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Abstract

We investigate the applicability of laser assisted tunneling in a strongly interacting one-dimensional
(1D) Bose gas (the Tonks—Girardeau gas) in optical lattices. We find that the stroboscopic dynamics of
the Tonks—Girardeau gas in a continuous Wannier—Stark-ladder potential, supplemented with laser
assisted tunneling, effectively realizes the ground state of 1D hard-core bosons in a discrete lattice with
nontrivial hopping phases. We compare observables that are affected by the interactions, such as the
momentum distribution, natural orbitals and their occupancies, in the time-dependent continuous
system, to those of the ground state of the discrete system. Stroboscopically, we find an excellent
agreement, indicating that laser assisted tunneling is a viable technique for realizing novel ground
states and phases with hard-core 1D Bose gases.

1. Introduction

The fractional quantum Hall (FQH) state emerges in a system of strongly interacting charged particles in a strong
magnetic field and confined in two-dimensions [1, 2]. The richness of this system motivates the quest for novel
topological states of matter in other systems [3]. Ultracold atomic gases are an ideal playground for a controlled
preparation, manipulation, and detection of quantum many-body states [4]. However, to achieve topological
states such as the FQH state in ultracold atomic gases, one must create a synthetic (artificial) magnetic field,
wherein atoms behave as charged particles in magnetic fields [5-7].

A variety of methods for the creation of synthetic magnetic fields have been implemented over the years [8—
14], including the Coriolis force method in rapidly rotating BECs [8, 9], and methods based on the Berry phase,
which plays the role of the Aharon—Bohm phase (see [10] for bulk BECs). In optical lattices, one engineers the
amplitude and the phase of the tunneling matrix elements (hopping parameters) [11-14], for example, by
shaking the lattice [12] or using laser assisted tunneling [11, 13—16]. This has led to the experimental realization
of paradigmatic condensed-matter Hamiltonians such as the Harper—Hofstadter Hamiltonian [13, 14] and the
Haldane Hamiltonian [17]. However, most of the efforts regarding synthetic magnetic fields were focused on
single particle effects.

Recently, strong interactions were used in the physics of gauge fields, in the first observation of BEC (i.e. the
ground state) in the Harper—Hofstadter Hamiltonian [18]. As synthetic magnetic fields in optical lattices are
essentially obtained by periodic driving [11-13], an important question in this context is to understand the
behavior of periodically driven interacting quantum systems [19—23]. From the eigenstate thermalization
hypothesis it follows that driven interacting systems will, after sufficiently long time, heat up to an infinite
temperature [24]. However, in some regimes, the system can approach a prethermalized Floquet steady state
before heating up [21, 22], implying that the method can be used (in some regimes) with interactions present.
Next, laser assisted tunneling was suggested as a scheme to engineer and promote three-body interactions in
atomic gases [25]. An interplay of on-site Hubbard interactions and laser assisted tunneling was recently
suggested for realizing versatile Hamiltonians in optical lattices [26]. Following the realization of the Harper—
Hofstadter Hamiltonian with bosonic atoms [13, 14], two-dimensional strongly correlated lattice bosons in a
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strong magnetic field were recently studied [27]. In one-dimensional (1D) fermionic systems, the classification
of topological phases was shown to depend on the presence/absence of interactions [28].

In the quest for strongly correlated topological states, the applicability of methods for synthetic magnetic
fields should be scrutinized in the presence of interactions. Here we examine the applicability of laser assisted
tunneling [11, 13, 14] for a strongly interacting 1D Bose gas (the Tonks—Girardeau gas [29]) in an optical lattice.
The Tonks—Girardeau model is exactly solvable via the Fermi—Bose mapping, i.e., by mapping a wave function
for noninteracting spinless 1D fermions to that of impenetrable core 1D bosons [29]. The experimental
realization of the Tonks—Girardeau gas in atomic waveguides, proposed by Olshanii [30], has been acomplished
more than a decade ago [31-33]. Impenetrable core interactions for bosons mimic the Pauli exclusion principle
in x-space, thus, the single particle density is identical for the Tonks—Girardeau gas and noninteracting spinless
fermions [29]. However, the two systems considerably differ in momentum space [34]. The laser assisted
tunneling should work well for noninteracting spinless fermions (on the Fermi side of the Fermi—Bose mapping
[29]), but it is not immediately clear how will the interplay of this method and impenetrable core interactions
affect the momentum distribution, and the other observables depending on phase coherence.

