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We show that a Hamiltonian with Weyl points can be realized for ultracold atoms using laser-assisted
tunneling in three-dimensional optical lattices. Weyl points are synthetic magnetic monopoles that exhibit a
robust, three-dimensional linear dispersion, identical to the energy-momentum relation for relativistic Weyl
fermions, which are not yet discovered in particle physics. Weyl semimetals are a promising new avenue in
condensed matter physics due to their unusual properties such as the topologically protected “Fermi arc”
surface states. However, experiments on Weyl points are highly elusive. We show that this elusive goal is
well within experimental reach with an extension of techniques recently used in ultracold gases.
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In relativistic quantum field theory there are three types of
fermions: Dirac, Majorana, and Weyl fermions [1]. The
latter two have never been observed. It was conjectured that
neutrinos could be Weyl fermions before the discovery of
neutrino oscillations ruled out such a possibility. Nowadays,
there is a great excitement on Weyl semimetals: gapless
topological states of matter with bulk low-energy electrons
behaving as Weyl fermions, and intriguing ‘“Fermi arc”
topological surface states [2—4]. Besides the fundamental
importance of Weyl fermions and related phenomena such
as the Adler-Bell-Jackiw chiral anomaly, the topological
surface states of Weyl semimetals also hold great potential
for applications [3]. These systems followed the develop-
ment of topological insulators [5,6], emphasizing the role of
band topology in describing exotic phases of matter.
However, experiments on Weyl fermions are highly elusive.

Recent experiments on synthetic magnetic fields in ultra-
cold atomic gases [7-17], alongside advances in photonics
[18-24], have propelled these systems as promising plat-
forms for investigating topological effects and novel states of
matter (see Refs. [25-29] for reviews). However, Weyl points
have been scarcely addressed in these fields [24,30-33]. In
photonics, a double gyroid photonic crystal with broken time
reversal and/or parity symmetry was predicted to have Weyl
points [24]. Theoretical lattice models possessing Weyl
points [30,32,33], and Weyl spin-orbit coupling [31], were
studied in the context of ultracold atomic gases. Because of
the elusive nature of Weyl fermions, a viable and possibly
simple scheme for their experimental realization in ultracold
atomic gases would be of great importance, exploiting
advantages of atomic systems to contribute to Weyl physics
research across disciplines.

Here, we propose the realization of the Weyl Hamiltonian
for ultracold atoms in a straightforward modification of the
experimental system that was recently employed to obtain
the Harper Hamiltonian [12]. As an example of phenomena
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inherent to Weyl points, but most suitable for observing in
ultracold systems, we discuss the unique spherical-shell
expansion of a Bose-Einstein condensate (BEC), by initially
exciting eigenmodes close to the Weyl point.

The Harper [34] (also referred to as the Hofstadter [35])
Hamiltonian was recently realized in optical lattices in the
MIT [12] and Munich [13] groups, by employing laser-
assisted tunneling to create synthetic magnetic fields.
Historically, the first synthetic magnetic fields were imple-
mented in rapidly rotating BECs by using Coriolis forces
[7,8]. The first implementation using laser-atom interactions
was in the NIST group with spatially dependent Raman
optical coupling between internal hyperfine atomic states in
bulk BECs [9]. Methods of generating synthetic magnetic
fields used in optical lattices engineer the complex tunneling
parameters between lattice sites [11-13]. They include
shaking of the optical lattice, as demonstrated in the
Hamburg group [11], laser-assisted tunneling which real-
ized staggered magnetic fields in optical superlattices [10]
and the Harper Hamiltonian in tilted lattices [12,13], and an
all-optical scheme which enables flux rectification in optical
superlattices [14]. One of the intriguing recent achievements
is the realization of Dirac monopoles in a synthetic magnetic
field produced by a bulk spinor BEC [16]. It should be
emphasized that all lattices with nontrivial topology that
were experimentally realized so far were in one or two
dimensions. This work points out how a straightforward
inclusion of the third dimension enables experiments on
intriguing and elusive topological phenomena.

The laser-assisted tunneling scheme [10,12,13] requires
only far off-resonant lasers and a single atomic internal
state, and thus avoids heating by spontaneous emission. An
early related proposal involved coupling of different
internal states [36]. The scheme used here is based on
the proposal introduced in Ref. [37], and later modified to
enable generation of a homogeneous field [12,13]. With

© 2015 American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.114.225301
http://dx.doi.org/10.1103/PhysRevLett.114.225301
http://dx.doi.org/10.1103/PhysRevLett.114.225301
http://dx.doi.org/10.1103/PhysRevLett.114.225301

PRL 114, 225301 (2015)

PHYSICAL REVIEW LETTERS

week ending
5 JUNE 2015

this scheme, we can engineer both the amplitude and phase
of the tunneling matrix elements in optical lattices. For
example, if a cubic D-dimensional optical lattice has
tunneling matrix elements J,; (d = 1, ..., D), laser-assisted
tunneling can, in principle, change them to K e'®¢, where
the phases depend on the position.

