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Abstract. Nuclear data in general, and neutron-induced reaction cross sections in particular, are important
for a wide variety of research fields. They play a key role in the safety and criticality assessment of nuclear
technology, not only for existing power reactors but also for radiation dosimetry, medical applications,
the transmutation of nuclear waste, accelerator-driven systems, fuel cycle investigations and future reactor
systems as in Generation IV. Applications of nuclear data are also related to research fields as the study
of nuclear level densities and stellar nucleosynthesis. Simulations and calculations of nuclear technology
applications largely rely on evaluated nuclear data libraries. The evaluations in these libraries are based
both on experimental data and theoretical models. Experimental nuclear reaction data are compiled on a
worldwide basis by the international network of Nuclear Reaction Data Centres (NRDC) in the EXFOR
database. The EXFOR database forms an important link between nuclear data measurements and the
evaluated data libraries. CERN’s neutron time-of-flight facility n TOF has produced a considerable amount
of experimental data since it has become fully operational with the start of the scientific measurement
programme in 2001. While for a long period a single measurement station (EAR1) located at 185 m from
the neutron production target was available, the construction of a second beam line at 20 m (EAR2) in
2014 has substantially increased the measurement capabilities of the facility. An outline of the experimental
nuclear data activities at CERN’s neutron time-of-flight facility n TOF will be presented.

1 Introduction

The generic notion “nuclear data” comprises the physical properties related to nuclear structure and nuclear reactions.
Evaluated nuclear reaction data play an essential role in calculations and simulations for the design and operational
studies of nuclear technology systems. For this purpose they have to contain all reactions and all energy regions, even
where experimental data are missing, insufficient or inconsistent.

A nuclear data evaluation is the result of a complicated process involving a careful analysis of available existing,
sometimes inconsistent experimental data sets combined with optimum theoretical models describing experimental
data and providing data for gaps in experimental information. The outcome of this process is a single recommended
and purposefully complete dataset, the evaluation. Both theoretical models and experimental data are the fundamental
ingredients in evaluated data [1, 2].

Nuclear data in general, and neutron-induced reactions in particular, are important for a number of research fields.
In nuclear astrophysics, an intriguing topic is the understanding of the formation of the nuclei present in the universe
and the origin of the chemical elements. Hydrogen and smaller amounts of He and Li were created in the early universe
by primordial nucleosynthesis. Nuclear reactions in stars are at the origin of nearly all other nuclei. Most nuclei heavier
than iron are produced by neutron capture in stellar nucleosynthesis [3–6]. Neutron-induced reaction cross sections
also reveal the nuclear level structure in the vicinity of the neutron binding energy of nuclei [7, 8]. The properties

� Contribution to the Focus Point on “Nuclear data for energy” edited by S. Leray.
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Fig. 1. Neutron-induced reaction cross sections for a typical heavy nucleus as a function of the neutron kinetic energy (upper
panel), together with characteristic neutron energy distributions present in stellar environments and in technological applications
like fission and fusion (lower panel). All distributions have been normalized to their maximum value.

of these levels are a crucial input to nuclear level density models. Finally, neutron-induced reaction cross sections
are a key ingredient for the safety and criticality assessment of nuclear technology, including research on medical
applications [9], radiation dosimetry, the transmutation of nuclear waste, accelerator-driven systems, future reactor
systems as in Generation IV, and nuclear fuel cycle investigations [10–12].

Nuclear reaction data needed for such calculations are usually based on evaluated nuclear data libraries. Examples
of such libraries are JEFF [13], ENDF [14], JENDL [15], CENDL, BROND and several others. While these libraries
have started historically with a focus on nuclear technology applications, nowadays they are general-purpose libraries
intended to be universal. For nearly any nuclear data application and simulation code, the content of an evaluated
nuclear data library is not directly useable but needs to be processed to extract the needed information in a suitable
format. For example neutron-induced reaction cross sections for resolved resonances are stored as R-matrix [16]
resonance parameters, which is the most concise and fundamental way to represent this type of cross sections. From
these parameters a reaction cross section can be calculated with the appropriate thermal broadening needed for
an application. This Doppler-broadened cross section can then be merged with the energy range of smooth cross
sections, and stored as interpolation tables, in order to obtain the reaction cross section over a wide energy range for
a given temperature. Several special-purpose libraries with derived quantities exist as well. For example the database
KADoNiS [17] is dedicated to Maxwellian averaged capture cross sections relevant for stellar nucleosynthesis. It
contains data both calculated from evaluated nuclear data libraries and from experiments. The EXFOR data base [18]
is the international storage and retrieval system for experimental results. It contains data that are often not available
numerically in publications and laboratory reports. The observables including detailed experimental conditions have
nowadays become the standard quality for submission.

