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The suppression of charmonia, bound states ofc and �c quarks, and in particular of the
J/  state, has long been proposed as a signature for the formation of a plasma of quarks
and gluons (QGP) [1] in ultrarelativistic nucleus-nucleus collisions. However, it was soon
realized that charmonium production can also be modi�ed by nuclear e�ects not necessarily
related to QGP formation [2]. These so-called cold nuclear matter (CNM) e�ects can
be investigated by studying charmonium production in proton-nucleus (p-A) collisions as
con�rmed by the analysis of results obtained by several �xed-target (SPS [3, 4], HERA [5]
and Tevatron [6]) and collider (RHIC [ 7] and LHC [8, 9]) experiments.

Theoretical models have studied the production of charmonium in p-A collisions and
the e�ects of the surrounding cold nuclear medium by introducing various mechanisms
which include nuclear shadowing, gluon saturation, energy loss and nuclear absorption.
Models [10{ 12] inspired by Quantum ChromoDynamics (QCD) describe charmonium pro-
duction as a two-step process, with thecc pair created in a hard parton scattering, followed
by its evolution into a bound state with speci�c quantum numbers. The pair creation is
sensitive to the Parton Distribution Functions (PDFs) in both colliding partners and, at
high energy, occurs mainly via gluon fusion. Although PDFs are known to be modi�ed in a
nuclear environment, information on the dependence of such modi�cations on the fraction
x (Bjorken-x) of the nucleon momentum carried by the gluons and on the four-momentum
squaredQ2 transferred in the scattering is still limited [ 13{ 15]. Charmonium production
measurements can therefore provide insight into the so-called nuclear shadowing, i.e., on
how the nucleon gluon PDFs are modi�ed in a nucleus.

Modi�cations of the initial state of the nucleus are also addressed by approaches as-
suming that at su�ciently high energies, when the quark pair is produced from a dense
gluon system carrying smallx-values in the nuclear target, a coherent e�ect known as gluon
saturation sets in. Such an e�ect can be described by the Color Glass Condensate (CGC)
e�ective theory, which is characterized by a saturation momentum scale (Q2

s). When com-
bined with a speci�c quarkonium production model [16, 17], it is able to provide predictions
for charmonium production in p-A collisions. In the context of shadowing and CGC mod-
els, a measurement of the charmonium yield as a function of transverse momentum (pT )
and rapidity ( y) is important as it gives access to speci�c ranges of values of the gluonx
and/or Q2.

In addition to these purely initial state e�ects, both the incoming partons and the cc
pair propagating through the nucleus may lose energy by gluon radiation at the various
stages of the charmonium formation process [18]. The interference of gluons radiated before
and after the hard production vertex can lead to coherent energy loss e�ects, expected to
induce a modi�cation of the charmonium kinematic distributions [ 19].

Finally, while travelling through nuclear matter, the evolving cc pair or, if crossing
times are su�ciently large, the fully formed resonance, may break-up into open charm me-
son pairs. Although this mechanism, known as nuclear absorption, plays an important role
at lower collision energies [4], at the LHC the contribution of this e�ect to the production
cross section is expected to be small, due to the very short crossing time of the pair through
the nuclear environment.

Understanding the role of the cold nuclear matter e�ects outlined above is essential
to further our knowledge of various aspects of the physics of strong interactions, and it
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is crucial for the interpretation of the results on charmonium production in heavy-ion
collisions, where the formation of a QGP is expected. In such a hot and dense decon�ned
medium the color screening mechanism (the QCD analogue of the Debye screening in
QED) can prevent the formation of the heavy-quark bound states, leading to a suppression
of quarkonium production [1]. In addition, at LHC energies, the large charm quark density
may lead to a (re)generation of charmonium by (re)combination of charm quarks [20, 21]
in the QGP phase and/or when the system cools down and the formation of hadrons
occurs. This e�ect enhances charmonium production and is expected to be particularly
sizeable at lowpT . In heavy-ion collisions, a superposition of hot and cold nuclear matter
e�ects is expected, and a quantitative evaluation of the latter is an important prerequisite
for a detailed understanding of the former. At lower energy, both at SPS [22{ 24] and
RHIC [25, 26], a suppression of J/ production, in addition to the CNM e�ects estimated
from p-A(d-A) collisions, was indeed observed.

A suppression of J/ production has been measured in Pb-Pb collisions at the LHC [27{
31]. It was quanti�ed via the nuclear modi�cation factor, i.e., the ratio of the Pb-Pb yields
with respect to those measured in pp at the same energy, scaled by the number of bi-
nary nucleon-nucleon collisions. The suppression has been found to be stronger at forward
rapidity and at high pT [30, 31], in agreement with expectations from (re)combination
models. Similar to the lower energy experiments, accurate measurements in p-A collisions
are needed to quantitatively assess the contribution of hot and cold nuclear matter e�ects
in Pb-Pb.

The �rst measurements of inclusive J/ production in p-Pb collisions at the LHC at
p

sNN = 5 :02 TeV [8, 9] have shown a sizeable suppression, with respect to binary-scaled
pp collisions, at forward rapidity (p-going side) and no suppression at backward rapidity
(Pb-going side). The nuclear modi�cation factors are in fair agreement with models based
on nuclear shadowing [32, 33]. Calculations including a contribution from coherent energy
loss [19] also reproduce the data. Corresponding measurements for the less strongly bound
 (2S) charmonium state are presented in [34]. In addition, an extrapolation to Pb-Pb
collisions of the J/ suppression measured in p-Pb showed that the e�ects observed in
Pb-Pb cannot be ascribed only to CNM [8].

In this situation, a study of the transverse-momentum dependence of J/ production at
LHC energies for various rapidity regions is particularly interesting in order to: (i) reach a
deeper understanding and better quantify the complicated interplay of CNM e�ects, which
are expected to exhibit a well-de�ned kinematical dependence [33, 35, 36]; (ii) determine if
the di�erential features of the Pb-Pb results that suggest the presence of (re)combination
e�ects are still present when the contribution of CNM is considered.

In this paper, we present ALICE results on the transverse-momentum dependence of
the inclusive J/  production in p-Pb collisions at

p
sNN = 5 :02 TeV, measured in three

center-of-mass rapidity (ycms) ranges: backward (� 4:46 < y cms < � 2:96), mid- (� 1:37 <
ycms < 0:43) and forward (2:03 < y cms < 3:53). The data are from the 2013 LHC p-Pb run.

