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Abstract
We investigate the applicability of laser assisted tunneling in a strongly interacting one-dimensional
(1D)Bose gas (the Tonks–Girardeau gas) in optical lattices.We find that the stroboscopic dynamics of
the Tonks–Girardeau gas in a continuousWannier–Stark-ladder potential, supplementedwith laser
assisted tunneling, effectively realizes the ground state of 1Dhard-core bosons in a discrete lattice with
nontrivial hopping phases.We compare observables that are affected by the interactions, such as the
momentumdistribution, natural orbitals and their occupancies, in the time-dependent continuous
system, to those of the ground state of the discrete system. Stroboscopically, we find an excellent
agreement, indicating that laser assisted tunneling is a viable technique for realizing novel ground
states and phases with hard-core 1DBose gases.

1. Introduction

The fractional quantumHall (FQH) state emerges in a systemof strongly interacting charged particles in a strong
magnetic field and confined in two-dimensions [1, 2]. The richness of this systemmotivates the quest for novel
topological states ofmatter in other systems [3]. Ultracold atomic gases are an ideal playground for a controlled
preparation,manipulation, and detection of quantummany-body states [4]. However, to achieve topological
states such as the FQH state in ultracold atomic gases, onemust create a synthetic (artificial)magnetic field,
wherein atoms behave as charged particles inmagnetic fields [5–7].

A variety ofmethods for the creation of syntheticmagnetic fields have been implemented over the years [8–
14], including theCoriolis forcemethod in rapidly rotating BECs [8, 9], andmethods based on the Berry phase,
which plays the role of the Aharon–Bohmphase (see [10] for bulk BECs). In optical lattices, one engineers the
amplitude and the phase of the tunnelingmatrix elements (hopping parameters) [11–14], for example, by
shaking the lattice [12] or using laser assisted tunneling [11, 13–16]. This has led to the experimental realization
of paradigmatic condensed-matter Hamiltonians such as theHarper–HofstadterHamiltonian [13, 14] and the
HaldaneHamiltonian [17]. However,most of the efforts regarding syntheticmagnetic fields were focused on
single particle effects.

Recently, strong interactions were used in the physics of gauge fields, in thefirst observation of BEC (i.e. the
ground state) in theHarper–HofstadterHamiltonian [18]. As syntheticmagneticfields in optical lattices are
essentially obtained by periodic driving [11–13], an important question in this context is to understand the
behavior of periodically driven interacting quantum systems [19–23]. From the eigenstate thermalization
hypothesis it follows that driven interacting systemswill, after sufficiently long time, heat up to an infinite
temperature [24]. However, in some regimes, the system can approach a prethermalized Floquet steady state
before heating up [21, 22], implying that themethod can be used (in some regimes)with interactions present.
Next, laser assisted tunnelingwas suggested as a scheme to engineer and promote three-body interactions in
atomic gases [25]. An interplay of on-siteHubbard interactions and laser assisted tunnelingwas recently
suggested for realizing versatile Hamiltonians in optical lattices [26]. Following the realization of theHarper–
HofstadterHamiltonianwith bosonic atoms [13, 14], two-dimensional strongly correlated lattice bosons in a
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strongmagnetic fieldwere recently studied [27]. In one-dimensional (1D) fermionic systems, the classification
of topological phases was shown to depend on the presence/absence of interactions [28].

In the quest for strongly correlated topological states, the applicability ofmethods for syntheticmagnetic
fields should be scrutinized in the presence of interactions. Herewe examine the applicability of laser assisted
tunneling [11, 13, 14] for a strongly interacting 1DBose gas (the Tonks–Girardeau gas [29]) in an optical lattice.
The Tonks–Girardeaumodel is exactly solvable via the Fermi–Bosemapping, i.e., bymapping awave function
for noninteracting spinless 1D fermions to that of impenetrable core 1Dbosons [29]. The experimental
realization of the Tonks–Girardeau gas in atomicwaveguides, proposed byOlshanii [30], has been acomplished
more than a decade ago [31–33]. Impenetrable core interactions for bosonsmimic the Pauli exclusion principle
in x-space, thus, the single particle density is identical for the Tonks–Girardeau gas and noninteracting spinless
fermions [29]. However, the two systems considerably differ inmomentum space [34]. The laser assisted
tunneling shouldworkwell for noninteracting spinless fermions (on the Fermi side of the Fermi–Bosemapping
[29]), but it is not immediately clear howwill the interplay of thismethod and impenetrable core interactions
affect themomentumdistribution, and the other observables depending on phase coherence.