For Weyl points to occur, time reversal and/or inversion
symmetry must be broken [3,24]. The two-dimensional
(2D) lattice realized in Ref. [12], which is our starting point,
possesses both symmetries. Tunneling along the x direction
is laser assisted, with the phase alternating between 0 and 7,
whereas hopping along y stays regular [see Fig. 1(a)]. The
centers of inversion symmetry are denoted by orange
crosses in Fig. 1(a). The time-reversal symmetry is a
consequence of the fact that the accumulated phase per
plaquette 7 is equivalent to a phase of —z. This system is a
realization of the Harper Hamiltonian for « = 1/2, where a
is the flux per plaquette in units of the flux quantum
[12,13]. The lattice has two sublattices (A — B) giving
rise to pseudospin. In quasimomentum representation, the
Hamiltonian is H, (k) = =2{J, cos(kya)o,+
K,sin(k.a)o,}, where o; denote Pauli matrices; it has

two bands, E, ;= iz\/K)% sin?(k,a) + J% cos?(k,a),
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FIG. 1 (color online). Sketch of the 3D cubic lattice with phase
engineered hopping along x and z directions, which possesses
Weyl points in momentum space. Dashed (solid) lines depict
hopping with acquired phase z (0, respectively). (a) The xy
planes of the lattice are equivalent to the lattice of the Harper
Hamiltonian for @ = 1/2. Centers of inversion symmetry for this
2D lattice are denoted by orange crosses. Green triangles along
the axes denote the tilted directions. (b) A pair of Raman lasers
enabling laser-assisted tunneling is sketched with arrows. The 3D
lattice can be visualized as alternating stacks of 2D lattices
parallel to the xz plane, which are shown in (c) and (d); the
hopping between these planes (along y) is regular. The hopping
along z is alternating with phases O or z, depending on the
position in the xy plane [see (b), (c), and (d)], which breaks the
inversion symmetry.

touching at two 2D Dirac points at (k. k)=
(0, +7/2a) in the Brillouin zone [38]. Here (K, J,) denote
the tunneling amplitudes, and (k,, k,) the Bloch wave
vector.

Suppose that we construct a 3D lattice by stacking 2D
lattices from Fig. 1(a), one on top of each other, with
regular hopping (/) along the third (z) direction. This 3D
lattice is described by the Hamiltonian

Hyn(k) = =2{J, cos(k,a)o, + K, sin(k.a)o,
+J, cos(k,a)l}, (1)

where 1 is the unity matrix. The 2D Dirac points
have become line nodes (LN) in the 3D Brillouin zone
at which the two bands touch: Ejy = —2J,cos(k,a)+

2\/1()2( sin?(k,a) + J3 cos*(k,a). Note that both the inver-

sion and the time-reversal symmetry are inherited from the
a = 1/2 Harper Hamiltonian. In order to achieve Weyl
points, we must break one of these when adding the third
dimension.

To this end, we propose to construct a 3D cubic lattice
with laser-assisted tunneling along both x and z directions
as follows. First, tunneling along these directions is sup-
pressed by introducing a linear tilt of energy A per lattice
site, identical along x and z. It can be obtained by a linear
gradient potential (e.g., gravity or magnetic field gradient
[12]) along the X + Z direction. The tunneling is restored by
two far-detuned Raman beams of frequency detuning
0w = w| — @,, and momentum difference ok = k; — k,
[12]. For resonant tunneling, dw = A/h, and a sufficiently
large tilt (J,, J, < A < E,yp) [12], time averaging over the
rapidly oscillating terms yields an effective 3D Hamiltonian

Hyp ==Y (K,

mnlam+l n, [amnl + J am n+1, ]amnl

m,n,l
iy T
+ K e mntay @y H.c.). (2)
Here, am w1 (@ 1) 18 the creation (annihilation) operator on

the site (m, n,1), and ®,,,, = 6k - R, ,; = m®, + n®, +
[®, are the nontrivial hopping phases, dependent on the
positions R,, ;. An inspection of Eq. (2) reveals that a
wealth of energy dispersion relations can be achieved by
manipulating the directions of Raman lasers k. Next, we
choose the directions of the Raman lasers such that
(Qy, @y, @,) = #(1,1,2), ie., D,,, = (m + n)z (modulo
2x). This is schematically illustrated in Fig. 1(b). It should
be noted that a seemingly equivalent choice,
(P,, P, ®.) = x(1,1,0), will not be operational, because
a nonvanishing momentum transfer in the tilt direction is
necessary for the resonant tunneling to be restored
[12,13,38].

