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We have performed the first measurement of the coherent ψ(2S) photo-production cross section in ultra-
peripheral Pb–Pb collisions at the LHC. This charmonium excited state is reconstructed via the ψ(2S) →
l+l− and ψ(2S) → J/ψπ+π− decays, where the J/ψ decays into two leptons. The analysis is based on an 
event sample corresponding to an integrated luminosity of about 22 μb−1. The cross section for coherent 
ψ(2S) production in the rapidity interval −0.9 < y < 0.9 is dσ coh

ψ(2S)/dy = 0.83 ±0.19
(
stat+ syst

)
mb. The 

ψ(2S) to J/ψ coherent cross section ratio is 0.34+0.08
−0.07(stat + syst). The obtained results are compared to 

predictions from theoretical models.
© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Two-photon and photo-nuclear interactions at unprecedented 
energies can be studied in heavy-ion Ultra-Peripheral Collisions 
(UPC) at the LHC. In such collisions the nuclei are separated by 
impact parameters larger than the sum of their radii and therefore 
hadronic interactions are strongly suppressed. The cross sections 
for photon induced reactions remain large because the strong elec-
tromagnetic field of the nucleus enhances the intensity of the pho-
ton flux, which grows as the square of the charge of the nucleus. 
The physics of ultra-peripheral collisions is reviewed in [1,2]. Ex-
clusive photo-production of vector mesons at high energy, where 
a vector meson is produced in an event with no other final state 
particles, is of particular interest, since it provides a measure of 
the nuclear gluon distribution at low Bjorken-x.

Exclusive production of charmonium in photon–proton inter-
actions at HERA [3–5], γ + p → J/ψ(ψ(2S)) + p, has been suc-
cessfully modelled in terms of the exchange of two gluons with 
no net-colour transfer [6]. Experimental data on this process from 
HERA have been used to constrain the proton gluon distribution at 
low Bjorken-x [7]. Exclusive vector meson production in heavy-ion 
interactions is expected to probe the nuclear gluon distribution [8], 
for which there is considerable uncertainty in the low-x region [9]. 
Exclusive ρ0 [10] and J/ψ [11] production has been studied in 
Au–Au collisions at RHIC. The exclusive photo-production can be 
either coherent, where the photon couples coherently to almost all 
the nucleons, or incoherent, where the photon couples to a single 
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nucleon. Coherent production is characterized by low transverse 
momenta of vector mesons (pT � 60 MeV/c) where the target 
nucleus normally does not break up. However, the exchange of 
additional photons, radiated independently from the original one, 
may lead to the target nucleus breaking up or de-excite through 
neutron emission. Simulation models estimate this occurs in about 
30% of the events [12]. Incoherent production is characterized by 
a somewhat higher transverse momentum of the vector mesons 
(pT � 500 MeV/c). In this case the nucleus interacting with the 
photon breaks up but, apart from single nucleons or nuclear frag-
ments in the very forward region, no other particles are produced 
besides the vector meson.

We published the first results on the coherent photo-production 
of J/ψ in UPC Pb–Pb collisions at the LHC [13] in the rapidity 
region −3.6 < y < −2.6, which constrain the nuclear gluon dis-
tribution at Bjorken-x � 10−2. Shortly afterwards, ALICE published 
a second paper measuring both the coherent and the incoherent 
J/ψ vector meson cross section at mid-rapidity [14], allowing the 
nuclear gluon distribution at Bjorken-x � 10−3 to be explored. The 
present analysis is performed in the same rapidity region with re-
spect to the measurement reported in [14], and it is sensitive to 
Bjorken-x � 10−3 too.

There are very few studies of photo-production of ψ(2S) off nu-
clei. Incoherent photo-production, using a 21 GeV photon beam off 
a deuterium target, has been studied in [15]; non-exclusive photo-
production, using bremsstrahlung photons with an average energy 
of 90 GeV off a 6Li target, have been reported in [16]. However, 
no previous measurements of ψ(2S) coherent photo-production 
off nuclear targets have been reported in the literature.

http://dx.doi.org/10.1016/j.physletb.2015.10.040
0370-2693/© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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In this letter, results from ALICE on exclusive coherent photo-
production of ψ(2S) mesons at mid-rapidity in ultra-peripheral 
Pb–Pb collisions at 

√
sNN = 2.76 TeV are presented. The measured 

coherent ψ(2S) cross section and the ψ(2S)/J/ψ cross section ra-
tio are compared to model predictions [17–22].