Here we demonstrate, by numerical calculations, that the stroboscopic dynamics of a Tonks–Girardeau gas
in a continuousWannier–Stark-ladder potential, supplementedwith periodic driving, which simulates laser
assisted tunneling, effectively realizes the ground state of hard-core bosons (HCB) on the discrete lattice with
nontrivial hopping phases (i.e. complex hopping parameters).We calculate themomentumdistribution,
natural orbitals and their occupancies for the ground state ofHCBon such a discrete lattice, and find excellent
agreement between these results, and observables calculated for a series of stroboscopicmoments of the Tonks–
Girardeau gas in continuous periodically drivenWannier–Stark-ladders.

Before presenting our results, we further discuss themotivation for studying interacting 1DBose gases in
synthetic gaugefields. Quite generally, in addition to being exactly solvable (in some situations) and
experimentally accessible, interacting 1DBose gases present amany-body systemwith enhanced quantum
effects due to the reduced dimensionality.More specifically, in discrete lattices with phase dependent hopping
amplitudes, onemay explore strongly correlated ground states and excitations with potentially intriguingmany-
body properties. It should bementioned that 1D spin-polarized fermions, 1DHCB, and 1Dhard-core anyons,
are related through the Bose–Fermi and anyon-fermionmapping [35]. Free expansion of 1Dhard core anyons
has been studied in [36]. In [37], themulti-particle tunneling decay (in 1D)was studied in dependence on
interactions and statistics, by addressing it for these three types of 1Dparticles. Furthermore, laser-assisted
tunneling addressed here, plays the key role in a recent proposal for the experimental realization of anyons in 1D
optical lattices [38].

2. The Tonks–Girardeaumodel

Weconsider a gas ofN identical bosons in 1D,which interact via pointlike interactions, described by the
Hamiltonian
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Such a system can be realizedwith ultracold bosonic atoms trapped in effectively 1D atomicwaveguides [31–33],
whereV(x) is the axial trapping potential, and [ ( )]= -^ ^

-g a ma Ca a2 1 21D
2

3D
2

3D
1 is the effective 1D

coupling strength; a3D stands for the three-dimensional s-wave scattering length,  w=^ ^a m is the
transverse width of the trap, andC= 1.4603 [30]. By varying ŵ , the system can be tuned from themeanfield
regime up to the strongly interacting Tonks–Girardeau regime [29]with infinitely repulsive contact interaction

 ¥g1D . For the Tonks–Girardeau regime, the interaction termof theHamiltonian (1) can be replaced by a
boundary condition on themany-bodywave function [29]:

( ) ( )Y ¼ = =x x x t x x, , , , 0 if 2N i jB 1 2

for any ¹i j.With this boundary condition, theHamiltonian becomes
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The boundary condition (2) and the Schrödinger equation for (3) are satisfied by an antisymmetricmany-body
wave function YF describing a systemof noninteracting spinless fermions in 1D [29]. Because the system is 1D,
an exact (static and time-dependent) solution of the Tonks–Girardeaumodel can bewritten via the famous
Fermi–Bosemapping [29]:
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The fermionicwave function YF can bewritten in the formof a Slater determinant (or generally as a
superposition of such determinants)
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where ( )y x t,m denotesN orthonormal single particle wave functions obeying a set of uncoupled single-particle
Schrödinger equations:
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Equations (4)–(6) prescribe the construction of themany-bodywave function describing the Tonks–Girardeau
gas in an external potential ( )V x t, . Themapping is applicable both in the stationary [29] and the time-
dependent case [39].