Here we demonstrate, by numerical calculations, that the stroboscopic dynamics of a Tonks—Girardeau gas
in a continuous Wannier—Stark-ladder potential, supplemented with periodic driving, which simulates laser
assisted tunneling, effectively realizes the ground state of hard-core bosons (HCB) on the discrete lattice with
nontrivial hopping phases (i.e. complex hopping parameters). We calculate the momentum distribution,
natural orbitals and their occupancies for the ground state of HCB on such a discrete lattice, and find excellent
agreement between these results, and observables calculated for a series of stroboscopic moments of the Tonks—
Girardeau gas in continuous periodically driven Wannier—Stark-ladders.

Before presenting our results, we further discuss the motivation for studying interacting 1D Bose gases in
synthetic gauge fields. Quite generally, in addition to being exactly solvable (in some situations) and
experimentally accessible, interacting 1D Bose gases present a many-body system with enhanced quantum
effects due to the reduced dimensionality. More specifically, in discrete lattices with phase dependent hopping
amplitudes, one may explore strongly correlated ground states and excitations with potentially intriguing many-
body properties. It should be mentioned that 1D spin-polarized fermions, 1D HCB, and 1D hard-core anyons,
are related through the Bose—Fermi and anyon-fermion mapping [35]. Free expansion of 1D hard core anyons
has been studied in [36]. In [37], the multi-particle tunneling decay (in 1D) was studied in dependence on
interactions and statistics, by addressing it for these three types of 1D particles. Furthermore, laser-assisted
tunneling addressed here, plays the key role in a recent proposal for the experimental realization of anyons in 1D
optical lattices [38].

2. The Tonks—Girardeau model

We consider a gas of Nidentical bosons in 1D, which interact via pointlike interactions, described by the
Hamiltonian

N Yk
H:Z[———2 + V(x;, t)] +gp D, O(xi—xp. 1)
oL 2m Ox; 1<i<j<N

Such a system can be realized with ultracold bosonic atoms trapped in effectively 1D atomic waveguides [31-33],
where V(x) is the axial trapping potential, and g, = 2/%asp [ma? (1 — Casp/~/2a,)] 'is the effective 1D
coupling strength; asp stands for the three-dimensional s-wave scattering length, a; = //z/mw) is the
transverse width of the trap, and C= 1.4603 [30]. By varying w, , the system can be tuned from the mean field
regime up to the strongly interacting Tonks—Girardeau regime [29] with infinitely repulsive contact interaction
&p — oo. For the Tonks—Girardeau regime, the interaction term of the Hamiltonian (1) can be replaced by a
boundary condition on the many-body wave function [29]:

\I’B(Xl, X25 .- »XN> t) =0if X = x]' (2)

foranyi = j. With this boundary condition, the Hamiltonian becomes

N 2 92
A= Z[_ﬁ_a_z +V( t)]. 3)

i1 2m Ox i
The boundary condition (2) and the Schrédinger equation for (3) are satisfied by an antisymmetric many-body
wave function W describing a system of noninteracting spinless fermions in 1D [29]. Because the system is 1D,
an exact (static and time-dependent) solution of the Tonks—Girardeau model can be written via the famous
Fermi—Bose mapping [29]:
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\IJB(xl) X5 -3 XN> t) = H Sgn(xi - xj)\IjF(xl) X5 -3 XN> t)' (4)
1<i<j<N
The fermionic wave function Wg can be written in the form of a Slater determinant (or generally asa
superposition of such determinants)