Contributions to nuclear data come from a variety of experimental facilities including the pulsed white spallation
neutron source n TOF at CERN, which has been recently upgraded with its second beam line. Other neutron time-
of-flight facilities comprise electron linac-based machines, like GELINA [19,20], IREN [21], KURRI [22], nELBE [23],
ORELA (until recently) [24] and PNF [25], RPI [26], and proton-induced spallation targets similar to n TOF, like MLF
at J-PARC [27] and LANSCE [28]. All these facilities have their own unique and often complementary characteristics.

2 Nuclear reactions induced by neutrons

One of the most striking features of neutron-nucleus interactions is the resonance structure observed in the reaction
cross sections at low incident neutron energies. Since the electrically neutral neutron has no Coulomb barrier to
overcome, and has a negligible interaction with the electrons in matter, it can directly penetrate and interact with
the atomic nucleus, even at very low kinetic energies of the order of electronvolts. At lower energies the De Broglie
wavelength of the neutron becomes comparable to the size of interatomic distance of the target material and solid-state
effects become important. The nuclear reaction cross sections can show variations of several orders of magnitude on



Page 4 of 13 Eur. Phys. J. Plus (2016) 131: 371

an energy scale of only a few eV. The origin of the resonances is related to the excitation of nuclear states in the
compound nuclear system formed by the neutron and the target nucleus, at excitation energies lying above the neutron
binding energy of typically several MeV. In fig. 1 the main reaction cross sections for a typical heavy nucleus are shown
as a function of the energy. The reactions showing resolved resonances, typically elastic scattering, neutron capture,
and for some nuclei fission, are clearly visible over a wide energy range. The position and extent of the resonance
structure depend on the nucleus. Threshold reaction channels like (n, xn) or charged particle emission usually open up
at higher energies. Also shown on the same energy scale in fig. 1 are several neutron energy spectra relevant for typical
applications, normalized to give the same height. These spectra correspond to a Maxwell-Boltzmann distribution of
the neutron velocities. On the low-energy side the neutron flux of a theoretical spectrum of fully moderated neutrons
is shown. For an infinite water moderator at a temperature of about 293.6K, the neutron density of this thermal
spectrum shows a maximum at a speed of 2200m/s corresponding to an energy of 25.3meV. On the high-energy side
the idealised neutron distribution of thermal-neutron induced prompt fission neutrons from 235U is shown. Similar
energy distributions are found for neutrons in certain stars where the synthesis of the nuclei heavier than about A = 60
takes place by neutron capture. For the s-process in Asymptotic Giant Branch stars, the neutrons originating mainly
from 13C(α,n) and 22Ne(α,n) reactions, are present as a hot gas and with a Maxwellian kinetic energy distribution
for temperatures with kT ranging from 5 to 100 keV.

Neutrons from fusion reactions, either from magnetic-confinement fusion with future applications of energy pro-
duction or from inertial-confinement fusion have to be taken into account for issues related to shielding and activation.
Reactions employed in most fusion developments are based on D+T → 4He+n (14.1MeV) reactions (DT), as well as
D + D → 3He + n (2.5MeV) reactions (DD), which have quasi-mono-energetic energy spectra. Typical thermal fusion
neutron spectra [29,30] at T = 10 keV are also shown in fig. 1.

3 The neutron time-of-flight facility n TOF at CERN

The neutron time-of-flight facility n TOF was constructed after an idea proposed by Rubbia et al. [31] and has become
fully operational with the start of the scientific measurement programme in 2001 [32]. The facility is based on the 6 ns
wide, 20GeV pulsed proton beam from CERN’s Proton Synchrotron (PS) with typically 7 × 1012 protons per pulse,
impinging on a lead spallation target, yielding about 300 neutrons per incident proton. A layer of water around the
spallation target moderates the initially fast neutrons down to a white spectrum of neutrons covering the full range
of energies between meV and GeV.

The neutron bunches are spaced by multiples of 1.2 s, a characteristic of the operation cycle of the PS. This allows
measurements to be made over long times of flight, and therefore low energies, without any overlap into the next
neutron cycle. In this way it is possible to measure neutron energies as low as about 10meV, and where the high-
energy part of the neutron spectrum is free from slow neutrons from previous cycles. The large energy range that can
be measured at once is one of the key characteristics of the facility.