At mid-rapidity, J/  are reconstructed in the e+ e� decay channel with the ALICE
central barrel detectors, covering the pseudorapidity rangej� lab j < 0.9. For the backward
and forward rapidity analysis, J/  are detected, through their � + � � decay channel in the
muon spectrometer, in the pseudorapidity range� 4 < � lab < � 2:5.
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Due to the energy asymmetry of the LHC beams (Ep = 4 TeV and EPb = 1 :58 �
APb TeV, where APb= 208 is the Pb atomic mass number), the nucleon-nucleon center-of-
mass is shifted, with respect to the laboratory frame, by � y = 0 :465 in the direction of the
proton beam. Since data were collected in two con�gurations, interchanging the direction
of the proton and the Pb beams in the LHC, the muon spectrometer acceptance covers the
forward and backward ycms regions quoted above, where positive (negative) rapidities refer
to the direction of the proton (Pb) beam. In the following, the notation p-Pb (Pb-p) will
refer to the �rst (second) con�guration.

For the dielectron analysis, the central barrel detectors used for the J/ reconstruction
are the Inner Tracking System (ITS) [37] and the Time Projection Chamber (TPC) [ 38].
The ITS contains six cylindrical layers of silicon detectors, with the innermost layer at a
radius of 3.9 cm with respect to the beam axis and the outermost layer at 43 cm. This
detector is used for reconstructing the primary interaction vertex as well as vertices from
di�erent interactions and secondary vertices from decays of heavy-
avored particles. The
TPC has a cylindrical geometry with an active volume that extends from 85 to 247 cm
in the radial direction and 500 cm longitudinally. It is the main central barrel tracking
detector and also provides particle identi�cation via the measurement of the speci�c energy
loss (dE=dx) in the detector gas.

The muon spectrometer [39] is the main detector used in the dimuon analysis. It con-
sists of a 3 T�m dipole magnet, coupled with a tracking and a triggering system. Between
the interaction point and the muon spectrometer, a ten interaction-length (� I ) front ab-
sorber �lters out the hadrons produced in the interaction. Muon tracking is performed
by means of �ve tracking stations, each one made of two planes of Cathode Pad Cham-
bers. A 7.2 � I iron wall, which stops secondary hadrons escaping the front absorber and
low momentum muons, is placed after the tracking stations. It is followed by a muon
trigger system, based on two stations equipped with Resistive Plate Chambers. A conical
absorber made of tungsten, lead and steel protects the spectrometer against secondary
particles produced by the interaction of large-� primary particles in the beam pipe. In
the dimuon analysis, the determination of the interaction vertex is provided by the two
innermost Si-pixel layers of the ITS (Silicon Pixel Detector, SPD).

For both analyses, timing information from the Zero Degree Calorimeters [40], placed
symmetrically at 112.5 m with respect to the interaction point, is used to remove de-
bunched proton-lead collisions. Furthermore, two scintillator hodoscopes (VZERO) [41],
with pseudorapidity coverage 2:8 < � lab < 5:1 and � 3:7 < � lab < � 1:7, are used to remove
beam-induced background. More details on the ALICE apparatus can be found in [39].

A coincidence of signals in the two VZERO detectors provides the minimum bias (MB)
trigger, which has a> 99% e�ciency for selecting non single-di�ractive p-Pb collisions [42].
While the dielectron analysis is based on MB-triggered events, the study of J/ in the � + � �

decay channel relies on a dimuon trigger which requires, in addition to the MB condition,
the detection of two opposite-sign tracks in the trigger system. The dimuon trigger selects
two muon candidates with transverse momentapT ;� larger than 0.5 GeV/c. The trigger
threshold is not sharp, and the single muon trigger e�ciency reaches its plateau value
(� 96%) at pT ;� � 1:5 GeV/ c. The dielectron analysis was performed on a data sample
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corresponding to the p-Pb con�guration, with an integrated luminosity L int = 51:4 � 1:9
� b� 1, while for the dimuon analysis the corresponding values are 5:01� 0:19 nb� 1 for p-Pb
and 5:81� 0:20 nb� 1 for Pb-p (the quoted uncertainties are systematic) [43].

The dielectron analysis is based on 1.07� 108 events, collected with a low MB interac-
tion rate ( � 10 kHz), with a negligible amount of events having more than one interaction
per bunch crossing (pile-up events). The interaction vertex is required to lie within � 10
cm from the nominal collision point along the beam axis, in order to obtain a uniform
acceptance of the central barrel detector system in the �ducial rangej� lab j < 0:9. Electron
candidates are selected with criteria very similar to those used in previous analyses of pp
collisions at

p
s =7 TeV [ 44] and Pb-Pb collisions at

p
sNN = 2 :76 TeV [30]. To ensure a

uniform tracking e�ciency and particle identi�cation resolution in the TPC, only tracks
within j� lab j < 0:9 are used. Electron identi�cation is performed using the TPC, as shown
in �gure 1, by requiring the dE=dx signal to be compatible with the electron assumption
within 3 � , where � denotes the resolution of the dE=dx measurement. Furthermore, the
TPC tracks that are compatible with the pion and proton assumptions within 3.5 � are
rejected. A slightly looser rejection condition (3� ) is applied when considering tracks cor-
responding to dielectron candidates withpT > 5 GeV/ c in order to enhance the statistics.
A cut on the transverse momentum (pT ;e > 1:0 GeV/ c) is applied to remove combinatorial
background from low-momentum electrons. The e�ciency loss induced by this cut amounts
to only � 20%, due to the relatively large momentum of the J/ decay products. The elec-
tron candidates must have at least one hit in the innermost two layers of the ITS, thus
rejecting a large fraction of background electrons from photon conversions. For dielectrons
with pT < 3 GeV/ c the electron candidates are required to have a hit in the �rst layer, to
further reduce background. The tracks are required to have at least 70 out of a maximum
of 159 clusters in the TPC and a� 2 normalized to the number of clusters attached to the
track smaller than 4.

