appendix A):

bmod
corr =

αδη/Y

1 + αδη/Y
, (3.3)

where

α =
σ2N
〈N〉

− 1 . (3.4)

Note that using eq. (3.1) and eq. (3.2) one can write the eq. (3.3) also in the follow-

ing form:

bmod
corr = 1−

〈nF〉
σ2nF

. (3.5)

From the measured ratio of the multiplicity variance σ2N ≡ 〈N2〉 − 〈N〉2 in Y = 1.6

to the mean value 〈N〉 we obtain the value of α at
√
s = 0.9, 2.76 and 7 TeV to be 2.03,

3.25 and 4.42, respectively, with a systematic uncertainty of about 5%. The bmod
corr (δη)-

dependences calculated by eq. (3.3) are shown in figure 6 as red dashed lines. At ηgap = 0

the bcorr(δη) dependence is well described by this simple model. However, this model is not

able to describe the dependence of bcorr on ηgap in figure 5 because it does not take into

account the SRC contribution mentioned above.

– 8 –
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√
s (TeV) window width δη 〈nF〉 bcorr (ηgap = 0) bcorr (max. ηgap)

0.9 0.54 1.17 0.39± 0.01 0.35± 0.01

2.76 0.4 1.17 0.44± 0.02 0.38± 0.02

7 0.33 1.17 0.48± 0.01 0.43± 0.01

Table 2. Correlation strength bcorr in pp collisions at
√
s = 0.9, 2.76 and 7 TeV in windows with

equal mean multiplicity 〈nF〉 and the corresponding values of δη. Values are shown for adjacent

windows (ηgap = 0) and for windows with maximal ηgap within |η| < 0.8. The uncertainty on 〈nF〉
is about 0.001.

3.3 Dependence on the collision energy

Figure 5 shows that the pedestal value of bcorr increases with
√
s, while the slope of the

bcorr(ηgap) dependence stays approximately constant. This indicates that the contribu-

tion of the short-range correlations has a very weak
√
s-dependence, while the long-range

multiplicity correlations play a dominant role in pp collisions and their strength increases

significantly with
√
s. Note that this increase cannot be explained by the increase of the

mean multiplicity alone. If, at different energies, we choose window sizes such that the

mean multiplicity stays constant the increase is still observed (see table 2).

In the framework of the simple model described by eqs. (3.3) and (3.4) the increase

of the correlation coefficient corresponds to the increase of the event-by-event multiplicity

fluctuations with
√
s characterized by the ratio σ2N/〈N〉.

A strong energy dependence and rather large bcorr values were previously reported by

the UA5 collaboration [3] and recently by the ATLAS Collaboration [16]. However, as

we see in figure 6, the correlation coefficient depends in a non-linear way on the width

of the pseudorapidity window. One has to take this fact into account when comparing

the correlation strengths obtained under different experimental conditions. In particular,

it explains the small values of bcorr observed by the STAR collaboration at RHIC (pp,√
s = 200 GeV) [17], where narrow FB windows (δη = 0.2) were considered, while in

previous pp and pp experiments wider windows of a few units of pseudorapidity were used.

4 Multiplicity correlations in windows separated in pseudorapidity and

azimuth

Multiplicity correlations are also studied in different configurations of forward and back-

ward azimuthal sectors. These sectors are chosen in separated forward and backward

pseudorapidity windows of width δη = 0.2 and δϕ = π/4 as shown in figure 3, resulting in

5 pairs with different ϕ-separation.

Figures 7 and 8 show the azimuthal dependence of bcorr as a function of different ηsep,

for 0.9 and 7 TeV, respectively. Data are compared to PYTHIA6 (tunes Perugia 0 and

Perugia 2011), PHOJET and a parametric string model [41].

The string model fitted to our data helps to understand in a simple way the origins

of the bcorr behaviour. There are two contributions to bcorr in this model. The short-range

– 9 –
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Figure 7. Correlation strength bcorr for separated η–ϕ window pairs at
√
s = 0.9 TeV as a function

of η separation, with fixed window width δη = 0.2 and δϕ = π/4. The panels are for different

separation distances between the two azimuthal sectors: ϕsep = 0, π/4, π/2, (3/4)π and π. MC

results from PYTHIA6 Perugia 0 (blue lines), Perugia 2011 (orange dashed lines) and PHOJET

(pink dashed lines) and string model [41] (thin green lines) are also shown. The bottom panels

show the ratio bcorr between data and MC results.