A sketch of the 3D lattice obtained with such a choice of
phases is illustrated in Fig. 1. It can be thought of as an
alternating stack of two types of 2D lattices, parallel to the
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xz plane, which are illustrated in Figs. 1(c) and 1(d);
hopping between these planes is regular (along y). The 3D
lattice has two sublattices (A-B). Another view is the
stacking of 2D lattices described by the Harper
Hamiltonian H,_,/, [Fig. 1(a)], such that the hopping
along z has phases 0 or =, for m+n even or odd,
respectively. This breaks the inversion symmetry, and under
application of Bloch’s theorem,

H(k) = —2{J, cos(k,a)o, + K, sin(k,a)o,
— K, cos(k,a)o,}. (3)

Mathematically, the chosen phase engineering along z has
replaced the identity matrix in H;y with the Pauli
matrix o,.

The energy spectrum of the Hamiltonian has two bands,

EKk) = i2\/K§sin2(kxa) + Jicos?(kya) + K2cos*(k.a),
(4)

which touch at four Weyl points within the first Brillouin
zone at (k,, k. k,) = (0, %x/2a, £x/2a). Figure 2 depicts
the energy spectra in the first Brillouin zone, the
Weyl points, and their chiralities. The dispersions around

Weyl points are locally linear and described by the
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FIG. 2 (color online). Sketch of the first Brillouin zone of the
lattice depicted in Fig. 1, energy spectrum and Weyl points.
(a) The positions of the Weyl points in the Brillouin zone and
their chiralities are indicated with 4 and — signs. If a tunable A-B
sublattice energy offset is introduced, Weyl points move along
dotted lines, and can annihilate at points denoted with stars (see
text). (b) Energy spectrum in the k, = O plane [shaded plane in
(a)] shows linear dispersion in the proximity of the Weyl points.
The insets show the Berry curvature of two Weyl points,
demonstrating that they are synthetic magnetic monopoles in
momentum space.

anisotropic Weyl Hamiltonian Hy, (q) = ) _; ;q,v;j0; [4],
where q = k — kyy is the displacement vector from the
Weyl point (located at ky) in momentum space. Here [v;;]
is a 3x3 matrix, with elements v,, =—-2K,a,
vy, = *2Jya, v, = +2K.a, and zero otherwise. The
topological nature of the system is reflected in the pos-
sibility to assign (positive and negative) chirality, defined as
x = sign(det[v;;]), to the Weyl points [24].

Weyl points are monopoles of the synthetic magnetic
field in momentum space. In order to verify this property of
our energy nodes, we have calculated the gauge field, i.e.,
Berry connection A (k) = i{u(k)|Vy|u(k)), and the syn-
thetic magnetic field, i.e., Berry curvature B = V. x A(k).
The obtained Berry curvature is depicted in the insets of
Fig. 2, clearly demonstrating that what we have proposed is
a construction of topological synthetic magnetic monopoles
in the momentum space of a 3D optical lattice.

These monopoles are robust to any perturbation which
adds ao; term (i = x, y, z) to the Hamiltonian. The only way
for Weyl points to disappear is when two of them with
opposite chirality annihilate (see Supplemental Material
[39]). This topologically protected nature of Weyl points
can be probed in the proposed setup by adding a tunable A-B
sublattice energy offset in the same fashion as in Ref. [15],
such that the on-site energy at sites with m + n odd (even) is e
(—e€). This adds an ec, term to the Hamiltonian in Eq. (3), and
shifts the Weyl points parallel to the z axis by tuning e, as
illustrated in Fig. 2(a). By making this term large enough
(e = £2K), one can drive the annihilation of the Weyl
points pairwise either at (k, =0, k, = +x/2a,0) for
e =—-2K,, or at the edge of the Brillouin zone for
€ = 2K, and open up a gap in the system.

Now that we have identified the scheme which creates
the Weyl Hamiltonian, we propose schemes for their
experimental detection which are applicable for both
ultracold bosons and fermions. In order to verify that we
have points at which the two bands touch in the 3D
Brillouin zone, one can accelerate the initially prepared
ultracold atomic cloud from the ground state position in
momentum space towards the Weyl point using a constant
force, and observe the crossover to the second band which
can be revealed by time-of-flight measurements. By push-
ing the cloud in directions which would “miss” the Weyl
point, Bloch oscillations would be observed within the
lowest band. Such a scheme was recently used to detect
Dirac points in a honeycomb optical lattice [42], and also to
probe the topological phase transition in the Haldane model
[15]. Two points are worth emphasizing here. First, Weyl
points are robust and would not be destroyed by an
additional small force [3,29,39]. Second, the trajectory
of the gas being pushed would not be deflected in our
lattice, because we have a time-reversal symmetric
Hamiltonian.