The J/  yields are obtained by counting the number of entries in the invariant mass
range 2:92 < m e+ e� < 3:16 GeV/c2 after background subtraction. The J/  radiative
decay channel and the energy loss of the electrons due to bremsstrahlung in the detector
material produce a long tail towards low invariant masses. A �t using a Crystal Ball
(CB) [ 45] function for the J/  signal gives compatible values in Monte-Carlo (MC) and
data (� 20 MeV/ c2 for the width of the Gaussian component of the CB). Taking into account
such a mass resolution and the presence of the bremsstrahlung tail, 67� 73% of the signal,
depending onpT , falls within the counting window. The background shape is obtained from
event mixing. Event mixing is performed by pairing leptons from di�erent events having
similar global characteristics such as the primary-vertex position and the track multiplicity
(the result being quite insensitive to the rapidity range, either forward or central, chosen for
the multiplicity measurements). The mixed-event background is then scaled to match the
same-event opposite-sign distribution in the mass ranges 2:0 < m e+ e� < 2:5 GeV/ c2 and
3:2 < m e+ e� < 3:7 GeV/ c2 (the contribution of the bremsstrahlung tail in the former range
and of the  (2S) in the latter are negligible). Consistent results are found when the same-
event like-sign distributions are used, instead of event mixing, to estimate the background.
The systematic uncertainty on the signal extraction comes from the variation of the mass
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Figure 1 . Charged particle speci�c energy loss (dE=dx) as a function of momentum, as measured
in the TPC in p-Pb collisions. The black lines are the corresponding Bethe-Bloch parametrizations
for the various particle species.

Figure 2 . Opposite-sign dielectron invariant mass spectra (blue symbols) for variouspT intervals,
compared to the background (black curve) estimated through mixed events. The background is
scaled to match the data in the mass ranges 2:0 < m e+ e� < 2:5 GeV/ c2 and 3:2 < m e+ e� <
3:7 GeV/ c2.

range where the normalization of the mixed-event background shape is performed and
from the choice of the mass window where the signal is counted. The signal extraction has
been performed in �ve transverse-momentum bins,pT < 1:3, 1:3 < p T < 3, 3 < p T < 5,
5 < p T < 7 and 7< p T < 10 GeV/c. The J/  counts in these bins vary from 25 to 132, with
a signi�cance, computed in the 2:92 < m e+ e� < 3:16 GeV/c2 mass region, ranging from 4.6
to 8.7. An analysis of the pT -integrated data sample, using the procedure detailed above,
gives 465� 37(stat:) � 16(syst:) J/  signal counts. The systematic uncertainty on the signal
extraction is largest at low pT (10% for pT < 1:3 GeV/ c and 12% for 1:3 < p T < 3 GeV/ c),
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due to a less favorable signal over background ratio, and decreases to� 5.5{8.4% in the
other three pT bins. Figure 2 shows the invariant mass distributions for the opposite-sign
dielectrons compared with the mixed-event background for the di�erent intervals of pT .

The dimuon analysis is performed as detailed in [8], and is shortly summarized here-
after. Data were collected with the dimuon trigger, and the MB interaction rate (up to 200
kHz) was much higher than in the sample used for the dielectron analysis. This leads to
a � 2% interaction pile-up probability. However, the probability of having more than one
dimuon in the same bunch crossing satisfying the trigger condition is negligible. Muon can-
didate tracks are reconstructed in the tracking system by using the standard reconstruction
algorithm [44]. The quality of the tracks is ensured by requiring the single muon pseudo-
rapidity to be in the range � 4 < � lab;� < � 2:5, in order to remove particles at the edges of
the muon spectrometer acceptance. In addition, a cut on the radial coordinate of the track
at the end of the front absorber (17:6 < R abs < 89:5 cm) is performed, ensuring rejection of
muons crossing its high-density part, where energy loss and multiple scattering e�ects are
more important. The tracks reconstructed in the tracking system that are not matched to
a corresponding track in the triggering system are rejected [44]. Finally, the reconstructed
dimuons are required to be in 2:03 < y cms < 3:53 (� 4:46 < y cms < � 2:96) for the forward
(backward) rapidity analysis. The number of J/  is extracted in transverse-momentum
bins, in the rangepT < 15 GeV/c, through �ts to the invariant mass spectra of opposite-sign
dimuons. The spectra are �tted with a superposition of background and resonance shapes.
The background is described with a Gaussian function with a mass-dependent width or,
alternatively, with an exponential function times a fourth-order polynomial function. For
the J/  shape an extended Crystal Ball function, which accommodates a non-Gaussian
tail both on the right and on the left side of the resonance peak, is adopted. Alternatively,
a pseudo-Gaussian function [46] is used, corresponding to a Gaussian core around the J/ 
pole, and tails on the right and left side of it, parameterized by varying the width of the
Gaussian as a function of the mass. The value of the J/ mass and its width (� ) at the pole
position are free parameters of the �t. The mass coincides with the PDG value within less
than 5 MeV/ c2 and the width is � 70 MeV/ c2, slightly increasing with pT , due to a small
relative decrease in the tracking resolution for harder muons. Although the signal over
background ratios, calculated for a� 3� interval around the resonance peak, are relatively
large (ranging from 1.4 to � 6 moving from low to high pT ), the parameters of the tails
of the J/  distributions cannot be reliably tuned on the data (in particular at large pT ,
where statistics is limited), but are �xed, for each pT bin, to the values extracted from �ts
to reconstructed samples from a signal-only MC generation. The contribution of the (2S)
resonance is also included in the �tting procedure, even if its in
uence on the determination
of the J/  yield is negligible. Finally, all the �ts are performed in two di�erent invariant
mass ranges, either 2< m �� < 5 GeV/ c2 or 2:2 < m �� < 4:5 GeV/ c2. Examples of �ts to
the invariant mass spectra, in the pT bins under study, are shown in �gure 3.

For each pT bin, the number of J/  is evaluated as the average of the integrals of
the resonance functions obtained in the various �ts. The RMS of the corresponding yield
distributions (0 :2� 3%, depending onpT ) provides the systematic uncertainty on the signal
extraction. Additional sets of tails, obtained from the MC, but referring to other ycms and
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Figure 3 . The opposite-sign dimuon invariant mass spectra for the variouspT bins, relative to
the p-Pb data sample (blue symbols). The �ts shown in this �gure (blue curves) were performed
by using the sum of extended Crystal Ball functions for the J/ and  (2S) signals, and a variable
width Gaussian for the background. The signal and background components are shown separately
as red curves.

pT phase space regions, have also been tested and the dependence of the extracted yields
on the variation of the tails (2%) is included in the systematic uncertainty on the signal
extraction. As a function of pT , the number of J/  in the p-Pb (Pb-p) con�guration ranges
between � 16100 (� 16000) in the most populated bin (1< p T < 2 GeV/ c) and less than
� 900 (� 300) in the highest pT bin (10 < p T < 15 GeV/c).