1 N
\DF(.Xl,...,XN, t) al—— det [’(/)m(xj) t)]) (5)
N! mj=1

where v, (x, t) denotes N orthonormal single particle wave functions obeying a set of uncoupled single-particle
Schrodinger equations:

2 2
i % - [_5_5_ +V(x, t)]w(x, 0, m=1,..,N. ©

2m Ox?
Equations (4)—(6) prescribe the construction of the many-body wave function describing the Tonks—Girardeau
gas in an external potential V (x, t). The mappingis applicable both in the stationary [29] and the time-
dependent case [39].
The expectation values of the one-body observables are obtained from the reduced single particle density
matrix (RSPDM), defined as

PB(X, Y t) = Nfde de ‘Ilz(x) X25 .+ s XN> t)‘IIB(yJ X5+« > XN t) (7)

Observables of interest here are the single particle x-density p, (x, x, t) = 25:1 [t (x, £)[?, and the
momentum distribution [34]:

ng(k, t) = 1 fdxdy ek po(x, y, 1) (8)
2T

A concept that is very useful for the understanding of the bosonic many-body systems is that of natural orbitals.
The natural orbitals ®; (x, t) are eigenfunctions of the RSPDM

Jax oy D@ D = X O B D, =120, ©)

where ); are the corresponding eigenvalues; the RSPDM is diagonal in the basis of natural orbitals

P 75 1) = 2 NP6 DBi(y, 1), (10)
i=1

The natural orbitals can be interpreted as effective single-particle states occupied by the bosons, where \;
represents the occupancy of the corresponding orbital [40]. The fermionic RSPDM pg (x, y, t) and the
momentum distribution ng(k ) are defined by equations (7) and (8) with Wy — Wg. The single particle density
pg (%, x, t)isidentical for the Tonks—Girardeau gas and the noninteracting Fermi gas [29]. However, the
momentum distributions of the two systems on the two sides of the mapping considerably differ [34]. The
momentum distribution and py (x, y, t) for the continuous Tonks—Girardeau model (equations (2) and (3)) can
be efficiently calculated by using the procedure outlined in [41].

3. Laser assisted tunneling in a Tonks—Girardeau gas

Our strategy is as follows: we study the ground state of hard core bosons (HCB) on a discrete lattice, with
nontrivial phases of the hopping parameters (i.e. with complex hopping parameters). Then, we examine in detail
the quantum dynamics of the Tonks—Girardeau gas in a continuous Wannier—Stark-ladder potential with
periodic driving, which corresponds to laser assisted tunneling [11, 13, 14]. Parameters of the periodic drive are
tuned to correspond to the phases of the hopping parameters in the discrete system. More specifically, we
observe the (stroboscopic) quantum dynamics of the single particle density in x- and in k-space, and compare it
with the ground state properties of HCB on the discrete lattice.

In our simulations of the Tonks—Girardeau gas with periodic driving, the gas is initially (at t = 0)in the
ground state of the optical lattice potential Vy (x), which has M = 40 lattice sites, and infinite wall boundary
conditions:

2 e
Vi) = {VL cos?(mx/D), if —20D < x < 20D, )

00, otherwise.

Here Vi, = 10Ey is the amplitude of the optical lattice, Ex = h?/(2m)?) is the recoil energy, A = 1.064 ym, and
D = )\/2isthe period of the optical lattice. The lattice is loaded with ®Rb atoms, m = 1.455 x 10~2% kg. For
such a deep lattice, the Tonks—Girardeau gas (described with Hamiltonian (3) together with condition (2)) can
be approximated by the model of HCB on a discrete lattice [43, 44]:

3
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Figure 1. Discrete lattices and their energy bands. (a) The discrete lattice corresponding to the Hamiltonian (12) (hard core bosons are
sketched as filled blue circles). (b) The discrete lattice with complex hopping parameters, which corresponds to the Hamiltonian (14).
(c) Energy bands E , (k) of the discrete lattice illustrated in (b), with the phase of the hopping parameter ¢,, = m. The edges of the
first Brillouin zone are at k = +7/2D (denoted with black vertical doted lines). The energy bands are shown also outside of the first
Brillouin zone for better visualization.