Figure 8. Correlation strength bcorr for separated η–ϕ window pairs at
√
s = 7 TeV as a function

of η separation. The legend is the same as for figure 7.

(SR) contribution originating from the correlation between particles produced from the

decay of a single string and the long-range (LR) contribution arising from event-by-event

fluctuations of the number of strings. The energy dependence of the fitted parameters

demonstrates that SR parameters stay constant with
√
s while the normalized variance of

the number of strings, the only LR parameter of the model, increases by a factor of three.

The 2-dimensional distribution of bcorr as a function of ηsep and ϕsep is shown in figure 9

for
√
s = 0.9 and 7 TeV. The qualitative behaviour of bcorr resembles the results obtained

for two-particle angular correlations: near-side peak and recoil away-side structure. The

connection between the FB correlation and two-particle correlation function is discussed

in detail in [7, 41–43].

The shapes of the correlation functions clearly indicate two contributions to the for-

ward-backward multiplicity correlation coefficient. The SR contribution is concentrated

– 10 –
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(a) Subfigure 1 list of figures text. (b) Subfigure 2 list of figures text.

Figure 9. 2D representation of bcorr at (a)
√
s = 0.9 TeV and (b) at

√
s = 7 TeV for separated η–ϕ

window pairs with δη = 0.2 and δϕ = π/4. To improve visibility, the point (ηsep, ϕsep) = (0, 0) and

thus bcorr = 1 is limited to the level of the maximum value in adjacent bins.

within a rather limited region in the η–ϕ plane within one unit of pseudorapidity and π/2

in azimuth, while the LR contribution manifests itself as a common pedestal in the whole

region of observation.

The strength of multiplicity correlations measured in η and η–ϕ windows is compared

to the results obtained with PYTHIA6 [36] (tunes Perugia 0 and Perugia 2011) and PHO-

JET [37, 38] Monte Carlo generators (MC). The detailed overview of key features of these

generators can be found in [44]. Recent Perugia tunes for PYTHIA6 are described in [45].

In figure 10 the comparison of bcorr as a function of ηgap for δη = 0.2 at
√
s = 0.9, 2.76

and 7 TeV with the results obtained with different MC generators is shown. All models

describe the data at
√
s = 0.9 TeV reasonably well, while larger discrepancies are observed

at 2.76 and 7 TeV, with PYTHIA giving a better description of the data than PHOJET.

Qualitatively similar conclusions can be drawn from the comparison of the δη-dependence

in experimental data and MC as shown in figure 6.

Note that PYTHIA also describes the correlations in η–ϕ windows reasonably well,

see figures 7 and 8, while PHOJET gives a good description only for
√
s = 0.9 TeV and

significantly underestimates the data at 7 TeV.

The difference between the experimental data and the results obtained with MC gener-

ators is more visible in figure 11, which compares the measured ratio of bcorr at
√
s = 2.76

and 7 TeV with respect to 0.9 TeV as a function of ηgap to MC calculations. The mea-

sured ratios show an increasing trend as a function of ηgap, while PYTHIA and PHOJET

underestimate the ratios and exhibit a flatter ηgap dependence.

It is important to note that, in the framework of PYTHIA, the observed LR part of bcorr
(the pedestal in figure 9) is dominated by multiple parton-parton interactions (MPI). This

– 11 –
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Figure 10. Correlation strength bcorr as a function of ηgap in pp collisions for data taken from

figure 5 and compared to MC generators PYTHIA Perugia 0 (solid line), Perugia 2011 (dotted line)

and PHOJET (dashed line) for
√
s = 0.9, 2.76 and 7 TeV collision energies, windows width δη is

0.2. The bottom panels show the ratio of the data to MC.

supports earlier results [46], in which the FB correlations in pp collisions were studied by

MC simulations with recent tunes of the PYTHIA6 at
√
s = 0.9 TeV. Hence, the observed

dependence of bcorr on collision energy and on different configurations of rapidity and

azimuthal windows adds new constraints on phenomenological models for multi-particle

production.