The J/  yields are then corrected for the product of acceptance times e�ciency (A � " ),
evaluated by means of a MC simulation. J/ production is assumed to be unpolarized, as
motivated by the small degree of polarization measured in pp collisions at

p
s = 7 TeV [ 47{

49]. In the e+ e� decay channel,A � " is calculated using a MC simulation where J/ 
are injected into p-Pb collisions simulated with HIJING [ 50]. The decay products of the
J/  are then propagated through a realistic description of the ALICE set-up, based on
GEANT3.21 [51], taking into account the time evolution of the detector performance. Fi-
nally, J/  candidates are reconstructed with the same procedure applied to data. ThepT -
integrated A � " factor amounts to 8.9%. Its pT -dependence exhibits a minimum (� 7.5%)
around pT = 2 GeV/ c, due to the kinematical acceptance, and it reaches� 12% at high
pT . The integrated value of A � " is a�ected by a 3% systematic uncertainty related to
the choice of the J/ p T - and y-distributions used in the MC simulation. This value is ob-
tained using as input several distributions, determined by varying within uncertainties the
di�erential spectra extracted from the ALICE p-Pb data themselves. For pT -di�erential
studies, the values ofA � " are found to be sensitive only at a sub-percent level to the
adopted input pT - and y-distributions. A further small systematic uncertainty reaching
1.5% in the highestpT interval and related to the statistical uncertainty of the MC sample
is also introduced. The systematic uncertainty on the dielectron reconstruction e�ciency
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is strongly dominated by the particle identi�cation uncertainty and amounts to 4%. It was
obtained by comparing the single track reconstruction e�ciency for topologically identi�ed
positrons and electrons from photon conversions with the corresponding MC quantities.
In the dimuon analysis, the J/  A � " is obtained with a MC simulation, by generating
signal-only samples, tracking them in the experimental set-up modeled with GEANT3.21
and using the same reconstruction procedure applied to data. The use of a pure signal
MC is justi�ed, since the tracking e�ciency does not show a dependence on the hadronic
multiplicity of the collision. A realistic description of the set-up is adopted, including the
time evolution of the e�ciencies of tracking and triggering detectors. As for the dielectron
analysis, the di�erential distributions used as an input to the MC are tuned directly on the
data. The J/  A � " values, integrated overpT , are 25.4% and 17.1% for p-Pb and Pb-p
respectively [8], and exhibit a dependence on transverse momentum, being of the order of
� 24% (� 16%) for p-Pb (Pb-p) at low pT and reaches� 50% (� 35%) in the highest pT bin
(10 < p T < 15 GeV/c). The systematically lower A � " values in Pb-p re
ect the smaller
detector e�ciency in the corresponding data taking period. The systematic uncertainty
on the integrated A � " due to the input shapes is 1.5% for both p-Pb and Pb-p, and
has been estimated using various distributions obtained from data and corresponding to
smaller intervals in y, pT and centrality (see [8] for details). For pT -di�erential studies,
the corresponding uncertainties are below 1.5%. The uncertainty on the dimuon tracking
e�ciency amounts to 4% (6%) for p-Pb (Pb-p) and is taken as constant for the full pT

range. It is evaluated by combining the uncertainties on single muon tracking e�ciencies,
considered as uncorrelated. The e�ciency of each tracking plane is obtained using the
redundancy of the tracking system (two independent planes per station) and then single
muon e�ciencies for the full tracking system are calculated according to the tracking al-
gorithm [52]. Their uncertainty is determined by comparing the e�ciency obtained with
tracks from MC and real data. The systematic uncertainty on the dimuon trigger e�ciency
includes: (i) a contribution due to the uncertainty in the evaluation of the trigger detector
e�ciency ( � 2%, independent ofpT ); (ii) a 0 :5� 3% pT -dependent contribution (2% for the
integrated e�ciency), related to small di�erences in the trigger response function between
data and MC in the region close to the trigger threshold; (iii) a 0:5 � 3:5% pT -dependent
contribution due to a small fraction of opposite-sign pairs which were misidenti�ed as like-
sign by the trigger system. Finally, a � 1% uncertainty, independent ofpT , is included, due
to the choice of the value of the� 2 cut applied to the matching of tracks reconstructed in
the muon tracking and triggering systems.

The di�erential cross section for inclusive J/  production is de�ned as:

d2� J= 
pPb

dydpT
=

NJ= (� y; � pT )

L pPb
int � (A � " )(� y;� pT ) � B:R:(J= ! l+ l � ) � � y � � pT

(1)

whereNJ= (� y; � pT ) is the number of J/  for a given � y and � pT interval. The branching
ratio to dileptons, B :R:(J= ! l+ l � ), is 5:94 � 0:06% (5:93 � 0:06%) for the dielectron
(dimuon) decay [53]. The integrated luminosity, L pPb

int , is the ratio between NMB , the
number of MB collisions, and � MB

pPb , the corresponding cross section, measured in a van der
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Source � J= 
pPb , RpPb � J= 

pPb , RpPb � J= 
Pbp , RPbp

-1.37< y cms < 0.43 2.03< y cms < 3.53 -4.46< y cms < -2.96

Uncorrelated

Tracking e�ciency ( � + � � ) | 4 6

Trigger e�ciency ( � + � � ) | 2.7{4.1 2.7{4.1

Matching e�ciency ( � + � � ) | 1 1

Reconstruction e�ciency (e + e� ) 4 | |

Signal extraction 5.5{12.6 2{2.5 2{3.6

MC input 0.3{1.5 0.1{0.4 0.1{1.4

� J= 
pp 4.8{15.7 5.2{9.2 5.2{9.2

Partially correlated

� J= 
pp (corr. vs y and pT ) - 2.8{5.9 2{5.6

Correlated

B.R. (J/  ! l+ l � ) 1 1 1

L int (corr. vs. pT , uncorr. vs. y) 3.3 3.4 3.1

L int (corr. vs. y and pT ) 1.6 1.6 1.6

� J= 
pp 16.6 5.2 5.2

Table 1 . Systematic uncertainties (in percent) on the measurement of inclusive J/ cross sections
and nuclear modi�cation factors. For pT -dependent uncertainties, the minimum and maximum
values are given. The degree of correlation (uncorrelated, partially correlated, correlated) refers to
the pT -dependence, unless speci�ed otherwise. It cannot be excluded that a degree of correlation,
di�cult to quantify, is present also in uncertainties currently labelled as uncorrelated. Uncertainties
on L int and branching ratios are relevant for cross sections, while those on� J= 

pp contribute only to
the uncertainty on the nuclear modi�cation factors. L int uncertainties are split into two components,
respectively uncorrelated and correlated between p-Pb and Pb-p, as detailed in [43].

