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Abstract

We propose the realization of a grating assisted tunneling scheme for tunable synthetic magnetic fields
in optically induced one- and two-dimensional dielectric photonic lattices. As a signature of the
synthetic magnetic fields, we demonstrate conical diffraction patterns in particular realization of these
lattices, which possess Dirac points in k-space. We compare the light propagation in these realistic
(continuous) systems with the evolution in discrete models representing the Harper—Hofstadter
Hamiltonian, and obtain excellent agreement.

1. Introduction

Synthetic magnetism for photons is a unique tool for the manipulation and control of light, and for the design of
novel topological phases and states in photonics [ 1-18]. Topological photonics is a rapidly growing field [ 18],
advancing in parallel to analogous efforts in ultracold atomic gases [ 19, 20], inspired by the development of
topological insulators in condensed matter physics [21]. One motivating aspect of topological photonic systems
is the existence of unidirectional backscattering immune states [ 1-4], which are robust to imperfections, and
thus may serve as novel waveguides and for building integrated photonic devices. The first experimental
observations of such edge states were in the microwave domain, in magneto-optical photonic crystals [4],
theoretically proposed in [1-3]. In the optical domain, imaging of topological edge states was reported in Floquet
topological insulators, implemented in modulated honeycomb photonic lattices [5], and in the two-
dimensional array of coupled optical-ring resonators [6]. The strategies for obtaining synthetic magnetic/gauge
fields and topological phases for optical photons are closely related to the system at hand. In systems of coupled
optical resonators, the strategy is to tune the phase of the tunneling between coupled cavities [6-9]; for example,
by using link resonators of different length [6, 7], by time-modulation of the coupling [9] or the resonant
frequencies of the cavities [ 14]. Photonic topological insulators were also proposed in superlattices of
metamaterials with strong magneto-electric coupling [15]. In 2D photonic lattices (waveguide arrays),
pseudomagnetic fields have been demonstrated by inducing ‘strain’ in optical graphene [10]. Lattice modulation
has also been shown to be a fruitful approach in these systems [11-14, 17]. By modulating 1D photonic lattices
along the propagation axis, one can choose the sign of the hopping parameter between neighbouring sites, as was
realized in a system with alternating positive and negative couplings and resulted in 1D conical diffraction [11].
Transversely modulated waveguide arrays were proposed for the realization of the nonlinear Harper model [12],
whereas topological states were achieved in 1D photonic quasicrystals [13]. Moreover, optical analogues of the
so called laser assisted tunneling in atomic systems were suggested for creating synthetic magnetic fields in
discrete square lattices [14] and recently experimentally studied in laser-fabricated photonic Wannier—Stark
ladders [17].

However, all of the above mentioned photonic lattices are in reality continuous dielectric structures. An
important test of the viability of a method considered for producing synthetic magnetism is the comparison of
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light propagation in a continuous system with the propagation in the corresponding discrete model. Here, we
propose the realization of a grating assisted tunneling scheme for tunable synthetic magnetic fields in optically
induced one- and two-dimensional dielectric photonic lattices [22-26]. As a signature of the synthetic magnetic
fields, we demonstrate conical diffraction patterns in particular realization of these lattices, which possess Dirac
points in k-space. We compare the light propagation in these realistic (continuous) systems with the evolution in
discrete models representing the Harper—Hofstadter Hamiltonian [31, 32], and obtain excellent agreement.

Methods encountered in photonics are sometimes closely related to methods in other branches of physics.
For example, synthetic magnetic fields were created by using ‘strain’ in optical graphene [10], analogously to the
scheme with strained real graphene [28]. Furthermore, many of the results obtained with ultracold atoms are
viable in photonics, and perhaps even more of them are feasible, because heating by spontaneous emission,
which is present in ultracold atomic systems, is absent in photonic systems. The method we consider is
analogous to those used in [ 14, 17]; however, instead of using curved laser written waveguides [14, 17, 29] to
create an effective linear tilt of the index of refraction, here we propose to use the optical induction technique
and/or a temperature gradient, as elaborated below. All these schemes were inspired by the so called laser
assisted tunneling scheme that was implemented in optical lattices with ultracold atoms [33—-35]. Laser assisted
tunneling is based on theoretical proposals in [36, 37], subsequently developed to experimentally realize the
Harper—Hofstadter Hamiltonian [34, 35], and staggered magnetic fields in optical superlattices [33].

Historically, the first synthetic magnetic fields were implemented in rapidly rotating Bose—Einstein
condensates (BECs) by using the Coriolis force to mimick the magnetic Lorentz force [38, 39], whereas the first
implementation based on laser-atom interactions used spatially dependent Raman optical coupling between
internal hyperfine atomic states in bulk BECs [40]. The latter scheme used the analogy between the Aharonov—
Bohm and the Berry phase [19, 20]. Beside the schemes with laser assisted tunneling [33—35], methods yielding
synthetic magnetism in optical lattices include shaking of the optical lattice [41] and an all-optical scheme which
enables flux rectification in optical superlattices [42]. For detailed reviews on synthetic gauge fields and
potentials in cold atoms see [19, 20].