2. Detector description

The main components of the ALICE detector are a central barrel 
placed in a large solenoid magnet (B = 0.5 T), covering the pseudo-
rapidity region |η| < 0.9, and a muon spectrometer at forward 
rapidity, covering the range −4.0 < η < −2.5 [23]. Three central 
barrel detectors are used in this analysis. The ALICE Internal Track-
ing System (ITS) is made of six silicon layers, all of them used in 
this analysis for particle tracking. The Silicon Pixel Detector (SPD) 
makes up the two innermost layers of the ITS, covering pseudo-
rapidity ranges |η| < 2 and |η| < 1.4, for the inner (radius 3.9 cm) 
and outer (average radius 7.6 cm) layers, respectively. The SPD is a 
fine granularity detector, having about 107 pixels, and is used for 
triggering purposes. The Time Projection Chamber (TPC) is used 
for tracking and for particle identification [24] and has an accep-
tance covering the pseudo-rapidity region |η| < 0.9. The Time-of-
Flight detector (TOF) surrounds the TPC and is a large cylindrical 
barrel of Multigap Resistive Plate Chambers (MRPC) with about 
150,000 readout channels, giving very high precision timing. The 
TOF pseudo-rapidity coverage matches that of the TPC. Used in 
combination with the tracking system, the TOF detector is used 
for charged particle identification up to a transverse momentum 
of about 2.5 GeV/c (pions and kaons) and 4 GeV/c (protons). In 
addition, the TOF detector is also used for triggering [25].

The analysis presented below also makes use of two forward 
detectors. The V0 counters consist of two arrays of 32 scintillator 
tiles each, covering the range 2.8 < η < 5.1 (V0-A, on the oppo-
site side of the muon spectrometer) and −3.7 < η < −1.7 (V0-C, 
on the same side as the muon spectrometer) and positioned re-
spectively at z = 340 cm and z = −90 cm from the interaction 
point.

Finally, two sets of hadronic Zero Degree Calorimeters (ZDC) 
are located at 114 m on either side of the interaction point. The 
ZDCs detect neutrons emitted in the very forward and backward 
regions (|η| > 8.7), such as neutrons produced by electromagnetic 
dissociation of the nucleus [26] (see Section 3).

3. Data analysis

The event sample considered for the present analysis was col-
lected during the 2011 Pb–Pb run, using a dedicated Barrel Ultra-
Peripheral Collision trigger (BUPC), selecting events with the fol-
lowing characteristics:

(i) at least two hits in the SPD detector;
(ii) a number of fired pad-OR (Non) in the TOF detector [25] in the 

range 2 ≤ Non ≤ 6, with at least two of them with a difference 
in azimuth, 	φ, in the range 150◦ ≤ 	φ ≤ 180◦;

(iii) no hits in the V0-A and no hits in the V0-C detectors.

The integrated luminosity used in this analysis was 22.4+0.9
−1.2 μb−1. 

Luminosity determination and systematics are discussed in Sec-
tion 3.1. In the present analysis, coherent ψ(2S) photo-production 
was studied in four different channels: ψ(2S) → l+l− and ψ(2S) →
J/ψπ+π− , followed by the J/ψ → l+l− decay, where l+l− can be 
either a e+e− or μ+μ− pair.

3.1. The ψ(2S) → l+l− channel

For the di-muon and di-electron decay channels the following 
selection criteria were applied:

(i) a reconstructed primary vertex. The primary vertex position is 
determined from the tracks reconstructed in the ITS and TPC 
as described in Ref. [27]. The vertex reconstruction algorithm 
is fully efficient for events with at least one reconstructed pri-
mary charged particle in the common TPC and ITS acceptance;

(ii) only two good tracks with at least 70 TPC clusters and at 
least 1 SPD cluster each. Moreover, particles originated in sec-
ondary hadronic interactions or conversions in the detector 
material, were removed using a distance of closest approach 
(DCA) cut. The tracks extrapolated to the reconstructed ver-
tex should have a DCA in the beam direction DCAL ≤ 2 cm, 
and in the plane orthogonal to the beam direction DCAT ≤
0.0182 + 0.0350/p1.01

T , where pT is the transverse momentum 
in (GeV/c) [28];

(iii) at least one of the two good tracks selected in criterion (ii) 
should have pT ≥ 1 GeV/c; this cut reduces the background, 
while it marginally affects the genuine leptons from J/ψ de-
cays;

(iv) the V0 trigger required no signal within a time window of 
25 ns around the collision time in any of the scintillator tiles 
of both V0-A and V0-C. Signals in both V0 detectors were 
searched offline in a larger window according to the prescrip-
tion described in [14];

(v) the specific energy loss dE/dx for the two tracks is compatible 
with that of electrons or muons (see below); it is worth noting 
that the TPC resolution does not allow muon and charged pion 
discrimination;

(vi) the two tracks have opposite charges.