Meer scan to be 2.09� 0.07 b for the p-Pb con�guration and 2.12 � 0.07 b for the Pb-p
case [43]. The luminosity is also independently determined by means of a second signal
based on a�Cherenkov counter [39], as described in [43]. The two measurements di�er by at
most 1% throughout the whole data-taking period and such a value is quadratically added
to the luminosity uncertainty. Finally, since the dimuon analysis is based on a sample of
NDIMU dimuon triggered events, the number of equivalent MB collisions is computed as
NMB = F � NDIMU , where F is a factor accounting for the probability of having a dimuon
trigger when the MB condition is satis�ed and for the small ( � 2%) pile-up probability in
the corresponding data sample. The systematic uncertainty on this quantity, quadratically
added to the other luminosity uncertainties, is 1% and originates from the comparison
between the di�erent approaches used for its evaluation [8]. A summary of the systematic
uncertainties can be found in table1. The di�erential inclusive J/  cross sections are shown
in �gure 4, in the rangespT < 10 GeV/c for the dielectron analysis andpT < 15 GeV/c for
the dimuon analysis. The numerical values can be found in table2.
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pT d2� J= 
pPb =dydpT pT RpPb d2� J= 

pp =dydpT (interpol.)

(GeV/ c) ( � b/(GeV/ c)) (GeV/ c) ( � b/(GeV/ c))

� 4:46 < y cms < � 2:96 (� + � � )

[0; 1] 97.7� 2.0� 7.2� 3.5 [0; 1] 0.96� 0.02� 0.09� 0.03� 0.06 0.490� 0.029� 0.017� 0.026

[1; 2] 196.8� 2.7� 14.3� 7.1 [1; 2] 1.06� 0.01� 0.10� 0.04� 0.07 0.892� 0.048� 0.030� 0.046

[2; 3] 159.6� 2.1� 11.6� 5.8 [2; 3] 1.11� 0.01� 0.10� 0.04� 0.07 0.693� 0.036� 0.025� 0.036

[3; 4] 93.3� 1.6� 6.7� 3.4 [3; 4] 1.16� 0.02� 0.10� 0.04� 0.07 0.388� 0.021� 0.012� 0.020

[4; 5] 45.7� 1.0� 3.2� 1.7 [4; 5] 1.17� 0.02� 0.11� 0.03� 0.07 0.187� 0.011� 0.004� 0.010

[5; 6] 22.1� 0.5� 1.6� 0.8 [5; 6] 1.13� 0.03� 0.12� 0.02� 0.07 0.094� 0.007� 0.002� 0.005

[6; 7] 11.2� 0.4� 0.8� 0.4 [6; 8] 1.27� 0.03� 0.14� 0.08� 0.08 0.032� 0.003� 0.002� 0.002

[7; 8] 5.7� 0.3� 0.4� 0.2

[8; 10] 2.3� 0.1� 0.2� 0.1

[10; 15] 0.33� 0.03� 0.03� 0.01

� 1:37 < y cms < 0:43 (e+ e� )

[0; 1:3] 158� 33� 17� 6 [0; 1:3] 0.81� 0.17� 0.10� 0.14 0.94� 0.07� 0.16

[1:3; 3] 211� 33� 26� 8 [1:3; 3] 0.64� 0.10� 0.09� 0.11 1.60� 0.08� 0.26

[3; 5] 126� 15� 9� 5 [3; 5] 0.77� 0.09� 0.07� 0.13 0.79� 0.05� 0.13

[5; 7] 43.4� 6.5� 3.4� 1.7 [5; 7] 0.89� 0.13� 0.13� 0.15 0.23� 0.03� 0.04

[7; 10] 10.2� 2.4� 1.0� 0.4 [7; 10] 0.89� 0.21� 0.16� 0.15 0.06� 0.01� 0.01

2:03 < y cms < 3:53 (� + � � )

[0; 1] 78.8� 1.5� 4.6� 3.1 [0; 1] 0.61� 0.01� 0.05� 0.02� 0.04 0.624� 0.036� 0.025� 0.032

[1; 2] 158.4� 2.2� 9.0� 6.2 [1; 2] 0.64� 0.01� 0.05� 0.02� 0.04 1.197� 0.064� 0.046� 0.062

[2; 3] 138.2� 1.9� 7.9� 5.4 [2; 3] 0.68� 0.01� 0.05� 0.03� 0.04 0.980� 0.051� 0.039� 0.051

[3; 4] 91.3� 1.4� 5.0� 3.6 [3; 4] 0.76� 0.01� 0.06� 0.03� 0.05 0.579� 0.032� 0.022� 0.030

[4; 5] 53.0� 0.9� 2.8� 2.1 [4; 5] 0.87� 0.02� 0.07� 0.02� 0.06 0.294� 0.017� 0.008� 0.015

[5; 6] 29.7� 0.6� 1.6� 1.1 [5; 6] 0.91� 0.02� 0.08� 0.03� 0.06 0.156� 0.011� 0.005� 0.008

[6; 7] 14.9� 0.4� 0.8� 0.6 [6; 8] 0.98� 0.02� 0.09� 0.05� 0.06 0.057� 0.005� 0.003� 0.003