2. Results

2.1. The photonic system

We consider the paraxial propagation of light in a photonic lattice defined by the index of refraction

n = ny + 6n(x, y, z) (bn K ny), where nyis the constant background index of refraction, and én (x, y, z)
describes small spatial variations, which are slow along the propagation z-axis. The slowly varying amplitude of
the electric field ¥ (x, y, z) follows the (continuous) Schrédinger equation [26]:

.0y 1 kén
— = - —=V¥ — —; 1
182 2k v now )

here, V? = 92/0x> + 0%/0y? and k = 2mwny/ )\, where \is the wavelength in vacuum. From now on we will
refer to 6n (x, y, z) as the potential or index of refraction. In the simulations we use 1y = 2.3, corresponding to
the systems that were used to implement the optical induction technique [23, 24],and A = 500 nm.

2.2. Grating assisted tunneling and conical diffraction

For clarity, let us first present the grating assisted tunneling method in a 1D photonic lattice. If the potential isa
periodic lattice, ény (x) = ony (x + a), where ais the lattice constant, and if the lattice is sufficiently ‘deep’, the
propagation of light can be approximated by using a discrete Schrodinger equation [26, 43]:

i _

dz (]x'(/Jmfl + ]xmerl)’ (2)

where J, quantifies the tunneling between adjacent waveguides and 1), (z) is the amplitude at the mth lattice site,
i.e., waveguide. To create a synthetic magnetic field, here we use the strategy to tune the phase of the tunneling
between lattice sites. For this 1D lattice, we seek a scheme which effectively renormalizes J, to get K, exp(i¢,,),
where ¢, denotes the phase for tunneling from site m to site 1 + 1. The scheme is illustrated in figure 1. In
figure 1(a) we show the potential 67 (x, z), which can be modeled as a discrete lattice with complex tunneling
parameters K, exp(i¢,,) shown in figure 1(b).

Let us gradually present this method wherein the index of refraction is varied as in figure 1(a). In
figure 1(e), we show the propagation of intensity in a continuous 1D model in the lattice potential 6ny (x) =
Snry cos?(mx/a), with 1) (x, 0) = Te /G §p = 4 x 1074, a = 10 pm. We see the usual diffraction
pattern for a spatially broad excitation covering several lattice sites [26]. Next, suppose that we introduce
alinear gradient of index of refraction along the x-direction ént (x) = —nx in addition to the lattice potential,
such that én = dny (x) + onr(x). For asufficiently large tilt, the tunneling is suppressed. This can be seen from
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Figure 1. [llustration of the grating assisted tunneling scheme. (a) Sketch of the spatial dependence of the index of refraction

bny (x, z) = bény + bny + bng, which creates a synthetic magnetic field in a photonic lattice. A 1D photonic lattice

(6ny = 6nyg cos®(mx/a)) is superimposed with a linear gradient index in the x direction (6nt = —1px, orange dotted line), and an
additional small grating potential (éng = 6ngo cos*((q,x — Kz)/2)),atasmall angle ( is on the order of 1°) with respect to the z axis.
In the xz plane we plot the projection of n; (blue bold lines), and the grating (green dashed lines). (b) A discrete lattice with complex
tunneling matrix elements between sites, Ke'n, and spatially dependent phases ¢,,, can model the system in (). (c) A particular
choice of ) (see text), yields alattice with ¢,, = 7m, and a dispersion with a 1D Dirac cone at k, = 0. (d) The amplitude of the
tunneling K, as a function of the strength of the grating 6ng (green squares). The tunneling amplitude J, versus 6n¢o for a system
without the tilt. (¢)—(g) Numerical simulation of the evolution of a wavepacket that initially excites modes close to k, = 0in the
continuous 1D photonic lattice. (e) Diffraction in a periodic photonic lattice 6n; . (f) Propagation in the tilted system, 6n;, + énr,
shows that the tunneling (diffraction) is suppressed. (g) The tunneling is restored by an additional grating potential with g, = 7/a.
(h) Propagation of the wavepacket in the corresponding discrete model illustrated in (c).