The optimization of the selection criteria to tag efficiently the 
ψ(2S) was tailored by using the STARLIGHT [17] event generator 
combined with the ALICE detector full simulation. About 950,000 
coherent and incoherent events were simulated for each decay 
channel. The event total transverse momentum reconstruction is 
obtained adding the pT of the two leptons. The selection of co-
herent events requires a threshold on the reconstruction of the 
event total transverse momentum, obtained by adding the pT of 
the two decay leptons. Transverse momentum carried away by 
the bremsstrahlung photons reflects in a broadening of the event 
total pT . Bremsstrahlung effects are more important for the di-
electron decay and the corresponding pT threshold has to be larger 
in this case. Consequently a pT cut pT < 0.15 GeV/c for di-muons 
and pT < 0.3 GeV/c for di-electrons: 98 (77)% of the coherent sig-
nal is retained for di-muons and di-electrons respectively. Fig. 1
(top panel) shows the invariant mass (left) and the pT distribu-
tion (right) for these decay channels. The pT distributions clearly 
show a coherent peak at low pT . No events are found with a trans-
verse momentum exceeding 1.5 GeV/c, as expected for a negligible 
hadronic contamination, characterized by a much larger event pT . 
The number of ψ(2S) candidates are obtained by fitting the invari-
ant mass distribution of both channels to an exponential function 
describing the underlying continuum and to a Crystal Ball function 
to extract the ψ(2S) signal. The Crystal Ball ψ(2S) resonance mass 
and width were left free, while the tail parameters (α and n) were 
fixed to the values obtained by Monte Carlo simulation. The mass 
(width calculated from the standard deviation) value from the fit 
is 3.664 ± 0.013 GeV/c2 (22 ± 9 MeV/c2) in good agreement with 
the known value of the ψ(2S) mass and compatible with the ab-
solute calibration accuracy of the barrel. The obtained yield (see 
Table 1) was Nyield = (18.4 ± 9.3).
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Fig. 1. Invariant mass (left) and pT distributions (right) for ultra-peripheral Pb–Pb collisions at √sNN = 2.76 TeV and −0.9 < y < 0.9 for events satisfying the event selections 
in Section 3. The channels ψ(2S) → l+l− are shown on the top panel (l+l− = e+e− and μ+μ−), the ψ(2S) → π+π−μ+μ− channel is shown in the central and the channel 
ψ(2S) → π+π−e+e− in the bottom one. The number of event is obtained by the fit (top panel) or by event counting in a selected invariant mass region (central and bottom 
panel), see text.
The product of the acceptance and efficiency correction
(Acc × ε)ψ(2S) was calculated as the ratio of the number of sim-
ulated events that satisfy the conditions i) to vi), to the num-
ber of generated events with the ψ(2S) in the rapidity interval 
−0.9 < y < 0.9. Transverse polarization of the ψ(2S) is expected 
from helicity conservation for a quasi-real photon. In addition, for 
the coherent sample, a reconstructed ψ(2S) transverse momen-

tum condition pT < 0.15 GeV/c (pT < 0.3 GeV/c) was required for 
di-muons (di-electrons) in the final state. The values for the com-
bined acceptance and efficiency are reported in Table 1.

According to STARLIGHT the fraction ( f I ) of incoherent over co-
herent events in the low pT region is 4.4% for di-muons and 16.6% 
for di-electrons. Another theoretical model, described in [22], pre-
dicts a much higher coherent over incoherent cross section ratio, 
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Table 1
Summary of the main experimental results and correction parameters used in the cross section evaluation. The bottom line shows 
the cross section for the three ψ(2S) decay channels.