M + A PN
A= by bu+hel, by =bo=0, {byb}=1 (12)

m=1
. . e . AT ~ . .
Here, the bosonic creation and annihilation operators at site 1 are denoted by b,, and b, respectively, and J is the

hopping parameter. The hard core constraint Z;Tz = l;z = 0 precludes multiple occupancy of one lattice site,
and the brackets in equation (12) apply only to on-site anticommutation relations, for m = n these operators
commute as usual for bosons [bm, b ] = 0. We calculate the effective hopping parameter | = 0.019Eg from the
Wannier states of the optical lattice by using the MLGWS code [45]. The discrete lattice of the Hamiltonian (12)
is sketched in figure 1(a).

In order to obtain the HCB discrete lattice model with tunable hopping amplitudes and phases, one can
employ the laser assisted tunneling method. The scheme[11, 13, 14] utilizes far off-resonant lasers and a single
atomic internal state, which minimizes heating by spontaneous emission. An early theoretical proposal related
to this scheme was based on coupling of different internal states [15]. The theoretical proposal in [16] was later
modified to obtain a homogeneous synthetic magnetic field [13, 14]. In order to simulate the scheme
numerically, at = 0 we introduce the tilt potential Vi (x) = ax/D, and simultaneously the time- and space-
periodic potential Vi (x, t) = Vi cos? [(gx — wt)/2]. The periodic potential with the tilt, V (x) + V1 (x), is the
continuous Wannier—Stark-ladder potential; for a sufficiently large tilt, tunneling between neighboring lattice
sites is suppressed [ 13, 14]. The periodic drive potential Vi (x, t) simulates two-photon Raman transitions used
to restore the tunneling [ 13, 14], and introduce nontrivial phases in the hopping parameters. Thus, for t > 0, the
Tonks—Girardeau gas evolves in the time-periodic potential

Vix t) = V(x) + Vr(x) + (x, 1), if — 20D < x < 20D,
> ) oo, otherwise.

(13)

The strength of the tilt and the drive are set by o = 0.1} and Vg = 0.17V}, respectively. The frequency of
driving is in resonance with the energy offset between neighboring sites of the tilted potential, thatis, w = a// /7.

For a deep optical lattice, our continuous model with potential (13) can be approximated by a discrete
Hamiltonian with the kinetic (hopping) term, tilt, drive, and on-site interactions. Such a discrete Hamiltonian is
astarting pointin [46, 47], for deriving a discrete model with complex hopping amplitudes and interactions.
More specifically, in the case of resonant driving (w = «// ), a unitary transformation can cast this discrete
Hamiltonian into a rotating frame, such that the kinetic term, together with the tilt and drive terms, become an
effective kinetic term with complex hopping amplitudes [46, 47]. The on-site interaction term is not affected by
this unitary transformation [46, 47]. The derivation is applicable for any strength of the interaction U/J [46, 471,
where U stands for the on-site interaction energy. Even though the derivation in [46, 47] is for 2D lattices, it is
applicable for 1D lattices as well; it is also valid in the strongly interacting limit U /] — oo studied here. In other
words, the Tonks—Girardeau gas in the continuous potential (13) can be approximated with the Hamiltonian of
HCB on a discrete lattice with nontrivial hopping phases:

M .
A=K (e, by+hcl, by =bo=0, {bwby}=1, (14)
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Figure 2. Ground state momentum distribution N(k ) (blue circles) of hard core bosons and noninteracting spinless fermions N(k )
(red diamonds) in the discrete lattice with the hopping phase ¢,, = m (see figures 1(b) and (c)). Illustrated are cases for the number
of particles N = 10, 15, 20, 21, 30, and 40. For N = 20 the firstband E; (k) is filled, and the second band E, (k) is empty. For