The expectation values of the one-body observables are obtained from the reduced single particle density
matrix (RSPDM), defined as

( ) ( ) ( ) ( )*òr = ¼ Y ¼ Y ¼x y t N x x x x x t y x x t, , d d , , , , , , , , . 7N N NB 2 B 2 B 2

Observables of interest here are the single particle x-density ( ) ∣ ( )∣r y= å =x x t x t, , ,m
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mB 1
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momentumdistribution [34]:
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A concept that is very useful for the understanding of the bosonicmany-body systems is that of natural orbitals.
The natural orbitals ( )F x t,i are eigenfunctions of the RSPDM

( ) ( ) ( ) ( ) ( )ò r lF = F = ¼x x y t x t t y t id , , , , , 1, 2, , 9i i iB

where li are the corresponding eigenvalues; the RSPDM is diagonal in the basis of natural orbitals
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The natural orbitals can be interpreted as effective single-particle states occupied by the bosons, where li

represents the occupancy of the corresponding orbital [40]. The fermionic RSPDM ( )r x y t, ,F and the
momentumdistribution nF(k ) are defined by equations (7) and (8)with Y  YB F. The single particle density

( )r x x t, ,B is identical for the Tonks–Girardeau gas and the noninteracting Fermi gas [29]. However, the
momentumdistributions of the two systems on the two sides of themapping considerably differ [34]. The
momentumdistribution and ( )r x y t, ,B for the continuous Tonks–Girardeaumodel (equations (2) and (3)) can
be efficiently calculated by using the procedure outlined in [41].

3. Laser assisted tunneling in a Tonks–Girardeau gas

Our strategy is as follows: we study the ground state of hard core bosons (HCB) on a discrete lattice, with
nontrivial phases of the hopping parameters (i.e. with complex hopping parameters). Then, we examine in detail
the quantumdynamics of the Tonks–Girardeau gas in a continuousWannier–Stark-ladder potential with
periodic driving, which corresponds to laser assisted tunneling [11, 13, 14]. Parameters of the periodic drive are
tuned to correspond to the phases of the hopping parameters in the discrete system.More specifically, we
observe the (stroboscopic) quantumdynamics of the single particle density in x- and in k-space, and compare it
with the ground state properties ofHCBon the discrete lattice.

In our simulations of the Tonks–Girardeau gaswith periodic driving, the gas is initially (at t = 0) in the
ground state of the optical lattice potentialVL(x), which hasM=40 lattice sites, and infinite wall boundary
conditions:

( ) ( ) ( ) p= -
¥

⎧⎨⎩V x
V x D D x Dcos , if 20 20 ,

, otherwise.
11L

L
2

Here =V E10L R is the amplitude of the optical lattice, ( )l=E h m2R
2 2 is the recoil energy, l m= 1.064 m, and

l=D 2 is the period of the optical lattice. The lattice is loadedwith 87Rb atoms, = ´ -m 1.455 10 25 kg. For
such a deep lattice, the Tonks–Girardeau gas (describedwithHamiltonian (3) togetherwith condition (2)) can
be approximated by themodel ofHCBon a discrete lattice [43, 44]:
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Here, the bosonic creation and annihilation operators at sitem are denoted by ˆ†
bm and b̂m respectively, and J is the

hopping parameter. The hard core constraint ˆ ˆ†
= =b b 0m m

2 2
precludesmultiple occupancy of one lattice site,

and the brackets in equation (12) apply only to on-site anticommutation relations, for ¹m n these operators

commute as usual for bosons [ ˆ ˆ ]
†

=b b, 0m n .We calculate the effective hopping parameter =J E0.019 R from the
Wannier states of the optical lattice by using theMLGWS code [45]. The discrete lattice of theHamiltonian (12)
is sketched infigure 1(a).