[7; 8] 8.3� 0.3� 0.5� 0.3

[8; 10] 3.7� 0.1� 0.2� 0.1

[10; 15] 0.77� 0.03� 0.05� 0.03

Table 2 . Summary of the results on the inclusive J/ di�erential cross sections and nuclear
modi�cation factors for p-Pb collisions. The results of the cross section interpolation for pp collisions
are also shown. For p-Pb cross section results, the �rst quoted uncertainty is statistical. The
following uncertainties are systematic, the second one beingpT -uncorrelated and the third one
pT -correlated. For RpPb the �rst quoted uncertainty is statistical. The following uncertainties are
systematic, the second one beingpT -uncorrelated. For dielectron results the third uncertainty is pT -
correlated, while for dimuon results the third uncertainty is partially pT -correlated and the fourth
is pT -correlated. For the results on the interpolated pp cross section, the �rst quoted uncertainty
combines statistical andpT -uncorrelated systematic uncertainties. For dielectron results the second
uncertainty is pT -correlated systematic, while for dimuon results the second uncertainty is partially
pT -correlated, and the third is pT -correlated.
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Figure 4 . pT -di�erential inclusive J/  cross sections for the various rapidity regions under study.
The vertical error bars correspond to the statistical uncertainties, while open boxes represent the
uncorrelated systematic uncertainties and the shaded boxes the quadratic sum of the fully and par-
tially correlated ones. The numerical values can be read in table2. The horizontal bars correspond
to the widths of the pT bins.

For the dielectron analysis, the pT -integrated cross section was also determined, ob-
taining

d� J= 
pPb =dy(� 1:37 < y cms < 0:43) = 909 � 78(stat:) � 71(syst:)� b:

The corresponding pT -integrated cross sections for the dimuon analysis were published
in [8].

Starting from the pT -di�erential J/  cross sections it is possible to evaluate, as addi-
tional information, the mean pT (hpT i ) for the various y-ranges, by means of �ts based on
the empirical function:

d2� J= 
pPb

dydpT
= C �

pT
h
1 +

�
pT
p0

� 2 i n (2)

where C, p0 and n are free parameters. The quality of the �ts is satisfactory (� 2=ndf � 1)
and the resulting hpT i values, computed for the measuredpT ranges, are

hpT i (� 4:46 < y cms < � 2:96) = 2:47� 0:01(stat:) � 0:03(syst:) GeV=c

hpT i (� 1:37 < y cms < 0:43) = 2:86� 0:15(stat:) � 0:10(syst:) GeV=c

hpT i (2:03 < y cms < 3:53) = 2:77� 0:01(stat:) � 0:03(syst:) GeV=c

The quoted uncertainties were obtained by performing �ts including only statistical (or
uncorrelated systematic) uncertainties on di�erential cross sections.

In order to perform a meaningful comparison of hpT i results in the dielectron and
dimuon analysis, the values from the dimuon analysis have also been extracted, with the

{ 12 {



JH
E

P
06(2015)055

same procedure detailed above, in the rangepT < 10 GeV/c, obtaining results which are
smaller by less than 2% with respect to the fullpT range. It is found that hpT i is larger
at central rapidity. Furthermore, the hpT i measured at forwardycms is signi�cantly larger
than at backward ycms. This di�erence, which could be partly due to the slightly di�erent
jyj-coverage, persists whenhpT i is calculated in the jycmsj region common to p-Pb and
Pb-p (2:96 < jycmsj < 3:53). The values obtained in this case are 2:58 � 0:02(stat:) �
0:04(syst:) GeV=c and 2:69� 0:02(stat:) � 0:03(syst:) GeV=c, respectively at backward and
forward ycms, and di�er by � 2� .

The J/  nuclear modi�cation factor RpPb is obtained as the ratio of the di�erential
cross sections between proton-nucleus and proton-proton collisions, normalized toAPb :

RpPb (y; pT ) =
d2� J= 

pPb =dydpT

APb � d2� J= 
pp =dydpT

(3)

Since no pp data are available at
p

s = 5 :02 TeV, the d2� J= 
pp =dydpT reference cross

sections were obtained by means of an interpolation/extrapolation procedure. For the
dielectron analysis, the starting point of the interpolation procedure is the determina-
tion of d�= dy for inclusive J/  in pp collisions at ycms � 0 and

p
s = 5 :02 TeV, carried

out as for the analysis described in [30]. Available mid-rapidity data at
p

s = 0.2 [54],
1.96 [55], 2.76 [56] and 7 TeV [44] are interpolated using several empirical functions (ex-
ponential, logarithmic and power-law, covering in this way the various possibilities for the
curvature of the

p
s-dependence) obtaining d�= dy = 6 :19 � 1:03 � b. Even if the ycms

range covered in this analysis is shifted by 0.465 units with respect to mid-rapidity, the
rapidity-dependence of the cross section is negligible compared to the uncertainty on the
interpolation procedure. Then, a method similar to the one in [57] is applied to derive
the pT -di�erential cross section. It is based on the empirical observation that pp and pp
results on di�erential spectra obtained at various collision energies and in di�erent rapidity
ranges [44, 48, 54, 55, 58] exhibit scaling properties when plotted as a function ofpT / hpT i .
The normalized spectra, with the statistical and the bin-by-bin uncorrelated systematic
uncertainties added in quadrature, can be �tted with a one-parameter function described
in [57]. The pT -di�erential cross sections at mid-rapidity and

p
s = 5 :02 TeV can then

be obtained by rescaling the �tted universal distribution using the previously estimated
d�= dy and its correspondinghpT i . The latter value is obtained by an interpolation of the
energy-dependence ofhpT i values evaluated �tting the available experimental mid-rapidity
results [44, 54, 55] with exponential, logarithmic and power-law functions. One obtains in
this way, in the range pT < 10 GeV/c, hpT i = 2 :81� 0:10 GeV/c as an average of the results
calculated with the various empirical functions. As outlined above for d�= dy, the 0.465
y-unit shift of the data with respect to mid-rapidity has a negligible e�ect also on hpT i .