Another important feature of n TOF is the very high number of neutrons per proton burst, also called instantaneous
neutron flux. In the case of radioactive samples in the neutron beam, this results in a very favourable ratio between
the number of signals due to neutron-induced reactions and those due to radioactive decay events, which contribute
to the background.

The neutron energy is determined by the time of flight technique. The neutrons, created at a time t0, are guided
through vacuum beam pipes to the experimental area at a distance L where they initiate reactions which are detected
at time t0+t. The measured time of flight t of the neutron with mass m, together with the flight distance L, determines
the neutron kinetic energy En using the energy-momentum relation with the neutron velocicy v = L/t and momentum
p = γmv as

En = Etot − mc2 = mc2(γ − 1), (1)

with γ = (1− v2/c2)−1/2 and where c is the speed of light. In reality, neutrons with a true energy En will be detected
with a distribution in the measured velocities v = L/t (the speed in the z-direction), determined by the measured time
of flight t and flight path length L. Both t and L have distributions for a given energy En, related to the different effects
of the time-of-flight method. By taking the derivative of eq. (1), the energy resolution ΔE is in first approximation
related to the velocity resolution Δv as

ΔE

E
=

Δv

v
(γ + 1)γ. (2)

This approximation is sufficient if the resolution components have a Gaussian distribution, each characterized for a
given energy En by a single parameter ΔL and Δt, and hence Δv. The most important contributions to the resolution
come from the time distribution of the impact of the proton pulse, the neutron transport in the target-moderator
assembly and in the sample and detector, and the time resolution of the detector and electronics. In particular the
resolution due to the target-moderator assembly is non-Gaussian and in addition highly asymmetric. Therefore the
full probability density function of the velocity distribution, which is the spectrometer’s response function, also known
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Fig. 2. Impression of the n TOF facility with its two neutron beam lines (drawn in blue) ending in the experimental areas
EAR1 and EAR2. The neutron source, on the left lower part of the drawing, is a lead spallation target surrounded by cooling
water (the water is not shown on the insets). The incident proton beam with a nominal energy of 20GeV, drawn in green,
makes an angle of 10◦ in the horizontal plane. In the direction of EAR1 a separate neutron moderator is located. The two types
of targets that have been used up to now are shown in the top inset. The horizontal neutron beam line has in reality a small
angle of approximately 0.68◦ upwards. The picture where the placement of the beam elements are on scale, only shows the part
of the long EAR1 beam line. On the inset below the main figure the full scale is shown.

as the resolution function (RF), needs to be used for a precise time-to-energy conversion. The RF not only broadens
the resonances, but the asymmetry also shifts the peak positions in the reconstructed energy spectrum.

The RF is obtained in the entire energy range by simulations, and verified by measurements of well known narrow
resonances. The full resolution function RE(E) of the reconstructed neutron kinetic energy E for a true energy En is
by conservation of probability related to the distributions of time of flight Rt or equivalent distance RL as

RE(E)dE = Rt(t)dt = RL(L)dL, (3)

where the distributions R are also dependent on the true neutron energy En. Usually components are converted
into a single distribution depending on the use. While time-of-flight analyses require the resolution as Rt, the slow
energy dependence of RL makes it more useful for visualisations and interpolation. For the time-to-energy conversion
of smooth cross section spectra it is sufficient to use the expectation value E{L}En

=
∫

LRLdL, assuming that all
resolution components are lumped into the normalized probability density RL. This expectation value is also dependent
on En.

For resolved resonances, this approximation is usually not sufficient and the full distribution needs to be convolved
with the intrinsic shape of the resonances. The intrinsic resonance shape has in approximation a Breit-Wigner form
depending on the reaction channel widths. The shape is altered by two broadening effects. First there is the Doppler
broadening, related to the thermal motion of the target nuclei. This effect is well known. In good approximation, for
metallic samples and many other cases this movement can be conveniently described by Gaussian broadening based
on the free-gas model [33,34]. Cross sections are usually represented as Doppler broadened at a given temperature.

Two different target-moderator assemblies have been used up to now in the operation of n TOF. During phase-I
a first spallation target was used from 2001 up to 2004. The water coolant of the target also served as a neutron
moderator. The spallation target was a block of lead of dimensions 80 × 80 × 60 cm3. During phase-II, after the
installation in 2008 of an upgraded cylindrical lead spallation target 40 cm in length and 60 cm in diameter, the target
was enclosed with a separate cooling circuit resulting in a 1 cm water layer in the beam direction, followed by an
exchangeable moderator with a thickness of 4 cm. Demineralized water has been used as a moderator, as well as water
with a saturated 10B-solution in order to reduce the number of 2.223MeV gamma rays from hydrogen capture, which
otherwise forms an important contribution to the background due to in-beam gamma rays. The 10B-loaded moderator,
strongly suppressing thermal neutrons, affects the energy distribution of the neutron flux only noticeably below 1 eV.