In order to obtain theHCBdiscrete latticemodel with tunable hopping amplitudes and phases, one can
employ the laser assisted tunnelingmethod. The scheme [11, 13, 14] utilizes far off-resonant lasers and a single
atomic internal state, whichminimizes heating by spontaneous emission. An early theoretical proposal related
to this schemewas based on coupling of different internal states [15]. The theoretical proposal in [16]was later
modified to obtain a homogeneous syntheticmagnetic field [13, 14]. In order to simulate the scheme
numerically, at t=0we introduce the tilt potential ( ) a=V x x DT , and simultaneously the time- and space-
periodic potential ( ) [( ) ]w= -V x t V qx t, cos 2R R

2 . The periodic potential with the tilt, ( ) ( )+V x V xL T , is the
continuousWannier–Stark-ladder potential; for a sufficiently large tilt, tunneling between neighboring lattice
sites is suppressed [13, 14]. The periodic drive potential ( )V x t,R simulates two-photonRaman transitions used
to restore the tunneling [13, 14], and introduce nontrivial phases in the hopping parameters. Thus, for t 0, the
Tonks–Girardeau gas evolves in the time-periodic potential

( ) ( ) ( ) ( ) ( ) 
=

+ + -
¥

⎧⎨⎩V x t
V x V x V x t D x D

,
, , if 20 20 ,

, otherwise.
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The strength of the tilt and the drive are set by a = V0.1 L and =V V0.17R L, respectively. The frequency of
driving is in resonancewith the energy offset between neighboring sites of the tilted potential, that is, w a= .

For a deep optical lattice, our continuousmodel with potential (13) can be approximated by a discrete
Hamiltonianwith the kinetic (hopping) term, tilt, drive, and on-site interactions. Such a discreteHamiltonian is
a starting point in [46, 47], for deriving a discretemodel with complex hopping amplitudes and interactions.
More specifically, in the case of resonant driving ( w a= ), a unitary transformation can cast this discrete
Hamiltonian into a rotating frame, such that the kinetic term, together with the tilt and drive terms, become an
effective kinetic termwith complex hopping amplitudes [46, 47]. The on-site interaction term is not affected by
this unitary transformation [46, 47]. The derivation is applicable for any strength of the interactionU/J [46, 47],
whereU stands for the on-site interaction energy. Even though the derivation in [46, 47] is for 2D lattices, it is
applicable for 1D lattices as well; it is also valid in the strongly interacting limit  ¥U J studied here. In other
words, the Tonks–Girardeau gas in the continuous potential (13) can be approximatedwith theHamiltonian of
HCBon a discrete lattice with nontrivial hopping phases:

ˆ [ ˆ ˆ ] ˆ ˆ { ˆ ˆ } ( )
† † †

å= - + = = =f

=
+H K b b b b b be h.c. , 0, , 1, 14

m

M

m m m m m m
1

i
1

2 2
m

Figure 1.Discrete lattices and their energy bands. (a)The discrete lattice corresponding to theHamiltonian (12) (hard core bosons are
sketched asfilled blue circles). (b)The discrete latticewith complex hopping parameters, which corresponds to theHamiltonian (14).
(c)Energy bands ( )E k1,2 of the discrete lattice illustrated in (b), with the phase of the hopping parameter f p= mm . The edges of the
first Brillouin zone are at p= k D2 (denotedwith black vertical doted lines). The energy bands are shown also outside of the first
Brillouin zone for better visualization.
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where the hopping phase is givenwith f = qDmm andK is the effective hopping amplitude. By choosing a
different gauge, the phases in equation (14) can be eliminated. Nevertheless, a comparison of the continuous
Tonks–Girardeau system in the time-dependent potential (13), with the discretemodel (14), provides valuable
information on the applicability of laser assisted tunneling in the presence of strong interactions.Moreover,
these results have implications for interacting systemswhere nontrivial phases cannot be eliminated by a gauge
transformation, and in systemswith gauge dependent observables.We consider a discrete lattice withM=40
sites, corresponding toM=40 lattice sites of the optical lattice potential (11). The discrete lattice of the
Hamiltonian (14) is sketched infigure 1(b).