ψ(2S) → l+l− ψ(2S) → μ+μ−π+π− ψ(2S) → e+e−π+π−

Signal counts 18.4 ± 9.3 17 ± 4.1 11.0 ± 3.3
Bkg. counts (Nback) 0 1 0
f I (5.6 ± 1.8)% (3.4 ± 1.1)% (13.2 ± 4.3)%
(Acc × ε)ψ(2S) (3.65 ± 0.16)% (2.35 ± 0.14)% (1.33 ± 0.08)%
BR (1.56 ± 0.11)% (2.02 ± 0.03)% (2.02 ± 0.03)%
Lint (22.4+0.9

−1.2) μb−1 (22.4+0.9
−1.2) μb−1 (22.4+0.9

−1.2) μb−1

	y 1.8 1.8 1.8

dσ coh
ψ(2S)

dy (mb) 0.76 ± 0.40(stat) ± 0.13(syst) 0.81 ± 0.22(stat)+0.09
−0.10(syst) 0.90 ± 0.31(stat)+0.13

−0.12(syst)
resulting in a f I prediction 50% smaller. Taking the average of 
these two predictions, (3.3 ± 1.1)% for di-muons and (11.1 ± 3.4)%
for di-electrons is obtained. The uncertainty was obtained by re-
quiring the used value to agree with the two models within 1σ . 
The final f I (see Table 1) is the average of the f I for di-electrons 
and di-muons, weighted with the corresponding acceptance and 
efficiency (Acc × ε). The remaining background (Nback) was esti-
mated studying the wrong-sign event sample, obtained by apply-
ing cuts (i) to (v). For di-muon and di-electron channels no wrong-
sign events were found in the invariant mass range considered and 
therefore Nback = 0.

The coherent ψ(2S) yield is obtained using the formula

Ncoh
ψ(2S) = Nyield − Nback

1 + f I
, (1)

giving Ncoh
ψ(2S) = 17.5 ± 9.0. The coherent ψ(2S) differential cross 

section can be written as:

dσ coh
ψ(2S)

dy
= Ncoh

ψ(2S)

(Acc × ε)ψ(2S) · Lint · 	y · BR(ψ(2S) → l+l−)
, (2)

where (Acc × ε)ψ(2S) corresponds to the acceptance and efficiency 
as discussed above. BR(ψ(2S) → l+l−) is the branching ratio for 
ψ(2S) decay into leptons [29], 	y = 1.8 the rapidity bin size, 
and Lint the total integrated luminosity. These values are listed 
in Table 1. The systematic uncertainty on the yield for the di-
lepton channel is obtained by varying the bin size and by replacing 
the exponential with a polynomial to fit the γ γ process. In ad-
dition, the Crystal Ball function parameters can be also obtained 
by fitting a simulated sample made of ψ(2S) and γ γ event cock-
tail and then used to fit the coherent-enriched data sample too. 
By applying the different methods reported above, the maximum 
difference in the obtained yield is 12%: this value is used as sys-
tematic uncertainty on the yield. The STARLIGHT model predicts 
a dependence of the ψ(2S) cross section on the rapidity, giving a 
≈ 10% variation over the rapidity range −0.9 < y < 0.9. In order 
to evaluate the systematic uncertainty on the acceptance coming 
from the generator choice, a flat dependence of dσψ(2S)/dy in the 
interval −0.9 < y < 0.9, as predicted by other models, was used. 
The relative differences in (Acc × ε) between the input shapes was 
1.0%, and are taken into account in the systematic uncertainty cal-
culation. The systematic uncertainty on the tracking efficiency was 
estimated by comparing, in data and in Monte Carlo, the ITS (TPC) 
hit matching efficiency to tracks reconstructed with TPC (ITS) hits 
only.

The trigger efficiency was measured relying on a data sample 
collected in a dedicated run triggered by the ZDCs only. Events 
with a topology having the BUPC conditions, given at the begin-
ning of Section 3, were selected. The resulting trigger efficiency 
was compared to that obtained by the Monte Carlo simulation, 
showing an agreement within +4.0%

−9.0%.

The e/μ separation was obtained by using two methods:

a) a sharp cut in the scatter plot of the first lepton dE/dx as a 
function of the second lepton dE/dx, where all the particles 
beyond a given threshold are considered as electrons;

b) using the average of the electron (muon) dE/dx and consid-
ering as electrons (muons) the particles within three sigmas 
from the Bethe–Block expectation. The difference between the 
two methods was used as an estimate of the systematic un-
certainty, giving ±2%.

The systematic uncertainty related to the application of the V0 
offline decision (cut iv) on Section 3.1, was evaluated repeating 
the analysis with this cut excluded. This results in a more relaxed 
event selection, increasing the cross section by 6%.