N = 40 the bands are filled, and the system is in the Mott state of one atom per lattice site with Ny (k) = N (k). The bosonic
distribution Np(k ) is for all values of N peaked at k = +7/2D; these values are at the edges of the first Brillouin zone, that is, at the
minima of the first energy band E (k). In contrast, the fermionic distribution has a characteristic Fermi plateau, which becomes
inverted when the second band starts to be filled for N > M /2 = 20. See text for details.

where the hopping phase is given with ¢,, = qDm and Kis the effective hopping amplitude. By choosing a
different gauge, the phases in equation (14) can be eliminated. Nevertheless, a comparison of the continuous
Tonks—Girardeau system in the time-dependent potential (13), with the discrete model (14), provides valuable
information on the applicability of laser assisted tunneling in the presence of strong interactions. Moreover,
these results have implications for interacting systems where nontrivial phases cannot be eliminated by a gauge
transformation, and in systems with gauge dependent observables. We consider a discrete lattice with M = 40
sites, corresponding to M = 40 lattice sites of the optical lattice potential (11). The discrete lattice of the
Hamiltonian (14) is sketched in figure 1(b).

In what follows, we make a particular choice of the phases of the hopping parameters. In experiments, this is
set by choosing the angle between the Raman beams [13, 14], and here we set it by choosing g = 7/D in the
time-dependent potential V; (x, t); thus the hopping phaseis ¢,, = m. For this choice of the hopping phase,
the discrete lattice has alternating hopping matrix elements, K (—1)", for tunneling from site m to site m + 1.
We estimate the effective hopping amplitude to be K = 0.012Ey. This is obtained by comparing the expansion
of the initially localized single particle Gaussian wave packet in the total potential (13), with the expansion in the
discrete lattice (14), and adjusting K until the two patterns coincide; this method was adopted from [48].

In order to obtain the ground state properties of the HCB Hamiltonian (14), we use the Jordan—Wigner
transformation [42—44]

At At m—1 L ata A m=l 4,
by=f, [T ™, b= [] elif,, (15)
p=1 B=1
which maps the HCB Hamiltonian (14), to the Hamiltonian for discrete noninteracting spinless fermions:
~ M oAt oA
H= _Z [Kew,nfm+1fm + h.c.], (16)
m=1

where f; and fm are the creation and annihilation operators for spinless fermions. We calculate the ground state
momentum distribution Ng(k ) of the HCB Hamiltonian (14), and the ground state momentum distribution
Ng(k ) of the noninteracting spinless fermions Hamiltonian (16), by using the procedure outlined by Rigol and
Muramatsu [43, 44].

In figures 2(a)—(f) we show Np(k ) and Ng(k ) in dependence on the number of particles N. The figure can be
understood by considering the single-particle energy bands of the discrete lattice with ¢,, = m, illustrated in
figure 1(c). There are two bands, E; (k) = —2K| sin(kD)|and E, (k) = 2K|sin(kD)|, which touch ata 1D Dirac
pointat k = 0. The ground state of N HCB is constructed by using the first N single particle states [43, 44], which
on the Fermi side of the mapping fill the states up to the Fermilevel. Note that for N = 20, the band E, (k) is filled
and E, (k) empty, while for N = 40 they are both full. For N < M /2 = 20, the single particle states partially fill
the first band E; (k) which has minima at the edges of the first Brillouine zone at +7/2D; thus both Ny(k ) and
Ng(k) are centered at these values. The fermionic distribution has the characteristic plateau(s) with Fermi edges,
whereas the bosonic distribution has a spike at the maxima; the spike is a consequence of the fact that bosons
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Figure 3. Time dependence of the momentum distribution #g (k, t) for Tonks—Girardeau bosons in the continuous Wannier—Stark-
ladder potential with periodic driving, and g (k, t) for free fermions, for N = 10 particles. (a) ng (k, t) at stroboscopic instants
t = {3T/4, 7T /4, 11T /4} (thelines overlap). Results are in agreement with the momentum distribution Ng(k ) for the discrete HCB
model (blue circles in figure 2(a)). (b) ng (k, t) at stroboscopicinstants t = {3T /4, 7T /4, 11T /4} (the lines overlap). (c) and (d)
ng (k, t) and ng (k, t) at non-stroboscopic instants t = {0, 0.18T, 0.83T, T}. See text for details.