Inwhat follows, wemake a particular choice of the phases of the hopping parameters. In experiments, this is
set by choosing the angle between the Raman beams [13, 14], and herewe set it by choosing p=q D in the
time-dependent potential ( )V x t, ;R thus the hopping phase is f p= mm . For this choice of the hopping phase,
the discrete lattice has alternating hoppingmatrix elements, ( )-K 1 m, for tunneling from sitem to site +m 1.
We estimate the effective hopping amplitude to be =K E0.012 R. This is obtained by comparing the expansion
of the initially localized single particle Gaussianwave packet in the total potential (13), with the expansion in the
discrete lattice (14), and adjustingKuntil the two patterns coincide; thismethodwas adopted from [48].

In order to obtain the ground state properties of theHCBHamiltonian (14), we use the Jordan–Wigner
transformation [42–44]

ˆ ˆ ˆ ˆ ( )
† † ˆ ˆ ˆ ˆ† †
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b
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f f
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1
i
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i

whichmaps theHCBHamiltonian (14), to theHamiltonian for discrete noninteracting spinless fermions:
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†

å= - +f
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+H K f fe h.c. , 16

m

M

m m
1

i
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m

where ˆ†
f
m and f̂m are the creation and annihilation operators for spinless fermions.We calculate the ground state

momentumdistributionNB(k ) of theHCBHamiltonian (14), and the ground statemomentumdistribution
NF(k ) of the noninteracting spinless fermionsHamiltonian (16), by using the procedure outlined byRigol and
Muramatsu [43, 44].

Infigures 2(a)–(f)we showNB(k ) andNF(k ) in dependence on the number of particlesN. Thefigure can be
understood by considering the single-particle energy bands of the discrete lattice with f p= mm , illustrated in
figure 1(c). There are two bands, ( ) ∣ ( )∣= -E k K kD2 sin1 and ( ) ∣ ( )∣=E k K kD2 sin2 , which touch at a 1DDirac
point at k=0. The ground state ofNHCB is constructed by using the firstN single particle states [43, 44], which
on the Fermi side of themappingfill the states up to the Fermi level. Note that forN=20, the band ( )E k1 isfilled
and ( )E k2 empty, while forN=40 they are both full. For < =N M 2 20, the single particle states partiallyfill
thefirst band ( )E k1 which hasminima at the edges of thefirst Brillouine zone at p D2 ; thus bothNB(k ) and
NF(k ) are centered at these values. The fermionic distribution has the characteristic plateau(s)with Fermi edges,
whereas the bosonic distribution has a spike at themaxima; the spike is a consequence of the fact that bosons

Figure 2.Ground statemomentumdistributionNB(k ) (blue circles) of hard core bosons and noninteracting spinless fermionsNF(k )
(red diamonds) in the discrete latticewith the hopping phase f p= mm (see figures 1(b) and (c)). Illustrated are cases for the number
of particles =N 10, 15, 20, 21, 30, and 40. ForN=20 thefirst band ( )E k1 isfilled, and the second band ( )E k2 is empty. For
N=40 the bands arefilled, and the system is in theMott state of one atomper lattice site with ( ) ( )=N k N kB F . The bosonic
distributionNB(k ) is for all values ofN peaked at p= k D2 ; these values are at the edges of the first Brillouin zone, that is, at the
minima of thefirst energy band ( )E k1 . In contrast, the fermionic distribution has a characteristic Fermi plateau, which becomes
inverted when the second band starts to be filled for > =N M 2 20. See text for details.
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tend to occupy the same single particle state of lowest energy. Forfilling < < =M N M2 40, the bosonic
momentumdistribution retains its peak at the edges of the Brillouin zone p D2 , whereas the fermionic
plateau is inverted because the Fermi level is now at the 2nd band ( )E k2 . Infigure 2(f)we show the results for
filled bands = =N M 40, i.e. both bosons and fermions are in theMott insulating state with one particle per
lattice site and the twomomentumdistributions overlap, ( ) ( )=N k N kB F .