Two beam lines are in operation today. In fig. 2 a sketch of the two beam lines is shown, together with two insets
showing the two spallation targets used up to now. The corresponding neutron fluxes, per unit of lethargy, are shown
in fig. 3. The strong suppression of the thermal neutron peak in EAR1 due to the 10B-loaded moderator is clearly
visible. The first neutron beam, collimated and guided through a nearly horizontal vacuum tube over a distance of
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protons on target, referred to as “flux”, integrated over the full Gaussian beam profile with a nominal FWHM of 18 mm in
EAR1 and 21 mm in EAR2, as seen at the sample position at nominal distances of 185 m (EAR1) and 20 m (EAR2) for the
small collimator. The shown fluxes are the preliminary results of several measurements and simulations [35, 36]. The strong
reduction of the thermal peak in EAR1 is due to the 10B-loaded moderator.

approximately 185m, has been in use since the start of the facility in 2000. The beam line makes a small angle with
the horizontal of approximately 0.68◦ upwards. It leads to an experimental area (EAR1) where samples and detectors
can be mounted and neutron-induced reactions are measured. A more detailed description of the neutron source and
EAR1 can be found in ref. [37] and references therein. Two pictures showing configurations of the experimental areas
EAR1 and EAR2 are shown in fig. 4.

The second neutron beam line and experimental area (EAR2), has been constructed and has been operational
since 2014. This flight path is vertical and about 20m long, viewing the top part of the spallation target. In this case
the cooling water circuit acts as a moderator. The vertical beam situation in the experimental area EAR2 necessitates
adapated mechanical equipment to accommodate samples and detectors.

While the long flight path of EAR1 results in a very high kinetic-energy resolution, the short flight path of EAR2
has a neutron flux, which is higher than that of EAR1 by a factor of about 25. The energy distributions of the total
number of neutrons at the sample plane, in this context called flux, are shown in fig. 3 for EAR1 and EAR2. The
flux has a Gaussian beam-profile with a nominal full width at half maximum (FWHM) of 18mm in EAR1 and 21mm
in EAR2 for the small collimator usually used for capture measurements. The higher flux opens the possibility for
measurements on targets of low mass or for reactions with low cross section within a reasonable time. The shorter
flight distance of about a factor 10 also has the consequence that the entire neutron energy region is measured in a 10
times shorter interval. For measurements of neutron-induced cross sections on radioactive nuclei this means 10 times
less acquired detector signals due to radioactivity. Therefore the combination of the higher flux and the shorter time
interval results in an increase of the signal-to-noise ratio of a factor 250 for radioactive samples, at cost of lower energy
resolution. More details on EAR2 can be found in refs. [38, 39].

The n TOF facility is also used for detector and electronic tests with a neutron beam, see for example ref. [40].
This type of tests is usually performed in the neutron beam dump in EAR1, without interfering with the physics
programme.

3.1 Nuclear data measurements during phase-I (2001–2004)

A data acquisition system [41] based on Acqiris flash ADCs with 8 bit amplitude resolution and down to 1 ns sampling
interval with 8 Mbytes of memory was developed and used during phase-I and phase-II. For each detector the full
output signal from the start time given by the incident protons was recorded during the time window only limited by
the internal memory. For the scintillator detectors, the digitizers were typically operated at 500 Msamples/s allowing
the detector signal to be stored during a 16ms long time-of-flight interval, corresponding to a minimum neutron energy
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Fig. 4. Picture of the horizontal neutron beam line in EAR1 (left panel) showing the TAC in open position, and the vertical
neutron beam line in the newly constructed EAR2 (right panel), showing a neutron capture setup with C6D6 detectors above
the chamber containing the silicon neutron beam monitors (SiMon2).

of 0.7 eV. In order to reduce the amount of data, a zero-suppression technique was applied, after which the data was
transferred to CERN’s data storage facility CASTOR for off-line analysis with dedicated pulse shape analysis routines
for each detector.