For the dimuon analysis, thanks to the smaller uncertainties with respect to mid-
rapidity results, an approach equivalent to that described in [59], exclusively based on the
ALICE data collected at

p
s = 2 :76 TeV [56] and 7 TeV [60] in 2:5 < y cms < 4, pT < 8 GeV/ c

has been used. The reference cross sections are obtained with a two-step procedure, corre-
sponding to an energy interpolation followed by a rapidity extrapolation. In the �rst step,
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for each pT bin, the d2� J= 
pp =dydpT values at

p
s = 2 :76 and 7 TeV are interpolated, using

three di�erent empirical functions (linear, power-law and exponential) to estimate the cross
section values at

p
s = 5 :02 TeV. The central values are calculated as the average of the

results obtained with the three functions, while the associated uncertainties come from the
experimental uncertainties on the points used for the interpolation, added in quadrature
to a contribution chosen as the maximum spread of the results from the di�erent interpo-
lating functions. In the second step, this result is extrapolated from 2:5 < y cms < 4 to the
p-Pb and Pb-p ycms ranges, using the scaling factors for thepT -integrated cross sections
computed in [59]. Finally, since the LHCb Collaboration has shown that the J/  p T distri-
butions slightly depend on ycms [48] in the rapidity range covered in the dimuon analysis,
a pT -dependent correction tuned on these data (10% maximum at largepT ) is applied.

The inclusive J/  nuclear modi�cation factor is shown in �gure 5 for the three rapidity
regions under study. The numerical values ofRpPb , as well as the results of the interpolation
procedure for the estimate of the pp cross sections, can be found in table2. For the dimuon
analysis, the evaluation ofRpPb is restricted to pT < 8 GeV/ c, the region covered by the
pp measurements used in the evaluation of the reference cross sections. The sources of
systematic uncertainties onRpPb and their values are summarized in table1. The terms
related to the pp reference cross sections contribute to uncorrelated, partially or fully
correlated uncertainties onRpPb , depending on their origin. In particular, for the dimuon
analysis: (i) the statistical and pT -uncorrelated systematic uncertainties on the

p
s = 2 :76

and 7 TeV pp data contribute to the uncorrelated uncertainty; (ii) the spread of the results
obtained with various interpolating/extrapolating functions in

p
s and ycms contribute

to the partially correlated uncertainty; (iii) the
p

s-correlated uncertainties between the
p

s = 2 :76 and 7 TeV pp data contribute to the correlated uncertainty. At forward and
mid-rapidity the J/  R pPb shows a clear suppression at lowpT , vanishing at high pT . At
backward rapidity no suppression is present, within uncertainties.

For the dielectron analysis, the pT -integrated nuclear modi�cation factor was also
calculated, carrying out the signal extraction procedure on the pT -integrated invariant
mass spectrum. The obtained value

RpPb = 0 :71� 0:06(stat:) � 0:13(syst:)

is consistent with the forward rapidity (2 :03 < y cms < 3:53) dimuon result, and smaller
than the backward one (� 4:46 < y cms < � 2:96) by � 2� [8].

In �gure 5 predictions from various models are compared to the data. A calculation
based on the next-to-leading order (NLO) Color Evaporation Model (CEM) for the prompt
J/  production and the EPS09 shadowing parametrization [33] reproduces within uncer-
tainties the pT -dependence and the amplitude of the suppression forpT > 1:5 GeV/ c in
the three rapidity regions under study. The theoretical uncertainties arise from the uncer-
tainties on EPS09 as well as on the values of charm quark mass and of the renormalization
and factorization scales used for the cross section calculation. Data are also compared to
two calculations based on a parametrization of experimental results on prompt J/ pro-
duction in pp collisions and including the e�ects of coherent energy loss [35] in the cold
nuclear medium. One of the calculations includes only coherent energy loss, while the
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Figure 5 . The J/  nuclear modi�cation factor as a function of pT at backward (top), mid (center)
and forward (bottom) rapidities. Statistical uncertainties are represented by vertical error bars,
while open boxes correspond to uncorrelated uncertainties and the shaded areas to uncertainties
partially correlated in pT . The boxes aroundRpPb = 1 show the size of the correlated uncertainties.
The horizontal bars correspond to the widths of thepT bins. Results from various models are also
shown, including a pure shadowing calculation [33] based on the EPS09 parameterization, a CGC-
inspired model [36], and the results of the coherent energy loss calculation [35], with or without the
inclusion of an EPS09 shadowing contribution.
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other combines coherent energy loss with EPS09 shadowing. The uncertainty bands in-
clude, for the coherent energy loss mechanism, a variation of both theq0 parameter (gluon
transport coe�cient evaluated at x = 0 :01) and the parametrization of the production
cross section. At forward rapidity the pure energy loss scenario predicts a much steeper
pT -dependence, while better agreement is found when the EPS09 contribution is included.
However, at low pT , a discrepancy between data and both calculations is observed. Also
at mid-rapidity the coherent energy loss model including the EPS09 contribution better
describes the data, although the larger uncertainties prevent a �rm conclusion. The same
features can be observed at backward rapidity, where the calculation including coherent
energy loss and shadowing agrees with the data in showing weak nuclear e�ects on J/ 
production. Finally, the results at central and forward rapidities are compared with a pre-
diction based on the CGC framework and using CEM for the prompt J/ production [36].
In the backward rapidity region, higher gluon x in the nucleus are probed and the CGC
model is out of its range of applicability. The quoted uncertainties are related to the choices
of Q2

s and of the charm quark mass. While the model is in fair agreement with mid-rapidity
data, it clearly underpredicts the J/  R pPb in the full pT range at forward rapidity.

The theoretical calculations discussed above are carried out for prompt J/ (i.e., di-
rect J/  and the contribution from � c and  (2S) decays), while the measurements are for
inclusive J/  which include a non-prompt contribution from B-hadron decays. The con-
tribution of the latter source to Rincl

pPb can be evaluated from the measured fractionf B of

non-prompt to prompt J/  production in pp collisions and on the suppressionRnon� prompt
pPb

of non-prompt J/  in p-Pb collisions. More in detail, in the range 2< y cms < 4:5, the frac-
tion f B measured by LHCb in pp collisions at

p
s = 7 TeV, increases from 0.08 to 0.22 from

pT = 0 to 8 GeV/ c [48]. This quantity has a small variation within the ycms range covered
and is also not strongly

p
s-dependent (similar values are obtained for

p
s = 8 TeV [ 58]).