The integrated luminosity was measured using a trigger for the 
most central hadronic Pb–Pb collisions. The cross section for this 
process was obtained with a van der Meer scan [30], giving a 
cross section σ = 4.10+0.22

−0.13(syst) b [31]. The integrated luminos-
ity for the BUPC trigger sample, corrected for trigger live time, 
was Lint = 22.4+0.9

−1.2 μb−1, where the uncertainty is the quadratic 
sum of the cross section uncertainty quoted above and the trig-
ger dead time uncertainty. An alternative method based on using 
neutrons detected in the two ZDCs was also used. The ZDC trigger 
condition required a signal in at least one of the two calorime-
ters, thus selecting single electromagnetic dissociation as well as 
hadronic interactions. The cross section for this trigger was also 
measured with a van der Meer scan [26]. The integrated lumi-
nosity obtained for the BUPC by this method is consistent with 
the one quoted above within 2.5%. The sources and the values of 
the systematic uncertainties are listed in Table 2. As a result in 
the rapidity interval −0.9 < y < 0.9 a cross section dσ coh

ψ(2S)
/dy =

0.76 ± 0.40(stat)+0.12
−0.13(syst) mb is obtained.

3.2. The ψ(2S) → π+π−J/ψ , J/ψ → l+l−(l+l− = e+e−, μ+μ−)

channels

The analysis criteria used to select these channels are similar 
to those described in Section 3.1, with the requirements on the 
track quality slightly relaxed to keep the efficiency at an accept-
able level. Such a cut softening was allowed by the smaller QED 
background in four track events, compared to the channels de-
scribed in Section 3.1. Selection (ii) is modified so that four good 
tracks with at least 50 TPC clusters each are required. In addi-
tion to cuts i) to vi), the invariant mass of di-muons (di-electrons)
was required to match that expected by leptons from J/ψ de-
cay, i.e. 3.0 < Mπ+π−μ+μ− < 3.2 GeV/c2 for di-muons (2.6 <
Mπ+π−e+e− < 3.2 GeV/c2 for di-electrons).

The acceptance and the efficiency were estimated with similar 
techniques. Due to the coupling to the photon, the ψ(2S) is trans-
versely polarized. According to previous experiments [32], J/ψ and 
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Table 2
Systematic uncertainties per decay channel.

ψ(2S) → l+l− ψ(2S) → μ+μ−π+π− ψ(2S) → e+e−π+π−

Signal extraction ±12% < 1% < 1%

Incoherent contamination ( f I ) ±1.8% ±1.3% ±4.8%

(Acc × ε) Generator dσ
dy ±1% ±2% ±2%

Tracking efficiency ±4.2% ±6.0% ±6.0%

Trigger efficiency +4%
−9%

+4%
−9%

+4%
−9%

e/μ separation ±2% ±2% ±2%

V0 offline decision +6%
−0%

+6%
−0%

+9%
−0%

Luminosity +5.5%
−4.0%

+5.5%
−4.0%

+5.5%
−4.0%

Branching ratio ±7.1% ±1.5% ±1.5%

Uncorrelated sources ±13% ±2% ±5%

Correlated sources +10%
−11%

+11%
−12%

+13%
−12%

Total ±17% +11%
−12%

+14%
−13%
two pions from ψ(2S) decay are in s-wave state and thus the 
ψ(2S) polarization fully transfers to the J/ψ . When computing the 
efficiency and acceptance the ψ(2S) is therefore assumed trans-
versely polarized. A coherent-enriched sample can be obtained 
by selecting appropriate regions on invariant mass and pT, tuned 
by using a Monte Carlo simulation, as described in Section 3.1. 
The same pT cuts used in Section 3 were applied. By selecting 
invariant mass in the interval 3.6 < Mπ+π−μ+μ− < 3.8 GeV/c2

(3.1 < Mπ+π−e+e− < 3.8 GeV/c2) for the ψ(2S) → π+π−μ+μ−
(ψ(2S) → π+π−e+e−) channel, 95% (87%) of the signal was re-
tained. The striped area in the invariant mass (left) plots on Fig. 1
(central and bottom panels) shows the ψ(2S) candidates satisfy-
ing the pT cut for the two channels. To extract the coherent ψ(2S)