tend to occupy the same single particle state of lowest energy. For filling M /2 < N < M = 40, the bosonic
momentum distribution retains its peak at the edges of the Brillouin zone 4+ /2D, whereas the fermionic
plateau is inverted because the Fermi level is now at the 2nd band E, (k). In figure 2(f) we show the results for
filledbands N = M = 40, i.e. both bosons and fermions are in the Mott insulating state with one particle per
lattice site and the two momentum distributions overlap, Ny (k) = Ng (k).

Next, we explore the quantum dynamics of the Tonks—Girardeau gas in the continuous Wannier—Stark-
ladder potential Vi (x) + Vi (x) with periodic driving Vi (x, t) (simulating laser assisted tunneling). The initial
state is the ground state of the optical lattice potential V1 (x) (11). Note that we use capital letters (Ng(k)) to
describe momentum distributions of the discrete model, and lower case (ng(k )) for the momentum distribution
of the continuous model. We find that the time dependent momentum distribution ng (k, t) for Tonks—
Girardeau bosons, and ng (k, t) for free fermions, are stroboscopically [46] in excellent agreement with the
momentum distributions Ny(k ) and Ng(k ) of the discrete lattice models (Hamiltonians (14) and (16)). More
specifically,attimes t = (4n — 1)T/4,n = {1, 2, 3...}, where T = 27w /w = 0.497 ms s the period of the
periodic driving, the continuous and discrete model momentum distributions coincide. The Ng(k ) of the discrete
model has its domain in the first Brillouin zone k € [—7 /2D, 7/2D], whereas for ny (k, t) of the continuous
model k € (—o0, 00). Apart from the main peaks in the 1st Brillouin zone, the continuous momentum
distributions ng (k, t) have additional (expected) peaks at positions shifted by an integer number of reciprocal
lattice vectors.

In figures 3(a) and (b) we show g (k, t) and np (k, t) for N = 10 particles at the first three stroboscopic
timest = {3T/4, 7T /4, 11T /4}; thelines overlap indicating that a Floquet steady state is reached. We see
excellent agreement of the continuous momentum distributions #g (k, t) and ng (k, t), presented in figures 3(a)
and (b), with the momentum distributions Ny(k ) and Ng(k ) of the discrete model for N = 10 particles,
figure 2(a).

In figures 3(c) and (d) we show the momentum distributions g (k, ¢) and ng (k, t) for non-stroboscopic
moments for N = 10 particles. Att = 0, the Tonks—Girardeau gas is in the ground state of the optical lattice
(11), which can be approximated with the discrete model (12) sketched in figure 1(a). The discrete model (12)
has one energyband E (k) = —2J cos(kD). In figure 3(c) we show the momentum distributions ng (k, t) of the
initial state at t = 0 (black doted line) and att = T (green doted line); we see that the maxima of ny (k, t) areat
k = 0, +47 /2D, which is consistent with the minima of the band E(k ). The same reasoning holds for ng (k, t) at
times t = {0, T} in figure 3(d). For completeness, in figure 3(c), we also show ny (k, t) for non-stroboscopic
times t = {0.187T, 0.83T} (black and red solid lines respectively); at these times momentum distributions
ng (k, t) have one dominant maximum and several smaller peaks at various k.