During the first phase from 2001 to 2004, data have been taken for a number of nuclides in capture and fission
experiments. A list of measured nuclides and reactions together with the final or most relevant publication is given in
table 1. Neutron capture measurements with C6D6 liquid scintillator gamma-ray detectors, which have a low sensitivity
to scattered neutrons, were performed on the nuclei 24,25,26Mg, 56Fe, 90,91,92,94,96Zr, 139La, 151Sm, 186,187,188Os, 197Au,
204,206,207,208Pb and 209Bi, and a first test measurement on 93Zr. Gamma-ray cascades following neutron capture are
for most nuclei extremely complex. In order to make the detection efficiency of a capture event independent of the
cascade, the total-energy method using the so-called pulsed height weighting technique (PHWT) [42, 43] is usually
applied. Including the gamma-ray multiplicity of a typical cascade, the total detection efficiency for a capture event
for the C6D6 detector setup is about 20%. In addition to slightly modified commercially available C6D6 detectors,
two in-house developed deuterated benzene detectors were developed and used, containing a low-mass carbon fiber
housing [44]. The capture samples were put in position by a remotely controlled carbon fiber sample changer [45].

A 4π total absorption calorimeter (TAC) consisting of 40 BaF2 crystals was developed [82] and has been used
for neutron capture measurements of 197Au, 233U, 234U, 237Np, 240Pu, and 243Am. The detection efficiency for this
detector array approaches 100% and the gamma-ray energy resolution is much better than for C6D6 detectors, allowing
a detection selectivity based on the total energy released in the capture cascade.

The relative neutron flux as a function of neutron energy is needed over the full energy range under investiga-
tion in order to obtain the unnormalized reaction yield. In addition to Monte Carlo simulations [83], in a dedicated
measurement the neutron flux was measured with a 235U loaded parallel plate fission ionization chamber from the
Physikalisch-Technische Bundesanstalt in Braunschweig [32]. Furthermore, during the capture measurements the rel-
ative neutron flux was measured with the neutron monitor detector SiMon [84], consisting of an in-beam 6Li deposit
on a mylar foil and 4 off-beam silicon detectors for the detection of the 6Li(n, 3H)α reaction products. Up to 1 keV
both methods are in good agreement, but at higher energies the flux obtained with the 6Li(n, α) reaction depends on
the applied corrections for the angular distribution of the α and triton particles.
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Table 1. The measurements performed at n TOF during phase-I from 2001–2004.

Nucleus Reaction Detector ref.

24Mg (n, γ) C6D6 [46]

26Mg (n, γ) C6D6 [46]

90Zr (n, γ) C6D6 [47]

91Zr (n, γ) C6D6 [48]

92Zr (n, γ) C6D6 [49]

94Zr (n, γ) C6D6 [50]

96Zr (n, γ) C6D6 [51]

129La (n, γ) C6D6 [52]

151Sm (n, γ) C6D6 [53–55]

186Os (n, γ) C6D6 [56, 57]

187Os (n, γ) C6D6 [56, 57]

188Os (n, γ) C6D6 [56, 57]

197Au (n, γ) C6D6/TAC [58,59]

204Pb (n, γ) C6D6 [60]

206Pb (n, γ) C6D6 [61, 62]

207Pb (n, γ) C6D6 [63]

208Pb (n, γ) C6D6

natPb (n, f) PPAC [64]

Nucleus Reaction Detector ref.

209Bi (n, γ) C6D6 [65]

209Bi (n, f) PPAC [64]

232Th (n, γ) C6D6 [66, 67]

233U (n, γ) TAC

233U (n, f) FIC [68,69]

234U (n, γ) TAC

234U (n, f) FIC [70]

234U (n, f) PPAC [71,72]

236U (n, f) FIC [73]

238U (n, f) FIC/PPAC [74,75]

237Np (n, γ) TAC [76]

237Np (n, f) FIC [77]

237Np (n, f) PPAC [71]

240Pu (n, γ) TAC

241Am (n, f) FIC [78]

243Am (n, γ) TAC [79]

243Am (n, f) FIC [80]

245Cm (n, f) FIC [81]

For capture experiments, the number of incident neutrons, measured with the flux detector over a surface larger
than the beam spot, still has to be adjusted to the fraction of neutrons that are incident on the capture sample, referred
to as the beam interception factor. The spatial neutron beam profile has been measured with a MicroMegas-based
detector (MGAS) [85] and confirmed by simulations, allowing the energy-dependent beam-interception factor to be
calculated.