yield, the contribution from incoherent ψ(2S) was subtracted as 
shown in Eq. (1). The background was estimated by looking at 
events with all the possible combination of wrong-sign tracks. One 
event was found in the di-muon sample and no events in the 
di-electron sample. The fraction of the incoherent sample contam-
inating the coherent sample was estimated as in Section 3.1, and 
was found to be 3.4% in the ψ(2S) → π+π−μ+μ− channel and 
13.2% in the ψ(2S) → π+π−e+e− channel. The systematic un-
certainty on the yield was obtained by using an alternative set 
of cuts. According to the kinematics of the ψ(2S) → π+π−J/ψ
decay channel, pions are characterized by a small transverse mo-
mentum (pT < 0.4 GeV/c), while the lepton transverse momentum 
exceeds 1.1 GeV/c. Instead of selecting events where the di-lepton 
invariant mass is close to that of the J/ψ , events were selected ac-
cording to the kinematics of the decay products of the ψ(2S). All 
the other cuts were kept as described in Section 3.1. Two alter-
native selections were considered: (i) a sample where both leptons 
have a transverse momentum larger than 1.1 GeV/c; and (ii) a sam-
ple without any decay product with transverse momentum in the 
range 0.4 < pT < 1.2 GeV/c. The ψ(2S) yield was unchanged for 
both these selections while a small change applies to the accep-
tance and efficiency in the π+π−J/ψ decay, giving a negligible 
systematic uncertainty. The relative difference in (Acc×ε) between 
the STARLIGHT rapidity shape and a flat rapidity one was 2.0% 
for ψ(2S) → π+π−J/ψ channel, and is taken into account in the 
systematic uncertainty calculation. As a result the obtained cross 
sections in the rapidity interval −0.9 < y < 0.9 are dσ coh

ψ(2S)
/dy =

0.81 ±0.22(stat)+0.09
−0.10(syst) mb for the ψ(2S) → π+π−J/ψ , J/ψ →

μ+μ− channel and dσ coh
ψ(2S)/dy = 0.89 ± 0.31(stat)+0.13

−0.12(syst) mb

for the ψ(2S) → π+π−J/ψ , J/ψ → e+e− channel.

Fig. 2. Measured differential cross section of ψ(2S) photo-production in Pb–Pb 
ultra-peripheral collisions at √sNN = 2.76 TeV at −0.9 < y < 0.9 in three different 
channels. The square represents the systematic uncertainties while the bar repre-
sents the statistic uncertainty. The combined cross section uncertainty (shaded area) 
was obtained using the prescription from reference [33].

3.3. Combining the cross sections

The ψ(2S) coherent production cross sections reported in the 
Sections 3.1 and 3.2 (Fig. 2) were combined, using the statisti-
cal and the uncorrelated systematic uncertainty as a weight. Fi-
nally the correlated systematic uncertainty was added. Asymmetric 
uncertaintys were combined according to the prescriptions given 
in [33]. The average cross section in the rapidity interval −0.9 <
y < 0.9 is dσ coh

ψ(2S)/dy = 0.83 ± 0.19
(
stat + syst

)
mb.

3.4. Coherent production with nuclear break up or nucleus 
de-excitation followed by neutron emission

In UPC one or both nuclei may get excited due to the exchange 
of additional photons. This excitation may lead to break up of 
the nucleus via emission of one or more neutrons. The neutron 
emission was measured by using the ZDC detector, for the events 
studied in the decay channel, ψ(2S) → l+l−π+π− . We found 20 
events (71+9

−11)% with no neutrons on either side (0n, 0n), 8 events 
(29+11

−9 )% with at least one neutron on either side (Xn), 7 events 
(25+10

−8 )% with no neutron on one side and at least one neutron 
on the other one (0n Xn) and 1 event (4+8

−3)% with at least one 
neutron on both sides (Xn Xn). Uncertainties on the fraction are 
obtained assuming a binomial distribution. These fractions are in 
agreement with predictions by STARLIGHT [12] and RSZ [8], as 
shown in Table 3.
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Table 3
Number of events for different neutron emissions in the ψ(2S) → l+l−π+π− pro-
cess.

Data Fraction STARLIGHT RSZ

0n 0n 20 (71+9
−11)% 66% 70%

Xn 8 (29+11
−9 )% 34% 30%

0n Xn 7 (25+11
−9 )% 25% 23%

Xn Xn 1 (4+8
−3)% 9% 7%

3.5. The ψ(2S) to J/ψ cross section ratio

In order to compare the coherent ψ(2S) cross section to the 
previously measured J/ψ cross section [14], we report on the 
ψ(2S)/J/ψ cross section ratio. Many of the systematic uncertain-
ties of these measurements are correlated and cancel out in the 
ratio. Since the analysis relies on the same data sample and on the 
same trigger, the systematic uncertainties for the luminosity eval-
uation, trigger efficiency, and dead time were considered as fully 
correlated. Several uncertainties, corresponding to the same quan-
tity, measured at slightly different energies (corresponding to the 
different masses), are partially correlated, while the uncorrelated 
part is small. Namely, the systematic uncertainties for e/μ sepa-
ration and the measurement of the neutron number are strongly 
correlated and hence can be neglected in the ratio. The systematic 
uncertainties connected to the signal extraction and the branching 
ratio are considered uncorrelated between the two measurements. 
The quadratic sum of these sources together with the statistic 
uncertainty was used to combine different channels in both mea-
surements. For the combination of asymmetric uncertainties the 
prescription from reference [33] was used. The value of the ratio is 
(dσ coh