Next, we explore the quantumdynamics of the Tonks–Girardeau gas in the continuousWannier–Stark-
ladder potential ( ) ( )+V x V xL T with periodic driving ( )V x t,R (simulating laser assisted tunneling). The initial
state is the ground state of the optical lattice potentialVL(x) (11). Note thatwe use capital letters (NB(k )) to
describemomentumdistributions of the discretemodel, and lower case (nB(k )) for themomentumdistribution
of the continuousmodel.Wefind that the time dependentmomentumdistribution ( )n k t,B for Tonks–
Girardeau bosons, and ( )n k t,F for free fermions, are stroboscopically [46] in excellent agreementwith the
momentumdistributionsNB(k ) andNF(k ) of the discrete latticemodels (Hamiltonians (14) and (16)).More
specifically, at times ( )= -t n T4 1 4, { }=n 1, 2, 3 ... , where p w= =T 2 0.497 ms is the period of the
periodic driving, the continuous and discretemodelmomentumdistributions coincide. TheNB(k ) of the discrete
model has its domain in the first Brillouin zone [ ]p pÎ -k D D2 , 2 , whereas for ( )n k t,B of the continuous
model ( )Î -¥ ¥k , . Apart from themain peaks in the 1st Brillouin zone, the continuousmomentum
distributions ( )n k t,B have additional (expected) peaks at positions shifted by an integer number of reciprocal
lattice vectors.

Infigures 3(a) and (b)we show ( )n k t,B and ( )n k t,F forN=10 particles at the first three stroboscopic
times { }=t T T T3 4, 7 4, 11 4 ; the lines overlap indicating that a Floquet steady state is reached.We see
excellent agreement of the continuousmomentumdistributions ( )n k t,B and ( )n k t,F , presented infigures 3(a)
and (b), with themomentumdistributionsNB(k ) andNF(k ) of the discretemodel forN=10 particles,
figure 2(a).

Infigures 3(c) and (d)we show themomentumdistributions ( )n k t,B and ( )n k t,F for non-stroboscopic
moments forN=10 particles. At t=0, the Tonks–Girardeau gas is in the ground state of the optical lattice
(11), which can be approximatedwith the discretemodel (12) sketched infigure 1(a). The discretemodel (12)
has one energy band ( ) ( )= -E k J kD2 cos . Infigure 3(c)we show themomentumdistributions ( )n k t,B of the
initial state at t=0 (black doted line) and at t=T (green doted line); we see that themaxima of ( )n k t,B are at

p= k D0, 4 2 , which is consistent with theminima of the band E(k ). The same reasoning holds for ( )n k t,F at
times { }=t T0, infigure 3(d). For completeness, in figure 3(c), we also show ( )n k t,B for non-stroboscopic
times { }=t T T0.18 , 0.83 (black and red solid lines respectively); at these timesmomentumdistributions

( )n k t,B have one dominantmaximumand several smaller peaks at various k.
Infigures 4(a)–(d), we show themomentumdistributions ( )n k t,B and ( )n k t,F at the 10th stroboscopic

appearance = »t T39 4 5ms for different numbers of particles, { }=N 20, 21, 30, 40 .Wefind excellent
agreementwith themomentumdistributionsNB(k ) andNF(k ) (shown infigures 2(c)–(e)) of the discrete
Hamiltonians (14) and (16), respectively. ForN=40, themomentumdistributions ( )n k t,B and ( )n k t,F do
not have sharp peaks, and they slowly decay as  ¥k ; this shape differs from the uniformNB(k ) andNF(k )

Figure 3.Time dependence of themomentumdistribution ( )n k t,B for Tonks–Girardeau bosons in the continuousWannier–Stark-
ladder potential with periodic driving, and ( )n k t,F for free fermions, forN=10 particles. (a) ( )n k t,B at stroboscopic instants

{ }=t T T T3 4, 7 4, 11 4 (the lines overlap). Results are in agreement with themomentumdistributionNB(k ) for the discreteHCB
model (blue circles in figure 2(a)). (b) ( )n k t,F at stroboscopic instants { }=t T T T3 4, 7 4, 11 4 (the lines overlap). (c) and (d)

( )n k t,B and ( )n k t,F at non-stroboscopic instants { }=t T T T0, 0.18 , 0.83 , . See text for details.
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corresponding to theMott state shown infigure 2(f), which is expected for the lattice offinite depth.However,
the bosonic and fermionic distributions coincide both in the continuous and the discretemodel.