The absolute normalization for capture measurements can be obtained if the measured cross section is known
well enough in a particular energy region for the investigated nucleus or from a reference sample with a well-known
cross section in the same measurement conditions. A related technique can be used with a sample thick enough to
have a large total cross section (nσT � 1) in the peak of a resonance. This results in a so-called saturated resonance
where in the vicinity of the resonance peak the capture yield is not proportional to the capture cross section nσγ but
to the ratio σγ/σT , independent of the sample thickness n. An example is the 4.9 eV resonance in 197Au, which is
saturated for a sample thickness of 0.1mm. The particular shape of the capture yield near the saturated resonance
allows the determination of the normalization with an R-matrix fitting code as explained in more detail for example
in refs. [43, 86].

Fission cross section measurements usually use a stack of deposits among which are the nuclei 235U or 238U, which
serve as cross section standards. Then a fission yield ratio is usually measured for an isotope rather than a fission
yield. Fission ionisation chambers (FIC) were used to measure the fission cross sections. The chamber FIC-0 was used
for the actinides 232Th, 234U, 236U, and 237Np relative to 235U and 238U. A similar detector, FIC-1, which was in
addition suited for very radioactive samples (ISO-2919 compliant), was used to measure neutron-induced fission cross
sections of the actinides 233U, 241Am, 243Am, and 245Cm, also relative to 235U, 238U. The third FIC chamber (FIC-2)
was used for test measurements with 235U and 238U.

Fission detectors based on Parallel Plate Avalanche Counters (PPACs) were developed in addition. These fast
detectors are used to identify fission by the simultaneous detection of both fission fragments, which allows to discard
alpha and high-energy reactions. In this way they are capable of performing measurements up to 1GeV. Furthermore,
the position of each fission fragment is also measured, so the angle of the fragments with respect to the beam direction
can be determined, allowing the study of the fission anisotropy. A stack of 10 PPACs interleaved with 9 targets was
used in measurements of the fission cross sections of natPb, 209Bi, 232Th, 237Np, 233U, 234U, relative to 235U and 238U.
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Table 2. The measurements performed at n TOF during phase-II from 2009–2012.

Nucleus Reaction Detector ref.

12C (n, p) activation C6D6 [90, 91]

25Mg (n, γ) C6D6 [92, 93]

33S (n, α) MGAS [94]

54Fe (n, γ) C6D6 [95]

56Fe (n, γ) C6D6

57Fe (n, γ) C6D6 [95]

58Ni (n, γ) C6D6 [96]

59Ni (n, α) CVD [97]

62Ni (n, γ) C6D6 [98]

63Ni (n, γ) C6D6 [99]

87Sr (n, γ) spin TAC [100]

92Zr (n, γ) C6D6

93Zr (n, γ) C6D6 [101]

Nucleus Reaction Detector ref.

232Th (n, f) FFAD PPAC [89,102]

234U (n, f) FFAD PPAC [72]

235U (n, f) FFAD PPAC [103]

235U (n, γ)/(n, f) TAC/MGAS [87]

235U (n, f) PPAC [104]

236U (n, γ) C6D6 [105]

238U (n, f) FFAD PPAC [103]

238U (n, γ) C6D6 [106]

238U (n, γ) TAC [107]

242Pu (n, f) MGAS [108]

241Am (n, γ) C6D6 [109]

241Am (n, γ) TAC [110]

3.2 Nuclear data measurements during phase-II (2009–2012)

During phase-II from 2009–2012 the experimental area EAR1 has been upgraded to become a class A work zone,
allowing to use unsealed radioactive samples. Several capture measurements were performed with the C6D6 scintillator
gamma-ray detectors. The (n, γ) reaction on the light nucleus 25Mg was investigated, as well as on enriched isotopes
of iron (54Fe, 56Fe, 57Fe), and of nickel (58Ni, 62Ni, 63Ni), on the stable isotope 92Zr, the radioactive 93Zr, and on
the nucleus 236U. Capture reaction measurements on the actinides 238U and 241Am were performed with the two
available capture detector systems: the C6D6 scintillators using the PHWT, and the TAC, the BaF2 scintillator array
using the total absortion method [82]. The TAC was also used in combination with a MicroMegas detector in a first
attempt to measure the 235U(n, γ) reaction using a veto on the 235U(n, f) reaction [87]. An improved version of the
MicroMegas neutron beam profile detector was used for the beam interception factor for the capture measurements [88].
An upgraded version of the PPAC assembly, with detectors tilted by 45 degrees in order to better control the efficiency
of the system, was used to measure the angular distributions of 233Th and 234U fission fragments (FFAD) [89].