At mid-rapidity, f B was measured by ALICE in pp collisions at
p

s = 7 TeV and ranges
from 0.10 to 0.44 forpT increasing from 1.3 to 10 GeV/c [61]. Rnon� prompt

pPb was measured
at

p
sNN = 5 :02 TeV by LHCb, integrated over pT , obtaining 0.83 � 0.02 � 0.08 for

2:5 < y cms < 4 and 0.98� 0.06 � 0.10 for � 4 < y cms < � 2:5 [9]. Assuming for eachpT -bin
a variation of Rnon� prompt

pPb between 0.6 and 1.3, a conservative choice due to the unavail-
ability of a pT -di�erential result, and considering the pT -dependence off B at

p
s = 7 TeV,

one can extract Rprompt
pPb as Rprompt

pPb = Rincl
pPb + f B � (Rincl

pPb � Rnon� prompt
pPb ). The maximum

di�erences between the inclusive and promptRpPb obtained in this way are, for low and
high pT : (i) 3 and 10% at backward rapidity; (ii) 11 and 16% at central rapidity; (iii) 10
and 8% at forward rapidity. These variations are, at most, of the same order of magnitude
as the quoted uncertainties on inclusiveRpPb .

The RpPb results shown in this paper can be considered as a valuable tool to improve
our understanding of the contribution of CNM to the suppression of the J/ yields observed
in Pb-Pb [30, 31]. Indeed, as veri�ed in [8] for the dimuon analysis, in Pb-Pb collisions
the Bjorken-x ranges probed by the J/ production process in the two colliding nuclei,
assuming agg ! J= (2! 1) [62] mechanism, are shifted by only� 10% with respect to the
corresponding intervals for p-Pb and Pb-p, despite the di�erent energy (

p
sNN = 2.76 TeV)
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and the slightly di�erent ycms range (2:5 < y < 4) for Pb-Pb. A similar conclusion holds
at mid-rapidity, where the covered x-intervals, calculated for pT = hpT i , are 6:1 � 10� 4 <
x < 3:0� 10� 3 and 7:0� 10� 4 < x < 3:5� 10� 3 for p-Pb and Pb-Pb collisions, respectively.
Under the assumption that shadowing is the main CNM-related mechanism that plays a
role in the J/  production and that its e�ect on the two colliding nuclei in Pb-Pb collisions
can be factorized, the product RpPb � RPbp (R2

pPb ) can be considered as an estimate of
CNM e�ects in Pb-Pb collisions at forward (central) rapidity [ 63, 64]. This conclusion
holds not only for the 2 ! 1 production process but also when the more general 2! 2
mechanism (gg ! J= g ) is considered.

In �gure 6 the comparison of the measuredRPbPb with the quantities de�ned above is
carried out. Such a comparison should be considered as qualitative, in view of the slightx-
mismatch detailed above and of the fact that, at mid-rapidity, the centrality ranges probed
in p-Pb and Pb-Pb are not the same (0-100% and 0-50%, respectively). In both rapidity
regions, the extrapolation of CNM e�ects shows a clearpT -dependence, corresponding to
a strong suppression at lowpT , which vanishes for large transverse momenta. At low
pT and central rapidity, there might be an indication for a Pb-Pb suppression smaller
than the CNM extrapolation, consistent with the presence of a contribution related to the
(re)combination of c�c pairs [30], taking place in the hot medium. A similar e�ect can be
seen at forward rapidity. At large pT and forward rapidity, the observed suppression in
Pb-Pb collisions is much larger than CNM extrapolations, showing that, in this transverse-
momentum region, suppression e�ects in hot matter, possibly related to color screening,
become dominant.

Finally, a more direct comparison of Pb-Pb results with the CNM extrapolation can be
obtained by de�ning the ratio SJ= = RPbPb =(RpPb � RPbp ). Such a quantity, for forward
rapidity results, is shown in �gure 7 and con�rms the main features detailed above, i.e., a
strong suppression of J/ at large pT , and a hint for an enhancement at lowpT . At central
rapidity, due to the sizeable uncertainties on both p-Pb and Pb-Pb results, only thepT -
integrated ratio can be obtained. Using theRPbPb in the 0-90% centrality range [30], and
the integrated RpPb given above, one gets 1:43 � 0:26(stat) � 0:56(syst). More precise
measurements are needed to draw a �rm conclusion in this rapidity range.

In summary, we have presented results on the inclusive J/ production in p-Pb col-
lisions at

p
sNN = 5 :02 TeV. The pT -di�erential cross sections, the hpT i and the nuclear

modi�cation factors have been evaluated in three rapidity regions: � 4:46 < y cms < � 2:96,
� 1:37 < y cms < 0:43 and 2:03 < y cms < 3:53. At forward and mid-rapidity a signi�cant
suppression is observed at lowpT , with a vanishing trend at high pT . At backward rapidity
no signi�cant suppression or enhancement is visible. Comparisons with theoretical models
based on a combination of nuclear shadowing and coherent energy loss e�ects provide a
fair description of the observed patterns, except at forward rapidity and low transverse
momentum. These results can be used to provide a qualitative estimate of the in
uence
of cold nuclear matter e�ects on the J/  suppression observed in Pb-Pb collisions. Under
the assumption that shadowing represents the main CNM contribution, we �nd that it
cannot account for the observed suppression in Pb-Pb at highpT . At low pT , the observed
CNM e�ects alone may suggest a suppression larger than that observed in Pb-Pb, which
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Figure 6 . The estimate of thepT -dependence of CNM e�ects in Pb-Pb, calculated asR2
pPb for mid-

rapidity data (top) and as RpPb � RPbp (bottom) at forward rapidity. The quantities are compared
to RPbPb measured in Pb-Pb collisions in the (approximately) correspondingy-ranges [30, 31].
The vertical error bars correspond to the statistical uncertainties, the open boxes (shaded areas)
represent pT -uncorrelated (partially correlated) systematic uncertainties, while the boxes around
RpPb = 1 show the size of the correlated uncertainties. The horizontal bars correspond to the
widths of the pT bins. The Pb-Pb points in the bottom panel were slightly displaced in pT , to
improve visibility.
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Figure 7 . The ratio between RPbPb for inclusive J/  at forward rapidity and the product
RpPb � RPbp of the nuclear modi�cation factors at forward and backward rapidity. None of the
uncertainties cancels out in the ratio. Statistical uncertainties are shown as vertical error bars, while
the boxes around the points represent a quadratic combination of uncorrelated and partially corre-
lated systematic uncertainties. The box aroundSJ= = 1 corresponds to correlated uncertainties.
The horizontal bars coincide with the widths of the pT bins.

is consistent with the presence of a charm quark (re)combination component to the J/ 
production in nucleus-nucleus collisions.
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