ψ(2S)
/dy)/(dσ coh

J/ψ /dy) = 0.34+0.08
−0.07(stat + syst).

4. Discussion

We have previously measured the coherent photo-production 
cross section for the J/ψ vector meson at mid and forward rapidi-
ties [13,14]. The results showed that the measured cross section 
was in good agreement with models that include a nuclear gluon 
shadowing consistent with the EPS09 parametrization [9]. Models 
based on the colour dipole model or hadronic interactions of the 
J/ψ with nuclear matter were disfavoured. The ψ(2S) is similar to 
the J/ψ in its composition (cc) and mass, but it has a more com-
plicated wave function as a consequence of it being a 2S rather 
than a 1S state, and has a larger radius. There is a consensus view 
about the presence of a node in the ψ(2S) wavefunction: few au-
thors pointed out that this node gives a natural explanation of the 
ψ(2S) smaller cross section compared to the J/ψ one; in addition 
it was argued that the node may give strong cancellations in the 
scattering amplitude in γ -nucleus interactions [34,35].

In Pb–Pb collisions the poor knowledge of the ψ(2S) wave 
function as a function of the transverse quark pair separation d
makes it difficult to estimate the nuclear matter effects.

There are predictions by five different groups for coherent 
ψ(2S) production in ultra-peripheral Pb–Pb collisions; some of 
them published several different calculations (see Fig. 3). The 
model by Adeluyi and Nguyen (AN) is based on a calculation where 
the ψ(2S) cross section is directly proportional to the gluon dis-
tribution squared [18]. It is essentially the same model used by 
Adeluyi and Bertulani [36] to calculate the coherent J/ψ cross sec-
tion, which was found to be in good agreement with the ALICE 
data, when coupled to the EPS09 shadowing parametrization. The 
calculations are done for four different parameterizations of the 
nuclear gluon distribution: EPS08 [37], EPS09 [9], HKN07 [38], and 

Fig. 3. Measured differential cross section of ψ(2S) photo-production in ultra-
peripheral Pb–Pb collisions at √sNN = 2.76 TeV at −0.9 < y < 0.9. The uncertainty 
was obtained using the prescription from reference [33]. The theoretical calculations 
described in the text are also shown.

MSTW08 [39]. The last one (MSTW08) corresponds to a scaling of 
the γ p cross section neglecting any nuclear effects (impulse ap-
proximation). It is worth noting they used for the ψ(2S) the same 
wave function used for the J/ψ . The model by Gay Ducati, Griep, 
and Machado (GDGM) [19] is based on the colour dipole model 
and is similar to the model by Goncalves and Machado for coher-
ent J/ψ production [20]. The latter calculation could not reproduce 
the ALICE coherent J/ψ measurement. The new calculation has, 
however, been tuned to correctly reproduce the ALICE J/ψ result. 
The model by Lappi and Mantysaari (LM) is based on the colour 
dipole model [21]. Their prediction for the J/ψ was about a fac-
tor of two above the cross section measured by ALICE. The current 
ψ(2S) cross section has been scaled down to compensate for this 
discrepancy. The model by Guzey and Zhalov (GZ) is based on the 
leading approximation of perturbative QCD [22]. They used dif-
ferent gluon shadowing predictions, using the dynamical leading 
twist theory or the EPS09 fit. Finally, STARLIGHT uses the Vector 
Meson Dominance model and a parametrization of the existing 
HERA data to calculate the ψ(2S) cross section from a Glauber 
model assuming only hadronic interactions of the ψ(2S) [17]. This 
model does not implement nuclear gluon shadowing.