In addition to these measurements several other techniques have been tested at this facility. An experiment aiming
at resonance spin assignments was performed on a 87Sr sample. A first test measurement with a MicroMegas detector
was done to perform fission cross section measurements on 240Pu and 242Pu. The results for the 240Pu(n, f) experiment
were not conclusive due to the high radiaoctivity of this nucleus, degrading the detector over time. This measurement
was repeated in 2014 in the new EAR2, where the flux is much higher, allowing enough statistics to be collected in
only a few weeks of measurement time.

A first test dedicated to an (n, α) measurement was investigated for the 33S(n, α) reaction with a MicroMegas
detector. Also this measurement was repeated later in EAR2 in 2015 to take advantage of the higher flux. A CVD
diamond detector was used to measure the 59Ni(n, α) cross section [97]. Finally the flux-integrated 12C(n,p)12B cross
section, obtained by in-beam activation [90] was extracted. A list of the phase-II measurements and their references
are given in table 2.

3.3 Nuclear data measurements during phase-III (from 2014)

During the planned long shutdown of CERN’s accelerator complex from the end of 2012 to mid 2014, the construction
of n TOF’s new second beam line and experimental area EAR2 [111] was performed and delivered by July 2014.
The design was based on extensive Monte Carlo simulations with FLUKA [39] in order to optimize the beam line
and collimation for a high neutron flux together with a minimized background. Additional simulations have been
performed for data analysis purposes [112, 113]. In order to remove charged particles from the beam, a permanent
0.25T magnet had to be installed since, unlike in the beamline for EAR1, there was no room for an electromagnet.
Since then, the facility has been taking data in both the experimental area EAR1 (185m horizontal flight path), and
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Table 3. The nuclear data measurements performed at n TOF during phase-III in 2014 and 2015 for both EAR1 and EAR2.

Nucleus Reaction Detector EAR ref.

7Be (n, α) SILI EAR2 [115,129]

33S (n, α) MGAS EAR2

70Ge (n, γ) C6D6 EAR1

73Ge (n, γ) C6D6 EAR1

74Ge (n, γ) C6D6 EAR1

76Ge (n, γ) C6D6 EAR1

147Pm (n, γ) C6D6 EAR2

171Tm (n, γ) C6D6 EAR1, EAR2

204Tl (n, γ) C6D6 EAR1

235U (n, f)FF STEFF EAR2

237Np (n, f) PPAC EAR1

240Pu (n, f) MGAS EAR2 [116]

242Pu (n, γ) C6D6 EAR1 [117]

in the new EAR2 (20m vertical flight path), using the neutron beams simultaneously produced by the same cylindrical
lead spallation target as used in Phase-II. The experimental area EAR2 was designed as a class A work zone, allowing
unsealed radioactive samples to be used, for which the n TOF facility has particularly suited beam properties.

For the operation of phase-III, a new data acquisition system was developed, based on 175 MSample digitizers
with a sampling frequency of up to 2GHz and and amplitude resolution of 12, and recently also 14 bits. In addition to
the higher-amplitude resolution, which was 8 bits with the previously used digitizers, the larger on-board memory has
significantly increased the exploitable time-of-flight range which is now expanded down to thermal neutron energies.

A set of new in-house designed C6D6-based gamma-ray detectors entirely enveloped by a carbon fibre housing, as
well as newly designed neutron flux detectors based on silicon detectors (SILI) [114] and MicroMegas detectors [88],
were used for in-beam monitoring of the neutron flux and its energy dependency. In addition an XY-MicroMegas
detector with 1mm strips in both orthogonal directions together with dedicated electronics was developed to measure
the neutron beam profile.

The measurement programme in EAR2 started with a first part of commissioning by measuring quantities such as
flux and background and focusing on the feasibility of fission measurements. The energy dependence of the number
of neutrons incident on the sample, referred to as the neutron flux, was measured both with an in-beam neutron-to-
charged-particle converter foil, monitored by off-beam silicon detectors, and foils combined with in-beam MicroMegas
detectors. The neutron converters consisted of nuclides with well-known cross sections as 6Li(n, α), 10B(n, α) and
235U(n, f) in order to cover the energy dependence over a broad energy range. In fig. 3 the measured neutron fluxes in
EAR1 and EAR2 are shown, based on an combined analysis of the available measurements [35,36].