5 Dependence of FB multiplicity correlation strength on the choice of

pT intervals

The behaviour of FB multiplicity correlation strength was also studied as a function of

pT of registered particles. These studies were motivated by a recent paper by the ATLAS

collaboration [16], which reported a decrease in the multiplicity correlation strength with

increasing pmin
T . However, as we have observed in section 3.2, there is a strong non-linear

dependence of bcorr on the size of pseudorapidity windows and, hence, on the mean mul-

tiplicity 〈nch〉 in the window (see eqs. (3.2), (3.3), and figure 6). In order to demonstrate

that the strong pmin
T dependence is not a trivial multiplicity dependence, in our analysis

we use pT intervals with the same 〈nch〉. To this end, the correlation strength bcorr is

studied for five pT intervals within 0.3 < pT < 6 GeV/c at
√
s = 7 TeV: 0.3–0.4, 0.4–0.52,

0.52–0.7, 0.7–1.03 and 1.03–6.0 (GeV/c). In each pT interval, the corrected mean multi-

plicity 〈nF〉 = 0.157 with a systematic uncertainty about 2%. Correlations are studied in

η and η–ϕ FB-windows configurations. Note that in case of windows chosen symmetrically

with respect to η = 0 the definition of bcorr given by (1.2) coincides with the correlation

coefficient ρnFB used in the ATLAS analysis.

Figure 12 shows bcorr as a function of pmin
T for ηgap = 0 and 1.2. Systematic uncertainties

are shown as rectangles, statistical uncertainties are negligible. We find that bcorr increases

– 12 –
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Figure 11. Ratio of bcorr at 2.76 (blue squares) and 7 TeV (red circles) with respect to 0.9 TeV vs.

ηgap. The calculations from MC generators are also shown: PYTHIA Perugia 0 (solid line), Perugia

2011 (dotted line) and PHOJET (dashed line), for 2.76 TeV (blue lines) and 7 TeV (red lines).

Figure 12. Correlation strength bcorr at
√
s = 7 TeV for separated pseudorapidity window pairs,

measured in pT intervals with same 〈nch〉, as a function of pmin
T for each interval. Values are shown

for ηgap = 0, 1.2 with δη = 0.2.

with pmin
T for both values of ηgap, in contrast to the results reported in [16]. This result

can be understood if one takes into account that the multiplicity fluctuations in a given

window are closely connected with the two-particle correlation strength [7, 43]. In the

simple model with the event-by-event multiplicity fluctuations and random distribution of

produced particles in pseudorapidity, discussed in section 3.2, eq. (3.5) allows us to discuss

the observed dependence of the correlation coefficient bcorr on the pT-binnings for the case

of ηgap = 0 (figure 12). One sees that the imposed condition 〈nF〉 = const. eliminates the

– 13 –
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(a) (b)

Figure 13. Correlation strength bcorr at
√
s = 7 TeV for separated pseudorapidity window pairs,

measured in pT intervals with same 〈nch〉 as a function of ηgap. Windows of width δη = 0.2. Left

and right panels contain same data points, lines correspond to PYTHIA6 Perugia 2011 (left) and

to PHOJET (right).

dependence of bcorr on the multiplicity. The ratio 1/σ2nF
decreases and bmod

corr increases with

increasing pmin
T .

As mentioned above, in the approach used in [16] the dependence of the correlation

strength on the pmin
T of charged particles was studied without cuts on pmax

T , which leads to

a decrease of the correlation bcorr with increasing pmin
T . This result can also be illustrated

with the help of eq. (3.5). In this case 〈nF〉 decreases with increasing pmin
T and 〈nF〉/σ2nF

increases (approaching the Poisson limit σ2nF
= 〈nF〉) leading to the decrease of bmod

corr .

Thus, the difference of the results in these two approaches can be qualitatively understood

using eq. (3.5).