It is worth noting that removing all nuclear effects in STARLIGHT 
gives a cross section for J/ψ production almost identical to the 
Adeluyi–Bertulani model, if the MSTW08 parametrization is used. 
The last one corresponds to a scaling of the γ –p cross section 
neglecting any nuclear effects, i.e. considering all nucleons con-
tributing to the scattering (impulse approximation). Conversely, 
when applying the same procedure to the ψ(2S) vector meson 
production, the comparison shows that STARLIGHT cross section 
is � 50% smaller with respect to the Adeluyi–Nguyen one. This 
result may indicate that the γ + p → ψ(2S) + p cross section is 
parametrized in a different way in the two models, due to the 
limited experimental data, making it difficult to tune the models. 
For J/ψ , a wealth of γ + p → J/ψ + p cross section data has been 
obtained by ZEUS and H1, while the process γ + p → ψ(2S) + p
was measured by H1 at four different energies only. This makes it 
much harder to constrain the theoretical cross section to the ex-
perimental data. Since the effect of gluon shadowing decreases the 
vector meson production cross section, this may explain why the 
ψ(2S) STARLIGHT cross section is close to the AN-EPS09 model, 
while it is a factor of two larger for J/ψ .

The coherent ψ(2S) photo-production cross section is com-
pared to calculations from twelve different models in Fig. 3. Since 
a comprehensive model uncertainty is not provided by the model 
authors, the comparison with the experimental results is quanti-
fied by dividing the difference between the value of each model at 
y = 0 and the experimental result, by the uncertainty of the mea-
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Fig. 4. Ratio of the ψ(2S) to J/ψ cross section for pp and γ p interactions compared 
to theoretical predictions. The ALICE ratio measured in Pb–Pb collisions is shown as 
well. The uncertainty was obtained using the prescription from reference [33].

Fig. 5. Ratio of the ψ(2S) to J/ψ cross section measured by ALICE in Pb–Pb colli-
sions. The uncertainty was obtained using the prescription from reference [33]. The 
predictions from different theoretical models are also shown.

surement itself. The present measurement disfavours the EPS08 
parametrization when implemented in the AN model and the 
GDGM models with a strong shadowing. Similarly the models that 
neglect any nuclear effect are disfavoured at a level between 1.5 
and 3 sigmas. The systematic uncertainties on the cross section 
parametrization and the experimental statistical uncertainties do 
not allow a preference to be given between the models implement-
ing moderate nuclear gluon shadowing (as AN-EPS09) and those 
taking into account Glauber nuclear effects only (as STARLIGHT).

Fig. 4 shows the ψ(2S) to J/ψ cross section ratio measured in 
Pb–Pb collisions by ALICE and those obtained in pp̄ collisions by 
CDF [40], and in pp collisions by LHCb [41]. Both STARLIGHT and 
the GDGM model predict correctly the experimental pp results. 
The figure also shows the ratio measured by H1 in γ p collisions. 
The H1 result is compatible with the pp measurements, while the 
ALICE point is 2σ larger than the average of the pp measurements, 
although still with sizable uncertainties. This difference may indi-
cate that the nuclear effects and/or the gluon shadowing modify 
the J/ψ and the ψ(2S) production in a different way, since other 
effects, as the different photon flux, due to the larger ψ(2S) mass, 
could not explain such a difference.

Fig. 5 shows the comparison of the ψ(2S) to J/ψ cross section 
ratio between measurements and predictions in Pb–Pb UPC. Most 
models predict a ψ(2S) to J/ψ cross section ratio in Pb–Pb colli-
sions smaller by 2–2.5 σ than the one measured by ALICE. It is 
worth noting the same models which reproduced correctly the pp 

ratio, fail in describing the Pb–Pb ratio. It is surprising that the AN 
model, although it assumes a ψ(2S) wave function identical to the 
J/ψ one, describes in a satisfactory way this ratio.

5. Conclusions

We performed the first measurement of the coherent ψ(2S)

photo-production cross section in Pb–Pb collisions, obtaining 
dσ coh

ψ(2S)/dy = 0.83 ± 0.19
(
stat + syst

)
mb in the interval −0.9 <

y < 0.9. This result disfavours models considering all nucleons 
contributing to the scattering and those implementing strong 
shadowing, as EPS08 parametrization. The ratio of the ψ(2S) to 
J/ψ cross section ratio in the rapidity interval −0.9 < y < 0.9 is 
0.34+0.08

−0.07(stat + syst). Most of the models underpredict this ra-
tio by 2–2.5 σ . The current models of the ψ(2S) production in 
ultra-peripheral collisions require further efforts; the data shown 
in the present analysis may help to improve the understanding of 
this process and to refine the theory behind the exclusive vector 
meson photo-production.
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