The second scheme to observe the Weyl points is Bragg
spectroscopy [43]. By using an additional pair of Raman
lasers, i.e., a two-photon Raman transition, one can couple
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states of the Hamiltonian (3) with a given energy and
momentum difference, and induce excitations from the lower
band to the upper band to probe the band structure [43]. This
scheme would reveal the existence of Weyl points with very
high resolution as it would not change the internal atomic
state, and therefore not be sensitive to Zeeman shifts.

The proposed methods are applicable for both bosons
and fermions. Here we discussed atoms in a single spin
state; however, a mixture of spin states provides another
degree of freedom to explore new phenomena, e.g., see
[44]. By using single spin fermions, the Weyl semimetal
phase could be achieved by adjusting the particle density,
i.e., the Fermi level to the energy of the Weyl points.

Realization of Weyl points with ultracold atoms would
open a new frontier of research in Weyl physics, with
potential to exploit unique atomic physics methods of state
preparation and diagnostics. As an example, consider a
BEC which is initially formed in the ground state of the
band structure (e.g., see [17]), and then, by applying either
a potential tilt or a Bragg pulse of finite duration, placed (in
quasimomentum space) at a Weyl point. This state is a
superposition of eigenstates from the vicinity of the Weyl
point, and would start expanding in our 3D lattice (see
Supplemental Material [39]). If we assume isotropic
dispersion around Weyl points (K, ~ J, ~ K ), the magni-
tude of the group velocity 77|V E(k)| is uniform. In this
case, the BEC has unique expansion in a form of a spherical

0.15) [yl

0.1

0.05]

kra sy

A -
e

FIG. 3 (color online). Surface states and Weyl points. (a) A slab
of finite width is cut from the 3D lattice along planes orthogonal
to the X — y direction; cross section in the xy plane is sketched.
The two sides of the slab are indicated with letters L and R.
(b) Energy spectrum of the slab. The two dispersion sheets of
surface states (corresponding to the two surfaces of the slab) are
denoted with R (blue) and L (orange). The intersections of the
two sheets are Fermi arcs (denoted with dashed lines). The arcs
connect Weyl points of opposite chiralities. The insets show
examples of the profile of the Fermi arc surface states across the
slab, as indicated by the green dashed box in (a).

shell with radius ~A~'|V E(K)|t (the shell would have
structure depending on the initial excitation [39-41]).

Weyl semimetals imply the existence of intriguing topo-
logical surface states that come in the form of Fermi arcs in
momentum space [3]. Topological effects such as Berry
curvature have been experimentally observed in ultracold
atomic systems [14,15]. However, surface states are difficult
to detect with light scattering methods because one has to
distinguish them from the bulk signal (e.g., see [45] and
references therein). Nevertheless, it is illustrative to show
Fermi arcs and surface states in our model. In Fig. 3(a) we
take a slab of our lattice cut orthogonally to the X — 9
direction (infinite along the Z and X 4 9 directions), and in
Fig. 3(b) we plot the energy spectrum of this slab E(k),
where  k = kj(%+39)/vV2+kz2 (see Supplemental
Material [39] for details). The Weyl points are now con-
nected with Fermi arcs in momentum space (shown with
dashed lines). The states on the arcs are surface states [3], as
can be seen from the inset in Fig. 3(b) (only states from one
of the surfaces are shown). Surface states closer to the Weyl
points spread more into the bulk than those in the center of
the arcs. The Fermi arcs belong to two energy dispersion
sheets of surface states, each one corresponding to one of
the slab surfaces. The two sheets are located adjacent
to the energy dispersion of bulk states [3]; one sheet
is on the bottom (the other is on the top) of the upper
(lower, respectively) band. These two sheets intersect at
Fermi arcs.

In conclusion, we pointed out that Weyl points, and all of
the exciting phenomena that they include, could be exper-
imentally addressed in the setup that was recently employed
to obtain the Harper Hamiltonian [12,13]. Without phase
engineered hopping methods, which are well developed in
atomic systems, the creation of Weyl points is more
demanding, possible only for a reduced number of space
groups and points of symmetry in the Brillouin zone [46].
An interesting venue would be to include interactions
between the atoms [17], which can fundamentally change
the system’s behavior (for an example, consider the inter-
action induced phase transition to a topological insulator in a
fermionic 2D optical lattice [47]). Given the fact that
experiments on Weyl points and Weyl fermions are elusive,
fundamentally important, and within reach in optical latti-
ces, this can open a new frontier of Weyl physics research.
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to Cody Burton, Woo Chang Chung, Liang Fu, John D.
Joannopoulos, KreSimir Kumericki, Mario Novak, Juraj
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Note added.—After this work was submitted, a few papers
appeared claiming observation of Weyl points [48], and
Weyl semimetal phase [49,50].
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