Figure 13 shows bcorr as function of ηgap for different pT intervals. Figure 13a compares

data to PYTHIA6 tune Perugia 2011. The general trend of bcorr increasing with higher

pmin
T for all ηgap is reproduced by this tune, with small quantitative deviations. Figure 13b

shows the same data in comparison to PHOJET. This generator does not describe the

data well: PHOJET results are almost independent of pmin
T and only grow significantly

for the pT range 1.03–6.00 (GeV/c). Since experimental data was used to determine the

pT intervals with the same mean multiplicity, the values of mean multiplicities may vary

slightly in case of the MC samples for the same pT intervals. Deviations from the mean

value are within 4% for PYTHIA6 Perugia 0 and 12% for PHOJET.

The analysis of bcorr is also performed in η–ϕ separated windows in different pT intervals

with the same mean multiplicity (for pp collisions at
√
s = 7 TeV) in 8 × 8 η–ϕ windows.

Results are shown in figure 14 and compared to PYTHIA6 and PHOJET calculations.

In addition to the conclusions that were drawn above from the correlations between η-

separated windows, some new details are revealed. In particular, one observes that the

– 14 –
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Figure 14. Correlation strength bcorr at
√
s = 7 TeV for separated η–ϕ windows in different pT

intervals with same 〈nch〉. Five ϕsep values are shown as a function of ηsep. Windows of δη = 0.2

and δϕ = π/4. Top and bottom panels and contain the same experimental data, lines correspond

to PYTHIA6 Perugia 2011 (top) and to PHOJET (bottom).

PHOJET discrepancy with the data is especially dramatic at ϕsep = π/2, where PHOJET

shows no dependence of bcorr on the pT range. It was shown already in [47] that PHOJET

has difficulties in description of underlying event measurements.

Figure 14 shows that for higher pT intervals a near-side peak appears (see panels for

ϕsep = 0 and π/4), at the same time the bcorr in the flat region at ηsep > 1 increases with pT
for all ϕsep values (compare panels for ϕsep = π/2, 3π/4 and π). It should be emphasized

that the value of the pedestal (the common constant component in all panels) increases

with pT.

In near- and away-side azimuthal regions the increase of bcorr with pmin
T can be explained

by an enhanced number of back-to-back decays and jets. The general rise of bcorr can be

related to the increase of the variance σ2N in eq. (3.4), discussed in the framework of the

simple model in section 3.2.

6 Conclusion

The strengths of forward-backward (FB) multiplicity correlations have been measured in

minimum bias pp collisions at
√
s = 0.9, 2.76 and 7 TeV using multiplicities determined

in two separated pseudorapidity windows separated by a variable gap, ηgap, of up to 1.2

units. The dependences of the correlation coefficient bcorr on the collision energy, the width

and the position of pseudorapidity windows have been investigated. For the first time, the
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analysis has been also applied for various configurations of the azimuthal sectors selected

within these pseudorapidity windows in events at
√
s = 0.9 and 7 TeV.

A considerable increase of the FB correlation strength with the growth of the collision

energy from
√
s = 0.9 to 7 TeV is observed. It is shown that this cannot be explained

by the increase of the mean multiplicity alone. The correlation strength grows with the

width of pseudorapidity windows, while it decreases slightly with increasing pseudorapidity

gap between the windows. It is shown that there is a strong non-linear dependence of the

correlation strength on the width of the pseudorapidity windows and hence on the mean

multiplicity value.

Measurements of the correlation strength for various configurations of azimuthal sec-

tors enable the distinction of two contributions: short-range (SR) and long-range (LR)

correlations. A weak dependence on the collision energy is observed for the SR component

while the LR component has a strong dependence. For η-gaps larger than one unit of pseu-

dorapidity and π/2 in azimuth the LR contribution dominates. This contribution forms a

pedestal value (the common constant component) of bcorr increasing with collision energy.

Moreover, pseudorapidity and pseudorapidity-azimuthal distributions of bcorr have

been obtained in pp events at
√
s = 7 TeV for various particle transverse momentum inter-

vals. It is found that the FB correlation strength increases with the transverse momentum

if pT-intervals with the same mean multiplicity are chosen.

The measurements have been compared to calculations using the PYTHIA and PHO-

JET MC event generators. These generators are able to describe the general trends of

bcorr as a function of δη, ηgap and ϕsep and its dependence on the collision energy. In

pT-dependent analysis of bcorr, PYTHIA describes data reasonably well, while PHOJET

fails to describe bcorr in azimuthal sectors. The observed dependences of bcorr add new

constraints on phenomenological models. In particular the transition between soft and

hard processes in pp collisions can be investigated in detail using the pT dependence of

azimuthal and pseudorapidity distributions of forward-backward multiplicity correlation

strength bcorr.