After the first part of commissioning, the very first physics measurement in EAR2 concerned the 240Pu(n, f)
reaction with MicroMegas detectors [116]. In 2015, the commissioning of EAR2 continued, exploring the possibilities
of (n, γ) measurements, for applications in nuclear astrophysics [118] and nuclear technology, as well as neutron-induced
charged particle reactions like the 7Be(n, α) and an upcoming 7Be(n,p) experiment. The complex multi-detector system
STEFF [119] was installed in EAR2 for commissioning and a measurement of fission fragments spectroscopy on 235U.
A list of measurements during 2014 and 2015 and their references are given in table 3.

3.4 Further use of n TOF measurements

The majority of the measurements at the n TOF facility are related to cross sections: capture and fission experiments
since phase-I and also (n, α) and (n,p) measurements in phase-II and phase-III. Once an experiment has been fully
analysed and the results published, it is important to make the data available for further use. The basic measured data
for a typical measurement are a set of detector count spectra as a function of neutron time of flight. Usually these spectra
are then processed in order to obtain a reaction yield or cross section ratio. This is the quantity that is intended to be
stored in the EXFOR database, which then subsequently can serve as a basis for nuclear data evaluations, which can
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be adopted in new releases of evaluated nuclear data libraries. Applications for nuclear technology do not rely directly
on measurements as collected in EXFOR, but nearly always on evaluated libraries. As an example of evaluations of
neutron-induced reactions on 232Th we mention ref. [120] for the resolved, and ref. [121] for the unresolved resonance
region. The time path between a measurement and the inclusion in an evaluation for an evaluated nuclear data library
is in general rather capricious. A list of requests for measurements is organized by the OECD-NEA High Priority
Request List (HPRL) [122]. Evaluation efforts are performed in national projects or on an international scale like the
CIELO project [123] for the nuclei 1H, 16O, 56Fe, 235,238U, and 239Pu.

In the field of nuclear data much effort is nowadays put on reducing uncertainties. One strategy is to perform the
same measurement at different facilities world-wide. Recognising and documenting measured data, uncertainties and
covariances is an additional exertion in this respect. The process of reducing the several independent uncorrelated
counting spectra to a single reaction yield or ratio as a function of time of flight (or neutron energy) introduces off-
diagonal covariance elements. While the full covariance matrix of a yield consisting of several thousands of data points
becomes too large to report directly in EXFOR, it is sometimes more convenient to use a vectorized covariance matrix
reflecting the full data reduction process [124]. For smaller datasets on the contrary it is very instructive to access
the full covariance matrix of a measured spectrum as for example nicely illustrated in refs. [125, 126]. Nevertheless,
when the correlations introduced by the data reduction are small compared to certain common uncertainties, for
example related to sample mass or normalization, it may be sufficient to report these uncertainties separately as
“systematic” uncertainties. In any case, in order to make the data in EXFOR useful for evaluations, the description
of the experimental details should be as complete as possible [127]. Data submission of n TOF measurements to
EXFOR, which is crucial for its consideration in evaluations, is an ongoing process. A comprehensive list of n TOF
data dissemination is maintained on [128].

Conclusion

The key features for accurate neutron measurements at the n TOF facility with its two beam lines and experimental
areas EAR1 and EAR2 are a large energy range, high neutron-energy resolution, and a high instantaneous neutron
flux. EAR2 with its about 25 times higher flux than EAR1, combined with an additional reduction by a factor 10 of
the background due to the sample’s radioactivity, significantly enhances the possible measurements on unstable targets
at n TOF. The preparation and characterization of such targets suitable for neutron cross-section measurements is an
increasingly complicated task, feasible only in highly specialized laboratories.

The measurements at CERN’s neutron time-of-flight facility n TOF with its unique features contribute substan-
tially to our knowledge of neutron-induced reactions. This goes together with cutting-edge developments in detector
technology and analysis techniques, design of challenging experiments, and training of a new generation of physicists
working in neutron physics. This work has been actively supported since the beginning of n TOF by the European
Framework Programmes. One of the future developments currently being studied is a possible upgrade of the spallation
target in order to optimize the characteristics of the neutron beam in EAR2. The n TOF collaboration, consisting
of about 150 researchers from 40 institutes, continues its scientific programme in both EAR1 and EAR2, in this way
continuing its 15 years history of measuring high-quality neutron-induced reaction data.
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91. P. Žugec et al., Eur. Phys. J. A 52, 101 (2016).
92. C. Massimi et al., Nucl. Data Sheets 119, 110 (2014).
93. C. Massimi et al., submitted to Phys. Lett. B (2016).
94. M. Sabat-Gilarte et al., Rep. Pract. Oncol. Radiother. 21, 113 (2016).
95. G. Giubrone et al., Nucl. Data Sheets 119, 117 (2014).
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