figure 1(f) which shows the propagation of intensity in a tilted potential with 7 = 0.1 6ny9/a; the tilt should be
smaller than the gap between the first two bands. It should be noted that in the context of continuous periodic
lattices with strong tilt, the suppression of tunneling can also be interpreted as Bloch oscillations with negligible
amplitude. Finally, let us introduce an additional small grating potential at a small angle 6 with respect to the
z-axis, 6ng (x, z) = Ongo cos*((q,x — kz)/2),suchthat on(x, z) = ény (x) + dnr(x) + Ong(x, z). This total
potential 6n (x, z)isillustrated in figure 1(a). The ‘frequency’ x is determined by the angle 6 of the grating with
respect to the z-axis, which is chosen such that £ = nak/n, and the grating forms a z-dependent perturbation
resonant with the index offset between neighboring lattice sites na (figure 1(a)). The grating restores the
tunneling along the x-axis, hence the term grating assisted tunneling. Restored tunneling is seen in figure 1(g)
which shows diffraction for identical initial conditions as in figures 1(e) and (f); the grating parameters are

q, = m/aand dngy = 0.16ny.

However, the diffraction pattern is drastically changed. In order to interpret it, we point out that, for
resonant tunneling where x = nak/nq and a sufficiently large tilt (J < 1), z-averaging over the rapidly
oscillating terms shows that the system can be modeled by an effective discrete Schrodinger equation (e.g., see
[34] for ultracold atoms):

Al
dz

where ¢,, = q - R,,, = g, ma.Infigure 1(g) weused q,, = 7/a,i.e., ¢, = mm.Suchadiscretelatticeis
illustrated in figure 1(c); its dispersion having a 1D Dirac cone at k, = 0. For a wavepacket that initially excites
modes close to k, = 0, the diffraction in the discrete model (3) yields the so-called (1D) conical diffraction
pattern [11], as illustrated in figure 1(h). The initial conditions for propagation in the discrete model correspond
to the initial conditions in the continuous system, v, (0) = JIe=m/3* and K,=0.053 mm". Thus, we
interpret the diffraction pattern in figure 1(g) as 1D conical diffraction, a signature of the discrete model depicted
in figure 1(c). A comparison of the discrete (figure 1(h)) and the realistic continuous model (figure 1(g)), clearly
shows that we can use grating assisted tunneling to tune the phases of the tunneling parameters in the discrete
Schrodinger equation, thereby realizing synthetic magnetic fields.

Before proceeding to 2D systems, we discuss the amplitude of the tunneling matrix elements K, as a function
of the strength of the grating dng,. Figure 1(d) shows K, (green squares) and J, (blue circles) versus én¢g, where J

= (Kxei(b'"*lwmfl + Kxe_id)md}mﬁLl)’ 3)
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Figure 2. Grating assisted tunneling and conical diffraction in a square photonic lattice. (a) Sketch of the 2D lattice with grating
assisted tunneling along the x-direction. The resulting nontrivial hopping phases 7 and 0 are denoted with dashed and solid lines,
respectively. A wavepacket that makes one loop around the plaquette accumulates the phase 7. (b) The lattice possesses two 2D Dirac
conesat (ky, k,) = (0, £m/2a) inthe dispersion 3 (ky, k,), where 3is the propagation constant. (c) Intensity of a beam, which
initially excites modes in the vicinity of the Dirac points, after propagation forz = 162 mm. The intensity has two concentric rings
corresponding to the conical diffraction pattern. (d) Simulation of the diffraction pattern in the discrete model corresponding to the
lattice in (a), which also exhibits conical diffraction (see text for details).

corresponds to the potential which includes the lattice and the grating, but no tilt. The amplitudes ], and K, are
obtained by comparing the diffraction pattern of the discrete with the continuous model, and adjusting ], and K
until the two patterns coincide, as in figures 1(g) and (h). Our results in figure 1(d) are in agreement with those in
ultracold atoms (e.g., see figure 3(a) in [34]).

The extension of the scheme to 2D lattices is straightforward. We consider a square lattice, én =
bnpg(cos®(mx/a) + cos®(wy/a)), the tiltin the x-direction, ént (x) = —nx, and the grating which has the
form 6ng (x, y, z) = bngo cos*((q,x + 4,y — KZ) /2). Propagation of light in the total potential 6n (x, y, z) =
ony (x, y) + énr(x) + dng(x, y, z) can be modeled by the discrete Schrodinger equation (the derivation is
equivalent to that in [34] for ultracold atoms):

At
dz

i

= — (Kxel m—l,n’l)[}m_l)n + Kxeil¢'"'”/¢)m+1,n

+ Iy"/’m,n—l + Iywm,n+l)r (4)

where ¢, , = q - R, = g, ma + q,na.Note that the tunneling along y does not yield a phase because there is
no tilt in the y direction; the tunneling amplitude along y depends on the depth of the grating, as illustrated in
figure 1(d) with blue circles.