Besidesmomentumdistributions, it is instructive to study the dynamics of natural orbitals ( )F xn
TG defined

in equation (9), and their occupancies ln
TG. Infigure 5(a), we show ln

TG for the continuousmodel at =t T39 4,
for { }=N 10, 20, 30, 40 particles respectively; as expected, bosons partially condense in thefirst natural
orbital ( )F x1

TG , and this is reflected in the fact that the peak in theirmomentumdistribution is located at the
minima of the bands irrespective of the filling, which is not the case for fermions (see figure 1). ForN=40,
bosons are in theMott state with l » 1n

TG for every n. Infigure 5(b), we show occupancies ln
HCB of the natural

orbitals ( )F xn
HCB within the discretemodel (calculatedwith the procedure outlined in [43, 44]).Wefind the

same behavior as for the occupancies ln
TG shown infigure 5(a).

Infigure 5(c), we show the real part of thefirst natural orbital ( )F x t,1
TG forN=10 at =t T39 4;we see the

signature of the effective hopping phase f p= mm , i.e. the real part of thefirst orbital changes the sign every two
sites (the imaginary part follows the same behavior), and higher natural orbitals follow this behavior. For
comparison, infigure 5(d)we show thefirst natural orbital ( )F x1

HCB of the ground state forN=10HCBon the
discrete lattice.We see excellent agreement between the twomodels.

Figure 4.Momentumdistributions ( )n k t,B (blue solid line) for Tonks–Girardeau bosons in the continuousWannier–Stark-ladder
potential with periodic driving, and ( )n k t,F (red solid line) for free fermions, in dependence of the number of particlesN, at the 10th
stroboscopic instant = »t T39 4 5ms. The results are in agreement withmomentumdistributionsNB(k ) andNF(k ) of the discrete
models presented in figures 2(c)–(f). See text for details.

Figure 5.Natural orbitals and their occupancies. (a)The occupancies of natural orbitals of Tonks–Girardeau bosons in the continuous
Wannier–Stark-ladder potential with periodic driving at the 10th stoboscopic appearence = »t T39 4 5ms, for

{ }=N 10, 20, 30, 40 particles. (b)The occupancies of natural orbitals for the ground state of the hard core bosons (HCB) on a
discrete latticewith the hopping phase f p= mm . (c) Spatial dependence of the real part of thefirst natural orbital for the Tonks–
Girardeau gas (continuousmodel). (d)The first natural orbital ofHCBbosons (discretemodel). Both orbitals in (c) and (d) have the
signature of the phase of the hopping parameter. See text for details.
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4. Conclusion and outlook

In conclusion, we investigated the applicability of the laser assisted tunneling in a strongly interacting Tonks–
Girardeau gas.We found that the stroboscopic dynamics of the Tonks–Girardeau gaswith laser assisted
tunneling effectively realizes the ground state of 1DHCBon a discrete lattice with nontrivial hopping phases.
Our strategy was to compare the quantumdynamics of the Tonks–Girardeau gas in a continuousWannier–
Stark-ladder potential with periodic driving, which simulated laser assisted tunneling, with the ground state of
the discretemodel.More specifically, we have compared themomentumdistribution, natural orbitals and their
occupancies at stroboscopicmoments corresponding to the period of the driving potential, and found excellent
agreement.

In the outlook, wewould like to point out that by comparing continuous and discrete systems (see also [48]),
as we have done here, one opens theway for the study of shallow optical lattices with periodic driving, where the
tight-binding approximation is not applicable. These continuous systems could potentially be described as
discretemodels with the phase dependent next to nearest neighbors hopping amplitudes (multi-bandmodels).
It is reasonable to expect that suchmodels, with interactions present, possessmany intriguing quantum states
yet to be explored. Next, wewould like to point out that a similar study could be in principle performed for
interactions offinite strength, where one could exploremodulations of the interaction strength [49, 50] leading
to systemswith density dependent hopping parameters.
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