A A model with random uniform distribution of produced particles in

pseudorapidity

In a simple model with event-by-event multiplicity fluctuations and random uniform dis-

tribution of produced particles in pseudorapidity the probability to observe nF particles in

some subinterval δη from the total number of N charged particles produced in the whole

pseudorapidity interval Y is given by the binomial distribution:

PN (nF) = C
nF
N pnF(1− p)N−nF , (A.1)

with 〈nF〉N = pN and 〈n2F〉N = p(1− p)N + p2N2, where p ≡ δη/Y . (We consider the case

of symmetric windows δηF = δηB = δη.) Averaging then over events with different values

of N ,

P (nF) =
∑
N

P (N)PN (nF) , (A.2)
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we have

〈nF〉 =
∑
nF

P (nF)nF =
∑
nF

∑
N

P (N)PN (nF)nF =
∑
N

P (N)pN = p 〈N〉 (A.3)

and hence

p =
〈nF〉
〈N〉

=
〈nB〉
〈N〉

=
δη

Y
. (A.4)

In the same way we find

〈n2F〉 = 〈n2B〉 = p(1− p)〈N〉+ p2〈N2〉 , (A.5)

〈(nF + nB)2〉 = 2p(1− 2p)〈N〉+ (2p)2〈N2〉 . (A.6)

One can rewrite (A.4)–(A.6) also as

σ2nF+nB
− 〈nF + nB〉

〈nF + nB〉2
=
σ2nF
− 〈nF〉
〈nF〉2

=
σ2N − 〈N〉
〈N〉2

≡ RN , (A.7)

since the so-called robust variance RN is the same for any subinterval of Y in the case of

the independent homogeneous distribution of the particles along Y [43].

Using the presentation for the covariance

〈nFnB〉 − 〈nF〉〈nB〉 ≡
1

2
(σ2nF+nB

− σ2nF
− σ2nB

) , (A.8)

we can write for the correlation coefficient in a model-independent way:

bcorr =
σ2nF+nB

− σ2nF
− σ2nB

2σ2nF

. (A.9)

Then combining (A.7) and (A.9) we find

bmod
corr =

〈nF〉RN

1 + 〈nF〉RN
. (A.10)

Using (A.4) we can write (A.10) also as

bmod
corr =

αδη/Y

1 + αδη/Y
, (A.11)

where

α = 〈N〉RN =
σ2N
〈N〉

− 1 . (A.12)

Substituting the expression

RN =
σ2nF
− 〈nF〉
〈nF〉2

(A.13)

from (A.7) into (A.10) one finds another presentation for bmod
corr :

bmod
corr = 1−

〈nF〉
σ2nF

. (A.14)
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M. Kretz43 , M. Krivda59 ,102 , F. Krizek83 , E. Kryshen36 , M. Krzewicki43 ,97 , A.M. Kubera20 ,
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29 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
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Grenoble, France
72 Laboratori Nazionali di Frascati, INFN, Frascati, Italy
73 Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
74 Lawrence Berkeley National Laboratory, Berkeley, California, United States
75 Lawrence Livermore National Laboratory, Livermore, California, United States
76 Moscow Engineering Physics Institute, Moscow, Russia
77 National Centre for Nuclear Studies, Warsaw, Poland
78 National Institute for Physics and Nuclear Engineering, Bucharest, Romania
79 National Institute of Science Education and Research, Bhubaneswar, India
80 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
81 Nikhef, National Institute for Subatomic Physics, Amsterdam, Netherlands
82 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
83 Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež u Prahy, Czech Republic
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123 University of Liverpool, Liverpool, United Kingdom
124 University of Tennessee, Knoxville, Tennessee, United States
125 University of the Witwatersrand, Johannesburg, South Africa
126 University of Tokyo, Tokyo, Japan
127 University of Tsukuba, Tsukuba, Japan
128 University of Zagreb, Zagreb, Croatia
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