In order to demonstrate that the propagation of light in the continuous 2D potential én (x, y, z) isindeed
equivalent to the dynamics of equation (4), we compare propagation in the discrete model (4), with that of the
continuous equation (1). The lattice parameters are dn;p = 4 x 107%,a = 13 pum; thetiltis given by
1 = 0.16n19/a; the gratingis defined by éngo = 0.176n19and q, = —q, = 7 /a, whichyields
Gy = (m — n)m,and K is chosen to yield resonant tunneling. The discrete lattice which corresponds to this

choice of phases is illustrated in figure 2(a). It has two bands, 3 = :N:Z\/ KZ sin(kea) + If cos?(kya) (Bis the
propagation constant), touching at two 2D Dirac points at (ky, k,) = (0, &7/2a) in the Brillouin zone [44], as
depicted in figure 2(b). Suppose that the incomingbeam atz = 0, excites the modes which are in the vicinity of
these two Dirac points. Around these points, for a given k = K/k, the group velocity, Vi3 (ky, k,),is constant.
Thus, the beam will undergo conical diffraction, which has been thoroughly addressed with Dirac points in
honeycomb optical lattices [27]. To demonstrate this effect, we consider the propagation of a beam with the
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initial profile given by ¥ (x, y, 0) = /I cos(ym/2a)exp(—(x/3a)> — (y/3a)?)in the 2D potential 61 (x, y, z)
(the cosine term ensures that we excite modes close to the two Dirac points). In figure 2(c) we show this beam
after propagation forz = 162 mm. The two concentric rings are a clear evidence of conical diffraction [27, 30].
We also compare this with the propagation in the discrete model (4), with tunneling phases plotted in figure 2(a);
K.=0.11mm ',J, = 0.14mm" . The results of the propagation in the discrete model are shown in

figure 2(d). Itis evident that for our choice of the tilt and the grating, we have effectively realized the lattice
plotted in 2(a). This is in fact a realization of the Harper—Hofstadter Hamiltonian for &« = 1/2, where «vis the
flux per plaquette in units of the flux quantum [34, 35].

2.3. Proposal for experimental realization

For the experimental implementation of the scheme, we propose the so-called optical induction technique in
photosensitive materials, which can be implemented in photorefractives [22—26]. In these systems, both the
lattice 6ny, (x, y) and the grating potential én¢ (x, y, z) can be obtained in a straightforward fashion by using
interference of plane waves in the medium [26]. The lattice constant g, the grating parameter q, and hence the
hopping phase ¢,, , = q - Ry, ,, are tunable by changing the angle between the interfering beams. This could
enable manipulation of the phases of the tunneling matrix elements in real time [23].

The most challenging part of the implementation appears to be creation of the linear tilt potential. To
observe the conical diffraction effects, one needs a linear gradient over the ~20 lattice sites, which implies a total
index tilt An = 20ma ~ 20 X 0.16n9 ~ 8 x 10~*.In principle, the linear tilt could be achieved by using a
spatial light modulator. Another possibility which could create a linear tilt is to use crystals with linear
dependence of the index of refraction on temperature, and a temperature gradient across the crystal [46].

However, it should be emphasized that if one uses a superlattice for 6y , rather than the linear tilt potential,
asin [33] for ultracold atomic gases, the grating assisted tunneling scheme proposed here would yield staggered
synthetic magnetic fields for photons. The achievement of such staggered fields should be possible with optically
induced lattices proposed here.

2.4. On the phase between the lattice and the grating

Before closing, we emphasize that the spatial phase between the periodic lattice potential 6n; and the grating éng
is arelevant parameter. This point has recently been examined in detail in the context of ultracold atoms [45]. To
translate it to our system, suppose that in our 1D system, we shift the grating along the x-direction, such that

ong = dngy cos*((q,x — kz + £)/2). This simply shifts the phases in the discrete lattice (shown in figure 1(c))
such that ¢, isreplaced by ¢,, + £, which moves the 1D Dirac point in k,-space by Ak, = £/a. We have
numerically verified that this indeed happens.

3. Conclusion

In conclusion, we have proposed the grating assisted tunneling scheme for tunable synthetic magnetic fields in
optically induced one- and two-dimensional dielectric photonic lattices. As a signature of the synthetic magnetic
fields and the Dirac points that these lattices possess in k-space, we have demonstrated conical diffraction
patterns (shown in figures 1(c) and 2(a)). The excellent agreement between our results for light propagation in
realistic (continuous) systems and the evolution in the corresponding discrete models, clearly confirms that the
2D dielectric photonic lattice with grating assisted tunneling constitutes the realization of the Harper—
Hofstadter Hamiltonian. We envision that this approach can open the way for other studies oflight propagation
in tailored dielectric structures (including nonlinear propagation, solitons, instabilities and the creation of
synthetic dimensions [47]) being mapped on intriguing discrete models with complex tunneling matrix
elements and synthetic magnetic fields.
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