In figures 4(a)—(d), we show the momentum distributions ng (k, ¢) and ng (k, t) at the 10th stroboscopic
appearance t = 39T /4 ~ 5 ms for different numbers of particles, N = {20, 21, 30, 40}. We find excellent
agreement with the momentum distributions N(k ) and Ng(k ) (shown in figures 2(c)—(e)) of the discrete
Hamiltonians (14) and (16), respectively. For N = 40, the momentum distributions #g (k, t) and ng (k, t) do
not have sharp peaks, and they slowly decay as k — oo; this shape differs from the uniform Ng(k ) and Ng(k )

6
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Figure 4. Momentum distributions ng (k, t) (blue solid line) for Tonks—Girardeau bosons in the continuous Wannier—Stark-ladder
potential with periodic driving, and g (k, t) (red solid line) for free fermions, in dependence of the number of particles N, at the 10th
stroboscopic instant t = 39T /4 ~ 5 ms. The results are in agreement with momentum distributions Ng(k ) and Ng(k ) of the discrete
models presented in figures 2(c)—(f). See text for details.
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Figure 5. Natural orbitals and their occupancies. (a) The occupancies of natural orbitals of Tonks—Girardeau bosons in the continuous
Wannier—Stark-ladder potential with periodic driving at the 10th stoboscopic appearence t = 39T /4 =~ 5 ms, for
N = {10, 20, 30, 40} particles. (b) The occupancies of natural orbitals for the ground state of the hard core bosons (HCB) on a
discrete lattice with the hopping phase ¢,, = m. (c) Spatial dependence of the real part of the first natural orbital for the Tonks—

Girardeau gas (continuous model). (d) The first natural orbital of HCB bosons (discrete model). Both orbitals in (c) and (d) have the
signature of the phase of the hopping parameter. See text for details.

corresponding to the Mott state shown in figure 2(f), which is expected for the lattice of finite depth. However,
the bosonic and fermionic distributions coincide both in the continuous and the discrete model.

Besides momentum distributions, it is instructive to study the dynamics of natural orbitals &' (x) defined
in equation (9), and their occupancies A1 In figure 5(a), we show A1 for the continuous model at t = 39T /4,
for N = {10, 20, 30, 40} particles respectively; as expected, bosons partially condense in the first natural
orbital ®T¢ (x), and this is reflected in the fact that the peak in their momentum distribution is located at the
minima of the bands irrespective of the filling, which is not the case for fermions (see figure 1). For N = 40,
bosons are in the Mott state with \'¢ 1 for every . In figure 5(b), we show occupancies \}I® of the natural
orbitals &P (x) within the discrete model (calculated with the procedure outlined in [43, 44]). We find the
same behavior as for the occupancies A} shown in figure 5(a).

In figure 5(c), we show the real part of the first natural orbital &/ (x, t) for N = 10at t = 39T /4; we see the
signature of the effective hopping phase ¢,, = m, i.e. the real part of the first orbital changes the sign every two
sites (the imaginary part follows the same behavior), and higher natural orbitals follow this behavior. For
comparison, in figure 5(d) we show the first natural orbital ®HCB (x) of the ground state for N = 10 HCB on the
discrete lattice. We see excellent agreement between the two models.
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4. Conclusion and outlook

In conclusion, we investigated the applicability of the laser assisted tunneling in a strongly interacting Tonks—
Girardeau gas. We found that the stroboscopic dynamics of the Tonks—Girardeau gas with laser assisted
tunneling effectively realizes the ground state of 1D HCB on a discrete lattice with nontrivial hopping phases.
Our strategy was to compare the quantum dynamics of the Tonks—Girardeau gas in a continuous Wannier—
Stark-ladder potential with periodic driving, which simulated laser assisted tunneling, with the ground state of
the discrete model. More specifically, we have compared the momentum distribution, natural orbitals and their
occupancies at stroboscopic moments corresponding to the period of the driving potential, and found excellent
agreement.

In the outlook, we would like to point out that by comparing continuous and discrete systems (see also [48]),
as we have done here, one opens the way for the study of shallow optical lattices with periodic driving, where the
tight-binding approximation is not applicable. These continuous systems could potentially be described as
discrete models with the phase dependent next to nearest neighbors hopping amplitudes (multi-band models).
Itis reasonable to expect that such models, with interactions present, possess many intriguing quantum states
yet to be explored. Next, we would like to point out that a similar study could be in principle performed for
interactions of finite strength, where one could explore modulations of the interaction strength [49, 50] leading
to systems with density dependent hopping parameters.
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